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1. Introduction.

IN a series of five papers! published in these Proceedings, the theory of the
diffraction of light by high frequency sound waves has been developed. There
have been however two stages in the development of the theory. 'The
first one had a restriction in the theory in order to simplify the treatment
of the problem and bring out its essential features without unnecessary
complications. In the second one, the above restriction in the theory has
been removed and the theory of the phenomenon under general conditions
has been developed. The general theory includes the preliminary one as a
special case,

Preliminary Theory.—In Parts I, IT and III, the essential idea is that
the optical effects are due to the corrugated form of the emerging wave-front
and that the corrugations due to the density fluctuations could be simply
calculated by the phase changes accompanying the traversing beam ignoring
the amplitude changes. The exact condition under which this restriction
could be realised in practice is indicated in the papers. The theory accounts
for the appearance of a large number of diffraction orders and also the
wandering of the intensity of light amongst them as the length of the cell, the
supersonic intensity and the wave-length of the incident light are changed.
All these results have been strikingly confirmed quantitatively by Bir? who
actually realised in practice the restriction we had imposed in our preliminary
theory. The intensity variations and the symmetry of the diffraction effects
in the case of oblique incidence have been also confirmed by Bir.2 In
Part III of the theory, we investigated the Doppler effects in the diffraction
orders when the supersonic wave is either a progressive one or a standing

* C. V. Raman and N. S. Nagendra Nath, Proc. Ind. Acad. Sci., 1935, 2, 406 and 413 ;
1936, 3, 75, 119 and 459,

2 R. Bdr, Helv. Phy. Acta., 1936, Bar realised it by diminishing the frequency of the
supersonic waves.
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one. The results in the case of a standing wave are really interesting. We
obtained the result that any order would cohere partly with any other order
counted in an even sequence from it while it would not cohere with the
remaining ones lying on an odd sequence from it. This result is in remark-
able agreement with the same result obtained by Bar® experimentally.

Generalised Theory.—In Parts IV and V, the restriction of the
preliminary theory was removed by considering the partial differential equa-
tion governing the propagation of light in a quasi-homogeneous medium.
The results regarding the coherence phenomena amongst the diffraction
orders were found to be true even if the supersonic wave be a general
periodic progressive one or a standing one. We then considered the cases
of a simple periodic progressive wave and a standing wave to investigate the
amplitudes of the various diffraction orders. A difference—differential
equation was obtained whose solutions correspond to the amplitudes of
the diffraction orders. This equation enabled us to show that, in the case
of oblique incidence, the diffraction pattern will be, in general, asymmetric
which agrees with the results of Debye and Sears, Lucas and Biquard, Bar
and Parthasarathy. The purpose of this paper is to solve the difference—
differential equation occurring in the theory by the series method and offer
an explanation for the quantitative experimental results obtained by Partha-
sarathy® in the case of the oblique incidence.

In this connection we desire to make some remarks regarding Brillouin’s
theory. The idea of characteristic reflection in these experiments does not
seem very appropriate in view of the fact that the wave-length of the periodic
Auctuation of the density is large compared with the wave-length of the
light. The concept of reflection does not explain the presence of other orders
and the non-sharpmess of the maximum intensity of the reflected order at
the characteristic obliquity of light to the sound waves. Thus, the use of
the general word ‘propagation’ is certainly preferable to the word ‘reflec-
tion’ for we know only and ave here concerned with the equation governing the
propagation of light in the medium. In Brillouin's rigorous theory* of the
diffraction phenomenon, he starts from the well-known partial differential
equation governing the propagation of light in a quasi-homogeneous medium
as we have also done. Thus the basis of Brillouin’s rigorous theory and our
general theory are the same. But the developments of the theory are different.
His fundamental idea is that the emerging wave-front will be equivalent

3 R. Bir, Helv. Phy. Acta., 1935, 8, 591.
4 1, Brillouin, Act. Sci. et Ind., 1933, 59.
5 S. Parthasarathy, Proc. Ind. Acad. Sci., 1936, 3, 594.
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to a set of plane waves travelling in the same direction of the incident light
but with an amplitude grating on each one of them given by a multiple of a
Mathieu Function. “This analysis though perfect leads to complicated
difficulties for, to find the diffraction effects in any particular direction,
one will have to find the effects due to all the analysed waves. On the
other hand, we have analysed the emerging corrugated wave into a set of
plane waves inclined to one another at the characteristic diffracted angles.
To find the diffraction effects in any particular direction, one has only to
consider the plane wave travelling in that direction. Our analysis led in
the preliminary theory to results which have been later beautifully confirmed
by Bdr? and, in the general theory, has answered satisfactorily the occurrence
of the coherence phenomena and the asymmetry in the intensity of the difirac-
tion orders in the case of oblique incidence.

