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Nonequilibrium tricriticality in one dimension

Jaya Maji and Somendra M. Bhattacharjee
Institute of Physics, Bhubaneswar-751005, India

We show the existence of a nonequilibrium tricritical point induced by a repulsive interaction
in one dimensional asymmetric exclusion processes. The tricritical point is associated with the
particle-hole symmetry breaking introduced by the repulsion. The phase diagram and the crossover
in the neighbourhood of the tricritical point for the shock formation at one of the boundaries are
determined.

The lack of any free energy like entity to describe
nonequilibrium steady states makes general studies of
nonequilibrium phase transitions rather difficult. For this
reason, eventhough different types of phase diagrams are
known with first-order or continuous phase transitions,
and critical points from various case studies[1, 2, 3, 4, 5],
generalizations of these results are not straightforward.
Since steady states are the closest analogs of equilibrium
states (both being stationary in time), it is important
to know how far the richness of the equilibrium critical
phenomena with their connections to symmetries[6] can
be found in nonequilibrium systems.

This paper shows the bifurcation of a line of critical
points through a tricritical point[6, 7] in the phase dia-
gram of a one dimensional interacting driven system as
one interaction parameter is tuned. A tricritical point is
also a point where a first order transition changes over
to a continuous one, the pair of critical lines being the
edges of two first order surfaces. We do observe such
equilibrium-like gross features in the nonequilibrium sys-
tem so as to classify it as a tricritical point, but, unlike
equilibrium systems, all happening in one dimension[18].

The occurrence of a tricritical point in any system is
significant because it implies a confluence of two different
phenomena. As a consequence, the tricritical point con-
trols the scaling description in its neighbourhood. Known
examples from equilibrium systems include the θ-point
of polymer solutions[9], bunching and phase separation
of steps on crystal surfaces[10], different transitions in
magnets[7], current hunt for a tricritical point in quark-
gluon plasma in the context of early universe[11], and
many others[8]. In equilibrium systems, a tricritical point
is one in the hierarchy of critical points and corresponds
to the case of three relevant variables as opposed to two
for an ordinary critical point, as e.g., temperature and
magnetic field for a Curie point of a magnet. In the Lan-
dau theory of phase transitions, the sequence of critical,
tricritical points ... occur as new symmetric minima in
the Landau function develop. In analogy with that, we
find in the nonequilibrium problem in hand, the tricriti-
cality is associated with a particle-hole symmetry break-
ing or successive occurrences of peaks in the current in
the system, that allows maximum current through the
system at two different densities.

Our results are based on a class of well-studied one-
dimensional models for interacting particles moving on
a track, which are variants of the asymmetric exclusion

process (ASEP). There is current interest in these mod-
els because of the recent observation of localized shock
phases and associated criticality. A shock in these mod-
els is a discontinuity in the steady state density along the
track. Let us consider a one-dimensional lattice with par-
ticles injected at site i = 0 at a rate α and withdrawn at
i = N at a rate 1−γ. The particles hop to the right with
mutual exclusion so that the occupation number at a site
is 0 or 1. In addition, there is a next nearest neighbour
repulsion[12] so that a configuration

1100 → 1010 with a rate 1 + ε,

0101 → 0011 at a rate 1 − ε,

with (0 < ε < 1), where occupied and unoccupied states
of a site are represented by 1 and 0 respectively. The
hopping process is particle conserving. With a nonvan-
ishing current, the system can evolve to a nonequilibrium
steady state. Nonconservation is introduced by allowing
evaporation or desorption (1 → 0) at a rate ωd and de-
position or adsorption (0 → 1) at a rate ωa of particles
at any site on the track. This dynamics, called the Lang-
muir dynamics, can maintain a density

ρL =
ωa

ωa + ωd
6=

1

2
if ωa 6= ωd. (1)