2. Propagation of Light in a Quasi-Homogeneous Medium.
In Parts IV and V, the wave-function governing the propagation of

light in 2 medium was assumed to satisfy the partial differential equation

(x, v, 2, 1)72 d?

c
or .. .. .. .. (1)

vy =2 Y

c* of

when the frequency of the time variation of u (x, ¥, z, f) is very slow com-
pared to that of the wave-function of light. This would be so in the case of
a medium filled with sound waves, for the frequency of the time variation of
w (%, y, 2, 1) corresponds to the frequency of the sound waves which is
negligible compared to the frequency of the sound waves.

We desire to point out that the equation (1) can be derived on the basis

of the electromagnetic equations if we assume that the medium is non-
magnetic and transparent and that »*, the frequency of sound waves, is small
compared to v, the frequency of the incident light.

The Maxwell equations{ for the propagation of electromagnetic waves
in the medium are

-
- -
rotE=—la——I-I, divH = 0,
c dt
. 1B =
b . -
rot H = F ST div D = 0,
where
> -
D=FkRE

1 Frenkel's Elekirodynamik, 1928, page 236.
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k being the dielectric constant of the medium as a function of x, ¥, z, and ¢.

ﬁ
Eliminating H, one obtains

-
12D

EA3FE = VZE—}-Y;rotg—l—(—Vk—kv)g—l—(E V)%—@.. (3)
Since »* < <v
This reduces (3) to ‘Vkih <<t
or

%g-;é(kg)=v?'§ .. .. .. .. (4)

Using again the assumption that the frequency of the time variation of %

+
is small compared to that of E, the equation (4) reduces to

-
B ?E = ‘
_‘;?_ -b.%é_ b= V2E .o . .. .. .. (5)

One can find some discussions of this equation in Frenkel’s “Electrodynamik,”
(Zweiter Band).

3. Generalised Theory of the Phenomenon.

The equation governing the propagation of light in the medium we are

considering is <

72 2

vy = [£R L BAT 28 . . )
We choose the axes of reference such that the Z-axis points to the direction
of the propagation of the incident light and the X-axis is contained in a
plane perpendicular to the sound waves containing the direction of the propa-
gation of the incident light. This choice of the axes of reference enables us
to ignore the dependence of y on Y and write the differential equation as

R, NP [M(X,Z, z)]z 2 o)

bX2+022" ¢ Y - = (M

If p(X,Z, ¢ did not depend on time, ¢ would have had the only time

factor exp [2mive]. Considering the actual case where u (X, Z, ) depends on
time, we can write ¢ as given by

Y = exp 2mt] D (X, Z, £) .. .. .. .. (8)
where @ varies slowly in time compared to exp [2mivt] for v* << v, It
can be seen easily that

l 4mv %? << | 4n*® | and

2
%—;-? << |47 |.
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Thus we can reduce the differential equation to
29 3?9

2t

and obtain ¢ by the equation

- nxzgre . O

b = exp [2mivt] @

The following figure gives the schematic representation of the pheno-
menon we are considering. The angle between the sound wave-fronts and

Ax
v
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>
Ta\ z
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the direction of propagation of the incident light is ¢. The x-axis points
to the direction of propagation of the sound waves and the z-axis is contained
in the plane containing the X-axis and the Z-axis. Thus cos ¢ and sin ¢
are the z- and the x- direction cosines of the direction of propagation of
the incident light.

N
4 ve ordersl-—ve orders

Even if we consider a general periodic sound disturbance with the
period A* along the x-axis, the symmetry of the experiment with respect
to the wave-fronts demands

D (X, Z,t) =D (X +pA*rsecd, Z,¢8) .. .. .. (10)
where p is an integer. This is true for, if we imagine a translation of the
sound waves by a distance pA* sec¢ along the X-axis, the experimental
conditions are the same as before. As the sound wave-fronts repeat them-

selves with the ferquency v*, @ should be periodic in time with frequency
v¥, i.e.,

¢(X,z,t)=<p(x,z,t+§;) . .. (1Y)

where ¢ is an integer. The conditions (10) and (11) enable us to write down
the double Fourier expansion of @ as given by

oz'o jf' fm (Z) 627'1'1';-}{&35 q,')/)\_* 62771':11*&‘ e .. (12)

Progressive Sound Waves.—In the case of progressive sound waves
travelling along the positive direction of the x-axis, we have the property that

@(X+pA*sec¢zt)_qb(KZt-p/v*) LT L. (1)
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Y

i
}

where p is any number. This condition enables us to write (12) as

3:’0 029_’1 fr: (Z) e27Tz'rX cos gb!/\* eZm’xV*f g277irp

-0 —Co

2mirX IAN®  Qmisy®; — 2
=2 3 f.2 ¢ irX cos fA 2TisVEL = 2mwisp
-0 -0

(14)
Comparing the Fourier coefficients on each side of (14), we get
Fro(Z) TP = £, (Z) £ TP . . .. (15)
where p is any number. This could only be true 1f
v frs(Z) =0  whenr== —s.. .. .. .. (16)