This is an equilibrium-like process with no current in
the system. If the net flux due to adsorption/desorption
is comparable to the hopping current, there will be a
competition between the attempt to equilibrate and the
drive to the nonequilibrium steady state. As a result, one
gets new features like a shock phase, critical points one
would not get otherwise.
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FIG. 1: (a) The critical lines in the γ-r plane, where r = ε−εJ .
The width vanishes with a characteristic exponent as r → 0−.
(b) Three dimensional view of the tricritical point J in the α-
γ-r space. Only the critical lines are shown. These lines are
nonplanar and (a) shows the projection.
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For largeN , we may use a continuum notation x = i/N
and the average occupation of a site becomes the density
ρ(x). For given microscopic parameters for the hopping
rules and nonconservation, the steady-state density pro-
file ρ(x) depends on the external parameters α and γ.
The possible nonequilibrium phases are then represented
in a phase diagram in the α-γ-ε space.

The extra interaction ε is important in particle-hole
symmetry breaking. To see this let us consider the con-
served case (ωa = ωd = 0). Instead of particle injection
at x = 0, we may consider holes being injected at the
right (x = 1) at a rate 1 − γ, hopping left with iden-
tical rates and withdrawn at x = 0 at a rate α. This
particle-hole symmetry allows a symmetric form for cur-
rent j(ρ) = j(1 − ρ). For ε = 0, j(ρ) = (1 − ρ)ρ satisfies
the symmetry with a maximum at ρ = 1/2. A similar
single peaked current with j(ρ) = j(1−ρ) is expected for
low interaction strengths (small ε). If a system evolves
to the maximal current state then the steady state or the
phase also has the particle-hole symmetry (0 ↔ 1). In
addition to this symmetric phase, there are two distinct
phases related by the 0 ↔ 1 symmetry but separated in
the phase diagram by a first order line. In the other ex-
treme case ε = 1 which forbids the hops 0101 → 0011,
there is a zero current state for ρ = 1/2 as for ρ = 0
(empty track) and ρ = 1 (packed track). Therefore, for
strong enough interaction, ρ = 1/2 is a local minimum
of the current while the maximal current carrying states
are symmetrically located on the two sides of ρ = 1/2.
The exactly known stationary current for the conserved
system does show the change from single to double peak
for ε close to ε = εJ ≈ 0.8[12, 13]. In any one of the
maximal current state, the particle-hole symmetry is not
respected[19]. The overall symmetry is recovered by rec-
ognizing that the 0 ↔ 1 transformation gives the other
maximal current state. The single maximal current phase
in the single-peak case now breaks up into several phases,
two of which are the two maximal current phases. The
occurrence of the two maximal current phases in differ-
ent regions of the phase diagram is a reflection of the
symmetry breaking introduced by the interaction.

For the ASEP case (i.e., with ε = 0 in the above
model)[2, 3, 4], for ωa 6= ωd, there are three types
of phases, namely, (i) an injection rate controlled, to
be called the α-phase, (ii) a withdrawal rate controlled
phase, to be called the γ-phase, and, most importantly,
(iii) a phase containing a localized shock, to be called
a shock phase. The maximal current phase of the con-
served case becomes unstable under nonconservation, ex-
cept for the case of accidental symmetry at ωa = ωd. The
major signature of nonconservation is in the appearance
of the shock phase with a localized shock in the density
profile in between the α- and the γ-phases. This phase
replaces the first-order boundary of the conserved case.
The maximal current density is still important because
the shock is centered around the maximal current density.
In other words, a shock connects configurations related
by the particle hole symmetry, i.e., density profiles with

ρ = 1/2 ± δ. The transition to the shock phase is gener-
ally first order because the shock height is nonzero at the
transition, but critical points do occur where the shock
height vanishes. The vanishing height implies a special
state that regains the particle-hole symmetry. Such a
critical point therefore has to be at the peak of the cur-
rent. There are characteristic universal exponents, for
both bulk[2] and boundary[5], associated with the criti-
cal point.