The condition (16) restricts the number of terms in the Fourier expansion of
@ so that it can be written as given by

D — Z? fr (Z) 82771‘7'X cos 45//\* o 2mirv¥e - (17)

so that ¢ is given by
b= 2 f (2 6211'1‘7}( cos p[A* 82#2'(7!—7’11*):‘ (18)
= 5 .. .. ..
If one considers the diffraction effects of ¢ given by (18) it will be
fairly obvious that the 7th order diffraction component will be inclined at

an angle sin~1 (— 7) cos ¢/A*) with the incident beam of light, will have the
frequency v — rv* and the relative intensity | FA2) 1?

Standing Sound Waves.—In this case

*
@(X-{-f’l-zfc—ém) o (X2t o) - . 9)
where p is an integer. Using (19) in (12) we get
2 2 frs ) 27Tz‘rX cos gb/A* 6277':’:v*f em'rp
_ f ‘E’, s (2) ezm'rx cos pIA* 627‘risv*t 8& Trisp N . (20)
-0 =00

Comparing the Fourier coefficients in the above, we get

Fro (Z) & =fr (D)L .. .. . (@21
where p is an integer. (21) could only be true if all f,(Z) are zero except
those in which 7 and s are both odd or both even. So the Fourier expansion
for @ in this caseis

O = DI fz;',zx (Z) €

~co — 00

27ri27X cos gﬁ/)\* 6271'1'2:11*:

® = 9mi2r+1X cos PIA* 2mi2s —1v*z
-+ 2 2 f2r+1,2:+1 (Z)e é

- - 00
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Thus
o oo . 92mi%/X * g 95*)s
o= X X fore (L) e mi2rX cos /A ¢ i v+251%)
-0 =00
— - .. (23)
(oo} o0 2 ,+ 3 1" * . 2 - %
T €o —2<'>o Jor 10541 (Z) 527” 7 +H1X cos i 5271'1(1/—]- s +1v%)

If one considers the diffraction effects of ¢ given by (23), it is fairly
obvious that the diffraction orders could be divided into two groups, one
containing the even ones and the other odd ones; any even order would
contain radiations with frequencies v, v & 2%, — — v & 2n*%— — and
any odd order would contain radiations with frequencies v + v¥*, v + 3v¥,
— — v+ 9% L 1v* —— . It should be remembered that the above
results are valid for sound waves which are general periodic and either pro-
gressive as in the preceding case or standing as in the present case.

General Periodic Sound Waves.—In the case of sound waves which are
neither progressive nor standing we should expect, from (12), any order
to contain radiations with frequencies v 4+ rv* where » is an integer both
positive and negative. So, any two orders, in general, cohere partly for they
contain radiations with the same wave-lengths. It is worthwhile to show
that this is true by an experiment, taking care that the wave is neither
progressive nor standing.

4. The Case when the Disturbance in the Medium is Progressive and
- Stmple Harmomnic. ‘

If we suppose that the variation in the refractive index of the medium
is simple harmonic and progressive along the x-axis, it can be repfesented
as ~ '

p(x,28) — py = psin 27 (v* — x/A%) .. .. e (29)
where p, is the constant refractive index of the medium when the sound
waves are not present and p is the amplitude of the variation of the refrac-
tive index when the sound waves are present. It can be written as

e 7{85(6,1- —€) _ ,—illr— e)}

%

o1

(25)

_ g; {31'(bXCOS¢ -}«Zsm —€) e z'(chosrf) + Zsin ¢ — 6)}
where € = 2m*f and b = 27/A*.
We know that @ satisfies the equation

XD | 20 dn* . o
C +§—Z—2=——X2—{“ (X, Z, 1)yd .. .. (26)
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with the representation for it as ,
E." f,«- (Z) e27Tz‘rX cos ¢>/)\* 6—27751'1;*: B - - (27)

Substituting the Fourier series (27) and the expression (25) for u (X,Z,£) in
the equation (26) and neglecting the second order term with the coefficient
u2, we get by comparing the coefficients

af, An** cos? ‘ :
Bf Aot by af =
B 67 si — ibZ sind |
.—?",; {f?’—l ZbZ mq!) - fy-{-l e bZ < qb ’g .. .. .. (28)

where A= —4n2u2/X® and B = 8n2uu/)*. Putting f,(Z)=exp (—iurZ) D,(Z)
where % = 2x/) and putting Z = (27p)71A¢, we obtain