In the interacting case (ε > 0) with conservation (ωa =
ωd = 0), a very complex phase diagram with seven differ-
ent phases including two maximal current phases (men-
tioned earlier) is known but without any shock phase,
let alone the critical point. The dynamics of the inter-
acting model has also been studied in certain regions of
the parameter space in Refs. [12, 14]. With nonconser-
vation, localized shocks appear, and double shocks and
downward shocks have also been seen[14, 15, 16] but the
phase diagram is not known. In the broken symmetry
case, a shock centered around one peak will not show the
0 ↔ 1 symmetry and in fact the state obtained by such
transformation would occur in a different region of the
parameter space. Given the fact that the maximal cur-
rent densities play an important role in shock formation,
the symmetry-breaking is expected to show new critical
points compared to the symmetric case. Consequently,
the critical point for the shock phase for ε < εJ appears
as a line in the extended α-γ-ε phase diagram and this
line undergoes a bifurcation at ε = εJ where the symme-
try breaking takes place. The bifurcation point J is the
tricritical point as shown in Fig. 1, and it has its own
distinct scaling.

The phase transitions can be analyzed by using a
boundary layer analysis for the density profile in the con-
tinuum, long time, long length scale limit, the so-called
hydrodynamic regime [4, 17]. The shock phase can be
seen as forming via a thickening and eventual decon-
finement of a boundary layer (‘shockening transition’).
Moreover, this bulk cum boundary shockening transition
is in turn associated with a dual boundary transition
where the boundary layer changes from a depletion region
to an accumulated region [5, 17]. If the shockening and
the dual transition lines intersect then there is a critical
point (“self-dual”).

So far as the single to double peak change in the cur-
rent is concerned, a Taylor series expansion in ρ and ε of
the exactly known current[12] upto fourth order is suf-
ficient. For simplicity we work with this expansion in a
general form

j(ρ) =
2r + u

16
−
r

2
(ρ−

1

2
)2 − u (ρ−

1

2
)4, (2)

with the constant piece chosen to ensure that the current
vanishes for ρ = 0, 1 (the empty track and the fully-
occupied track). Eq. (2) for r = 2, u = 0 recovers the
known current density for ASEP processes (j = (1−ρ)ρ)
while the double peak appears for r < 0. Throughout u
is taken as a positive constant, and r is tunable but kept
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FIG. 2: (a) Current versus ρ for three values of r. (b) shows
the notations used for r < 0. The peak densities are ρc and
1− ρc. The inner layer connects pairs of densities (with same
current) from ρo, ρ1, 1 − ρ1, 1 − ρo. For ρ1 = 1/2, the low
and high densities are ρ∗ and 1 − ρ∗. For currents les than
j(1/2) (and also for r ≥ 0), ρo and 1−ρo are the two relevant
densities.

small. The current is shown in Fig. 2a for typical values
of r. In the double peak case, there are a few special
densities we need, namely, (i) the densities for maximal
current, ρc, 1−ρc, and (ii) the densities ρ∗, 1−ρ∗, with the
same current as the minimal one (j(1/2)). Any constant
current line with j(ρc) > j > j(1/2) intersects at four
densities ρo, ρ1, 1− ρ1, 1 − ρo. There are only two values
ρo, 1 − ρo if j < j(1/2). These are shown in Fig. 2b.

The hydrodynamic approach based on the continuity
equation with j(ρ) of the conserved case is known to agree
remarkably with numerical simulations[12, 14]. In this
approach the density satisfies a continuity equation sup-
plemented by an additional contribution from the non-
conserving process. The density then satisfies

∂ρ

∂t
+
∂J

∂x
+ S0 = 0, (3)

where J is the current consisting of the bulk current j(ρ)
and a diffusive current, and

S0(ρ) = −Ω(ρL − ρ), Ω = (ωa + ωd)N, (4)

accounts for the Langmuir dynamics. Ω is related to the
net flux of particles and ρL is the density defined in Eq.
1. Nonconservation would matter only when the net flux
of particles adsorbed or desorbed is comparable to the
current in the system. For this reason Ω is kept constant,
finite (scaling limit) for N → ∞. By adding the diffusive
(Fick’s law) current, J in Eq. 3 can be written as