, 42 D, d®, 7% cos® ¢
l“' d 52 - "‘“‘LOH dg - v AF2 @r =
— phopt {@ -1 giaf sing — @r+1 s amgﬁl R (29)

where a = A/uA*.
As p is very small compared to p,, we may consider the equation

y 222 2
ddggr__ (¢r—1 giafsin(/)-:— ¢i‘+1 e— ia€ sin (7‘6) = 'Z_}’.—ﬁ__lf_;—)s_z_é @, (30)
0
cos? (/> . z’;‘dé sin \
Denoting P« TN N by p and putting @, =¥, ¢ ‘ .. (31)
we get

2 % — ¥, + ¥y =1 (P — Zrasin ) ¥, - {32)

The boundary conditions of the problem are
Y, (0)-—0 r== 0 (33)

and ¥, (0) =

The solution of the equatmn for ¥’s seems to be not qmte easy in terms
of the well-known functions. We have therefore attempted here to solve
the equation, a little more generalised, by the series method.

5. Solution of the Dzﬁewence——Dzﬁ‘ermtml Equation by the Series Method.

Consider the following equationf

,d¥,
“ Tdx

»~1" + Wgr_}.]: = Cr Tf .. - .. (34.)

+ Throughout this section, # is used for & of the previous section for convenience.
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where 7 is an integer ranging from — o to oo and ¢, is a constant depending
only on 7. The boundary conditions of the problem are

Y, (0) =0,7==0 i}

AN .. .. .. .. (35

and Yy (0) =1 (39)

Let us write the series representations for ¥’s as given by

: 72 O
¥, = 2—;6—”—' 2 A,,w forn =0 .. - .. (36)
= :
and
x I?Z[ > -
gfﬂ = 9 17| I’i'l]! rf() Aﬂ,r X forn < 0 . o (3 l)

These representations satisfy the boundary conditions (35) if

A010=1 .. .. - . . e . . T (38)
Case I. Tet n > 1. Then
Y, = o I A,
[/ 27271‘! o 21,7 X
oo
dd,férﬂ = 5):71‘——' 02 (7 + 7’) An,?‘ (e +r=1)
39
W,y = o B A, attrl o
n-1 272—111/__1! o 7=1,7 ~
1 5 +rt1
and Vs = ST T 1)1 2 A, oL

0

Substituting (39) in (34) and comparing the coefficients on both sides of the
equation, we get the difference equation

. 1
('”' + (4 + 1) An,r-i-l — 7 An—l,r+1 + Z(h‘_ﬁ‘)“ An+1,f-1

c ;
=—§‘-An,, .. .. .. . .. (40)
where # ranges from 1 to oo and » ranges from 0 to oo.
Case II. Let n =0. Then

a¥ =
7;6—9 = %’ 4 AO,, xr-1
Y, =1 {; A, xr+l .. .. .. co (41)
¥, =13 A,
]




The Diffraction of Light by High Frequency Sound Waves 231

Substituting (41) in (34) and comparing the coefficients, we get

2 (r + 1) A0.7‘-!-1 - ‘-].iA—l.r—l + .1? Al,v'—l =0 . . (4‘2)
Case III —JIet n< — 1. Then
N
¥, = 2:%‘ 2 A, , x where n = — m,
iv, 1
e e (7n _J‘_. 1) 7‘ xmtr -l
dx Yy . (43)
lP?l”‘l == “)(7)1-(-1 (}77 + 1) P A/z-—l ’ x7)1+7’+1
1 -
':pwl—l = 9(”}_1)(1% 1) Z AM+1 » ! Xty 1

Substituting (43) in (34), and comparing the coefficients, we get

1 CTZ
—ntr4- VAT gy A= 0 Ay r1 = “5‘A7z,r (44)

Thus we have the following three difference equations to determine the co-
officients of the terms in the power series (36) and (37).

1 ) 7l 1

= 1, (n A= 1) Au, ra1— W sz—-], 7+1 + Z(m An+1, r—1 9 A'n r

=0, 27 + 1) Ao ri1 — 1A L, e, =0 L., (45)

1 c
n -1, (—ntv +1) A rn— Ajrrre + mAn—1,r—1 =?;j Ar

Considering the first equation it can be seen that if we write ¢, forc,, (n =>1)
and write ( — )% A, for A, , (n=1), we get the third equation. So it

is only nccessary to solve the first two equations of (45).