J = −ǫ
∂ρ

∂x
+ j(ρ), (5)

with the diffusion constant ǫ ∼ O(1/N) is a small param-
eter (not to be confused with ε), and is a remnant of the
underlying lattice. This form, Eq. 5, also follows from a
continuum limit of the discrete model. Despite its small-
ness ǫ plays an important role in the phase transitions,
especially in shock formation. The steady state density
profile is now given by

−ǫ
d2ρ

dx2
+ S1(ρ)

dρ

dx
+ S0(ρ) = 0, (6a)

where S1(ρ) =
dj(ρ)

dρ
, (6b)

and the boundary conditions ρ(0) = α, and ρ(1) = γ.
We already noted that ρ = 1/2 is a special density due to
the particle-hole symmetry. To avoid extra complications
arising from the accidental matching of densities, we take
ωa 6= ωd so that ρL 6= 1/2. Such cases will be considered
elsewhere.

Eq. 6a entails two length scales, (i) x for the bulk and
(ii) x̃ = (x−x0)/ǫ which is significant in a thin region as
ǫ → 0 around an appropriately chosen x0. Eq. 6a does
not depend on the choice of x0. The separation of the two
scales is used to develop a uniform approximation of the
solution order by order in ǫ. Here we restrict ourselves
to the lowest order approximant. The bulk solution in
terms of x comes from the first order equation obtained
with ǫ = 0 in Eq. 6a. This solution, to be called the
outer solution,

ρ(x) = ρout(x) (7)

is given implicitly by

gr(ρ) = 2Ω x+ C, (8a)

where C is a constant to be fixed by only one of the two
boundary conditions, and

gr(ρ) ≡ (uY 2
L + r) Y +

u

2
YLY

2 +
u

3
Y 3

+(uY 2
L + r)YL ln | YL − Y | (8b)

with Y = 2ρ−1,and YL = 2ρL−1. We shall suppress the
r-dependence in gr, unless required. For the left bound-
ary condition, the outer solution is

g(ρ) = 2Ω x+ g(α), (9)

with a density

ρo ≡ ρout(1) at x = 1, (10)

determined by

g(ρo) = 2Ω + g(α). (11)

Here, ρo depends on α, but in general, ρo 6= γ.
To satisfy the other boundary condition ρ = γ at x =

1, we use the second scale x̃ = (x − 1)/ǫ around the
boundary point x = 1. With this variable, the density
(to be called the inner solution) satisfies

−
d2ρin

dx̃2
+ S1(ρin)

dρin

dx̃
= 0, (12)

obtained from Eq. (6a) by first changing the variable to
x̃ and then taking ǫ→ 0. The absence of the S0 term can
be understood from the observation that for a constant Ω
this layer is too thin for the nonconservation to matter,
at least to leading order in ǫ. For a smooth density profile
(the solution of the second order equation with any ǫ > 0
no matter how small), we need to match the outer and
the inner solutions by requiring that

lim
x→1

ρout(x) = lim
x̃→−∞

ρin(x̃). (13)
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FIG. 3: Schematic diagram of the phase boundary for shock
at x = 1. Thin, thick and dotted lines represent continuous
transitions, first order transitions and dual lines respectively.
“A”[“D”]: accumulated [depleted] bounary layer. C, C1, C2

are the critical points and J the tricritical point. “α” and
“s” represent α-phase and shock phase with 1,2 denoting 1-
shock, 2-shock phases. The phase boundary separating the
α and the 1s phases is given by Eq. (20). Downward shocks
appear in the hatched region (with γ ≤ 1/2) in (c). The dual
lines demarcating “A”/“D” are not shown in (c).