(A) Supposer = —1. Then
" Au, [ " An—l.o = 0,n=> 1
Moo = 1 (houndary condition)
Thus
A.n,oz]., , VL2 ?-0 . . N (4:6)
:‘.lll(l A'”10 = (“)”) (2 < - l
(B) Suppose 7 = 0. Then
¢, _
(')% -+ 1) An,l — N An—l,l = "Z; 12,05 n =1,

‘ 2 Ao,l = (.
() Letn = 1. Then

c (71
2 A1.1 - Ao,1 = 9 ALO 9

Ay == cy[4-
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(i) Letn = 2. Then

Co C2
3 4&2'1 - 2 .’,'\.1‘1 == "2~ A2‘0 :;:‘-)J—,

A =5 + 2 A,
_a + G
2
Ay, = El.;gw_.?z
(iii) Let#n = 3. Then
48g; — 3 Ay =2

P e ol T i

43,1 T 7 8

(iv) Substituting #n = 4, 5, we get A,; and Aj ;.
Thus ‘

AO,I = O
c c.
A= 2*%‘5’ Ao =— '2"1@’
¢ + ¢ €~y + C..
Boa = Fgig Boay = "1’2%“2
- G+ +c C + Co + C-
Ay = L.__:;)_‘zz__f*, Ay, = -2 2.1 3,
A =G + 6+ + ¢ A I e e e S
e 2-5 CoTTer 2.5 ’
AL =4 +52+03+C4+Cs A __CatCatopteFo,
517 2-6 S 2-6 ’

(B) We will now calculate the coefficients A, ,.
For this pﬁrpose we put » = 1 in (45) and obtain

0+ ) Aus =1 Ayosis + o Auino = 5 A
forn = land :
4 A, — %"A—I,O + %Al,o =0
(i) From (48) and using (46), we get
4 A = — '-%‘Al,o +3A5,=~1
Thus Agp, = — ‘

1
4
b

(48)



v
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(i1) Letfn, = 1. Then

1 ¢
3 A1,2 — Agp + 4.9 Az, o= o A1,1,

3 A, = — _l_ — 1 4+ &®
1,2 4.2  * 12.2.9
: 1 1>
A, = — &
12 I3 T2.2.93
(i) Substituting » = 2, 3, 4 successively in (48), we get
A, = 1 + Rt R
227 4.3 2:2.3:4
A= — 1 012 462 FC3% - C1Ca=Cals + CsCy
“°8,2 4.4 2:2.4.5
A ‘ 1 ¢ + 24 0 A 016 T Cols Tt Caly - €10y Tt CoCy + C3Cy
4 T 4.5 2-2-5-6
Thus
A= Lo et
L2 T 49 2.2.2.3
A = 1 . c_2+ c_16-5 + c_f
Bk 43 2.2-3-4
A 1 Co2 g+ Cog® F Cqlon + CoaC 3 T 030
32T 4.4 : 2.2.4-5
1
Bae = 713

1 e oy F C_g? 4+ €42+ C1Cp + C9Cg T €30 - C_1Cy T CpC-y T Cgly
2.2.-5-6

(C) We will now obtain the coefficients'A,, ; by putting » = 2 in (45).
We get

1 Crn )
(n + 3) Aps — W A,o1s + Z(“W—IT) Apyir = 5} Ase .- (49}
for w > 1 and -
6 Ay —FA 1+ EA =0
(i) From (49), we get
¢, + c-
Mgy = — 2
(ii) Putting n =1L, 9, 3 in (49) successively, we get
1
.-.AJ.LB —_ m {013 - (C"'l + 5 Cl “+' 02)}

1

9 180 {(c®+ & + %y + 6% — (6o + 6c; + 66y + Ca)}

-
Il
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1
Ay = 360 {ler® + 63 + ¢+ c,%c, + 16* + CyPcy -+ Cals® + Ca%; + o0, + €10aCs)
— (e + 7o, + Toy + Tey + o))
1 8
Ay = 1680 e’ +6° e + ¢’ + 6%, + e + €15 + €10 + 6%, + 10,°
T CoPCs -+ cpeg® Ca’Cy + €y + €5%Cy + €364> + cyeq05 4 C1CoCy
T €413 - CyLaCs)
— (¢4 + 8¢, - 8¢, + 8c; + 8¢, + cs)}.
The coefficients Ay A, A_, s and A_,, are obtained from the above by
changing ¢, to c_, and Ay to( — )~ A, ,.
(D) To calculate the coefficients A, Weputy = 3in (45) and get

1
(7’L + 4—) A7Z,4 - A71—1,4 -i—mlﬁ) A)z+1,2 =£?7‘£ A‘-Il.ii (50)

for » > 1 and
8 A0,4 -3 A—-l,z + 3 A1,2 =0
Following the same procedure as in the above we get

1 0 . 1
Agy = — 384 (e + cq?) + 4

Jpa

1
Ay = 5 {et — (c—® + Te* + &? + 2610, + cieq)y + 1

o

1
As gy = son {{c* + Gt + ¢8c, L C16% + ¢1%6,?)

—(e® + 802 + 86,2 + 6,2 + 9¢162 + €16y + €105 + 20q0; - €56-1)}

1 2
Ay y = 13440 et + et + G5t + e%6* 4+ — — + o’ 4 — —+ C162C8" + — —)

= (e + 96,2 4 9c,2 - 9¢g® + ¢4 + 10c,6, + 100,60, -+ 9cic5 + 01
+ 6l + C16s + oy + 2cqc, + Cs3C_1)}

1
T 550

Similarly we have found

1
Ao.s = 3840 {— (6® + c-%) + 6e; + 6c_; + C_o + C}

1
Bo.s = 75550 X

{— (c,* + ¢4 + (8¢,2 + 8 + 2 +c? L 216y + 2¢_jc_5 -+ 2¢,64)}
1
2304
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So we can write the following series for ¥’s.

2 1
¥y =1-— % ~ 18 (c; + cq) #°
1 2+ c~1 "
1
+ ggqp (— (60 + o) 4 6o+ 6coy + Cp T G2} &P
_9_56_ ot + o,y
S T R T
n 80,2 + 8c_i® 4+ 6 + c® + 2616 +- 20400 + 2010-1}
20 .
- ——
' [1 + 4 x + 1 ( )x- + T&l)—? (e — ¢y — By — ¢y) &°
-+ Tg’é‘(‘) (et — {c® +Tc® 4 ¢ + 2016 + €16} + 10) x* + — _]
7{/ X 1 c“l 1 2 2 ]‘ 3 3
1= T3 + z + % “3“‘1 x“‘m(c—1—01“‘50~1"’0-—2)x

1 R
+ 1920 (cat—1{c + Tog® +eg® + 200 +eoyc} 4-10) 2% + — “‘]

,},2_8 {1 i Cl+cox+1z( 1 _+_012 —}—Cfg + 622>x2+ _,_}._ (51)

. €y + Cogp 17 Cog 4 CoyCg + €02\
R G : Vs = =]
-2 GFo e, 1
# “‘48{1 R S
‘ :waf__F—z + b3
Voo = 4M'* 8 2= }

We will now apply these calculations to obtain the intensity expressions in the
theory of the phenomenon we are concerned.

6. Applications of the above Calculations to the Theory of the Phenomenon.
In the problem we are concerned, x has to be written as ¢ and ¢’s will
have the following special values as given by (32).
6= t(p—2asin ¢); ¢ = z'(p—}—2&tsinq$)1I
=4i(p— asing); co=41(p+asing) .. (52)
6y = 3 (3 — 2asin @) ; ¢y = 3i (3p + 2a sin ¢) |

l

where
A% cos? ¢
p= P«lL AE2
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and
— )\ .
a = PR
Let us write 2 sin¢ as ap. Then
Po A* 53
o =3—tang .. . .. . .. (B3)
Thus ‘

6= 1p(l —2a); c;= 4p(1+ 27
¢, =4ip (1 — a); Cop = 4ip (1 + a ) ¢t .. .. (b4)
¢ = 3ip (3 — 2a) ; ey = 3ip (3 + 2a) |
Substituting the above values of ¢’s in (51), we get for the amplitude
functions |
=18 Pa 614[1 TG ga-) P2:| £
20a?)

_i_ 3 L1929\ £5 p? (11 +
+ 1950 U0 + 07 (1 + 1207} £ {2304 + 7630

pt (1 + 24a? +- 16a4)} .
+ 23040 &+ -—-

L e R (R At

7 3
+55 (= 2 (L = 2P — 10p + 120p)

g (p* (1 — 2a)t _P* (33—80a 4 60a?) § ,1}
+ ¢ { 1990 1990 + 199

¢ ip (1 + 24a) £ p: (1 + 2a)2 |
R e e (R

o 18
1Q7 {— P (L + 2a)3 — 10p — 12ap}

_{_54{,; (L + 2a)t | g2(33 + 80a + 6007 , 1 }

1990 1920 192

| + - — -—] .. (55)
¥, — 52[1 L (5‘6 ')5 1 (1 L (21——-4ia—|—28a-))§+ ]
Y, = gf[l _:_%”(5‘3‘6‘1)5__ (1 (21 -1-44a+98a2)§ +____:|

The relative intensity expressions for the various diffraction orders can be
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found by finding the series for ¥, ¥, where t denotes the conjugate expres-
sion. Let the intensity of the rth order be denoted by I,. Then

I, -,._—1511012: 1 - £ +§;(3 +p2(1 +4a2))

5 3
— & [5—?(3 — +1214§220+ S 12?0 T ng - 5p';6:|
, - L
n _1%% B 4 p? (9 ——2(1)8. + 2002) +p4 (1 1—;020.)4} L
L= [Pl =f — So[1 4 2042
1, =% — 3%64[1 + qg (1262 — 24a + 13)] b -
L, =% — & (14 £ (12 + 240 +18)] o+ - — -
I, = ,‘%& - —

One can now clearly see the asymmetry between I;, and I_; and I, and I _,.
The asymmetry between I, and I, consists in the higher terms than the
one term written.t

7. Discussion of Experimental Data.

(@) The case when p is negligible and o is zero.—The various I's are
the squares of the Bessel functions if p = 0. This case corresponds to that
treated in Part I. Thus the restrictions in Part I amount to p being small.
This could be so when the wave-length of sound is so large that p becomes
a magnitude which has not much influence in the intensity. expressions.
This case has been achieved experimentally by Béar who finds perfect quanti-
tative agreement with the theory.

(b) The case when p is not negligible —When a4 is not zero (i.e., oblique
incidence) the theory shows that there will be no symmetry in the diffraction
‘pattern, 7.e., the intensity of the rth order will not be equal to that of the
— th order. ‘This fact is in agreement wit the experimental results of Debye
and Sears, Lucas and Biquard, Bar and Parthasarathy.

T One may also verify from the above that
Tod Ty +Tg + 1o+ Lo+ I+ lg+——=1.
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Parthasarathy has found that in the case of oblique incidence the
* intensity is distributed more towards that side which favours the ‘reflection’
of the incident light if the sound waves had acted as mirrors. Theoretically the
expressions obtained in (56) seem toshow that this would be so if we restrict
our attention to the first fwo terms in each of the intensity expressions. If
we make such a restriction, the expressions (56) show that the intensity of
any positive order is greater than the corresponding negative order. The
positive orders are situated towards that side which favour reflection of the
incident light if the supersonic waves had acted as mirrors. However, it is
certainly very necessary to carry our calculations of the intensity expressions
for a greater number of terms and then alone we can definitely say which
side would be more intense under any definite experimental conditions.
Recently, Parthasarathy made an investigation of the diffraction
phenomenon by keeping all the parameters constant except the angle of
incidence of light to the sound waves which he changed continuously. He
has recorded that the first order attains its maximum intensity when the
incident angle to the sound waves corresponds nearly to the Bragg reflection
angle which is A/2A*. Similarly he has recorded that the intensity of the
second order attains its maximum when the incident angle is about A/A*.
If we restrict our attention Zo the first two terms of the intensity expressions
(56), it is easy to see that the first order would attain maximum intensity
when a = 3 or ¢ = A[2u,A*. Also it can be seen that the second order
attains its maximum intensity when ¢ = Ay A*. It is to be remembered
that p, is the refractive index of the medium. If the path of the incident
light is not normal to the face of the cell, then the maximum intensity of
the first order will appear when the angle between the path of the incident
light (which travels in air) and the sound wave-fronts is A/2A* and the
maximum intensity for the second order will appear when the angle between
the path of the incident light and the sound waves is A/A*. ‘
. It may seem certainly very necessary to further the calculations of the
intensity expressions to higher terms and see whether there are actually
maxima of the intensity of the various orders at definite angles as is claimed.
The intensity expression obtained heve for the first ovder dtself shows
that it may be so. If however the first order would attain maximum
“intensity at a definite angle independent of the other parameters £ and p,

then there should be a solution for the equation é—ll= 0 independent of ¢

da.
and P. I %& = 0’*
a

* phas the factor Cos2 & and so it depends on é. But if ¢ is to vary in a small
range, the dependence can he 1gnored 95 is really very small in experiments,
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4,2 6 4(1—920)3 wx —9
“16§>51§2(1 — 2a) x__2+_f_{4P St

4 5760
p? (— 20 + 40a) L
Fquating the coefficients of the independent terms to 0 we get
a =% .~
or & = A2 X¥ . .. .. .. .. (88)
, i 7 . o
The condition % = 0 is only a necessary condition for the occurrence

of the maximum. We should then see for a maximum that ng} is less than
Ko Al

zero. These considerations point out that the maximum of the first order
may appear when a = §, possibly under some conditions.

If we consider only the first two terms for the intensity expression of

I,, it can be seen that I, becomes maximum when
a ==1

or b = Mpol* .. .. .. .. .. (59)

We are fully aware that the further development of the intensity expres-
sions is greatly needed to interpret the experimental results, but the series
method which has been tried here to evaluate them leads to the following
result in the theory. This work seems to clearly show that the maxima of

the orders may appear at unique angles, possibly undey some conditions.

8. Lxpressions for Amplitudes in the Case of Normal Incidence.

If we put a== 0, in the fourth section, we can obtain the series for the
amplitude functions in the case of normal incidence. But we have worked
out this case separately and we give in the fdllowing our final results without
giving the details of calculation as they are similar to those in the case of
oblicque incidence.

P (10 8) e o (e + 88 4 Ly
+ 1"9‘:2(1 T 10)§ (23040 + 7880 T 2304/)¢

p- o EY 9P e N 8 4
+ (51"6‘69’60 + 5760960 184320 147456)5 +
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v, =51+ Pe L +3>52—W<p2+1o>53
o ) o )
+ (1920 " 540 o 195) &+ (93000 T 192 304 ¢
Pt 463p* 17p? )
~ \ 322860 T 322560 T 11390 T 9216/ &'

e 6105 90148 ) .
- (5160960 T 179032 T 1990940 T 1‘)288 ¢

s ps 9431ps 14779p% 11502 ) e
+ (92897980 T 30965760 T 16448640 T 2211840 T 737280

b ]

: 5i 17p
=—§8-[1+-?f§—;{-( +3)e—i( + )€
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T 5760 T ogg T 384)54

/1865 361p%
- i, |
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18590¢ | 1432 )
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G S LR C - P

653510t 71p2 ) .(108511P5 4049962 _*) S
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¥ = 515190 [1 & 14 32) &+ ]

The above series for the ¥’s are rather slowly convergent and it is rather
difficult to find their values for any pair of values p and €.

If we put p = 0 in the above, the series then represent the well-known
expansions of the Bessel Functions. In this exterme case we can determine
the relative values of the amplitudes simply as a function of £&. But when
p is not zero the calculation is not simple. If we know p, the amplitude
of the fluctuation of the refractive index, we can determine the values of
¢ and p by the following relations
..77',u,Z

A

e
” o o
Only when the series given above converge rapidly for determined ¢ and P,
they will be of use for practical work.

9. A Possible Method of Determining the Amplitude of the Fluctuation |
of the Refractive Index at High Supersonic Frequencies.

The method outlined in the following is an indirect one and applicable
only under heavy restrictions.

[

(1) The supersonic frequency should be high.
(2) The length of the cell should be decreased to such an extent that

ke is small.

there should be good reason to believe that A

The diffraction pattern in the case of normal incidence has to be studied
first and the relative intensity of the central order to the first (or minus first)
order is to be determined. Iet it be A,;. Then the cell hasto be rotated
to stich an extent that the first order attains its maximum intensity. Experi-
mental conditions ought to be such that the obliquity will be nearly A/22*.
Let now the ratio of the first order to the minus first order be A,. If I,

d‘énotes‘the 1ength' of the cell, { = g?—f—L Then
1-£ 480G+ 3)-—4=A<
sa__{l 21--
4 T Tel T2l
& 51 k‘ (61)
S
T =4,
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Since pf = 2mAL/u, A*2, the vaules of p and & can be determined by each
of the above equations. First of all the two sets of values are to be consistent.
If so, one can then determine u, the amplitude of the fluctuation of the
refractive index by knowing the formulee for p and ¢&.

The restrictions in the above method are rather very heavy so that it
may be difficult to arrange the experimental conditions in the required manner.
The method also depends on the assumption that the supersomic wave tn
the medium 1s a simple harmonic ome. Therefore the above is only offered
as a suggestion to be tested out experimentally.

70.  Summary.

A general review of the theory of the diffraction of light by high fre-
quency sound waves developed in these Proceedings by Raman and Nath
is presented. The solution of the difference—differential equation due to
them given in Parts IV and V of their papers is attempted here by the series
method. The results obtained in this paper offer an explanation for the
experimental results due to Bédr and Parthasarathy who have studied the
phenomenon at oblique incidence of light to the sound waves. That the idea
of ‘propagation’ of light in a quasi-homogeneous medium is fundamental and
preferable to the undefined idea ‘reflection’ in such a medium, is pointed out.

The author is grateful to Professor C. V. Raman for many discussions
they had since the theory was initiated by them.

Note added in proof.

. Areport of an interesting investigation of the theory of this pheno-
menon by Wannier and Estermann of Geneva based on the partial differen-
tial equation governing the propagation of light in a quasi-homogeneous
medium has appeared in the recent issue of Helvetica Physica Acta. If we
write the Fourier expansion for f (a, 2) in Brillouin’s pamphlet (equation 48)
or if we write 2 f, (k,) exp (4%, z) for f, in Raman-Naths’ paper, (Part IV)
equation 9, we get the equation obtained by Wannier and Estermann. The
comparison of their calculated results for ® = 1 with those of Raman and
Nath in their preliminary theory requires however a justification. Bir has
definitely found experimentally the region of the perfect quantitative appli-
cability of the preliminary theory. One can however calculate p and ¢ of
this paper on Wannier-Estermann’s choice of special experimental conditions
and substitute them in the expressions (56) obtained in this paper, and find
the region of the applicability of the preliminary theory for Wannier-
Estermann’s choice of the experimental conditions. Even if the length of
the cell is not negligible but if the wave-length of sound is large (10-* cm.),

the preliminary theory will be applicable as has been experimentally estab-
lished by Bir.