Here x̃→ −∞ gives the outer limit of the inner solution.
Incorporating this matching condition, Eq. 12 can be
written as

dρin

dx̃
= j(ρin) − j(ρo), (14)

in the thin boundary layer, with ρin(x̃ = 0) = γ. The
complete matched solution is obtained by joining the in-
ner and outer approximations and subtracting their com-
mon value. Therefore, the density profile is given by

ρ(x) = ρout(x) − ρo + ρin(x̃) +O(ǫ). (15)

Eq. 15 identifies the scale dependent separation of the
bulk and the boundary contributions and it provides a
uniform approximation of the density in the whole do-
main including the boundaries.

Let us first consider the r > 0 case. The current has
only one peak at ρ = 1/2. The transport across the track
is analogous to the well-understood ASEP case. For a
low injection rate α, the bulk density profile does not
depend significantly on the withdrawal rate so long γ,
the accumulated density at x = 1, is small. One gets the
α-phase. For low γ, there is a depletion layer at x = 1,
which changes for γ > γd ≡ ρo(α) to an accumulated
layer. This is the dual boundary transition mentioned
earlier. By symmetry (Fig. 2) and from Eq. (14), ρin(x̃)
would saturate at ρ = 1−ρo(α) as x̃→ ∞. Consequently,
for γ ≥ γs ≡ 1 − ρo(α), a boundary layer given by Eq.
(14) is not sufficient to satisfy the boundary condition at
x = 1. In this situation, the density profile is given by
the two outer solutions,

g(ρrgt) = 2Ω (x− 1) + g(γ)

on the right side and

g(ρlft) = 2Ω x+ g(α)

on the left. These two solutions are joined smoothly in
a thin region by the inner solution of Eq. (12) with

x̃ = (x−xs)/ǫ. On the bulk scale this looks like a discon-
tinuity and is therefore a shock at x = xs. The matching
conditions and the location of the shock (xs) are given
by

ρlft(x→ xs−) = lim
x̃→−∞

ρin(x̃), (16a)

and ρrgt(x→ xs+) = lim
x̃→∞

ρin(x̃), (16b)

where Eq. 16a is the matching of the left outer solution
to the left end of the inner solution while Eq. 16b is the
matching for the right side. This deconfinement of the
boundary layer by shifting into the bulk as a shock is the
shockening transition. For a given α, the shock and the
dual transitions are given by

γ = γs ≡ 1 − ρo(α) (shockening) (17)

γ = γd ≡ ρo(α) (dual) (18)

The critical point (αc, γc), being the point of intersection
of the two lines, has γc = 1/2, and αc satisfying Eq. (11)
with ρo = γc.

The shape of the transition curve near (αc, γc) for any
r > 0 follows from Eq. (11), by noting that dg(ρ)/dρ is
zero at ρ = γc but not at ρ = αc. This shows that the
shape exponent χ is given by[4]

γ − γc ∼| α− αc |
χ, with χ = 1/2, (19)

close to the critical point. The phase diagram is shown
in Fig. 3a. The critical point (αc(r), γc) changes with r
but the exponents remain the same as in the ASEP case.
We note in passing that for γ < γc, one crosses the dual
phase boundary so that there is a depletion layer near
x = 1. This layer is non-shockening in the sense that
it never reaches saturation[5, 17]. It acts as a shield for
the boundary density, rendering the “effective” boundary
condition at x = 1 as γ = γc. Consequently, thanks to
this depletion layer, there is a continuation of the critical
point in the phase diagram.

The situation is completely different for r < 0. We
refer to Fig. 2). Let us start with small injection rates.
There is a dual line at γ = ρo(α) so long ρo(α) < ρ∗

(Fig. 2). There will be a symmetric shock centered
around ρ = 1/2. The transition to the shock phase (or
the shockening transition) is at γ = γs ≡ 1−ρo(α). How-
ever, with change of α when ρo exceeds ρ∗, the boundary
layer bridges ρo to ρ1 < 1/2. The dual line continues to
be γ = γd = ρo(α), but the shock line is given by

γ = γs1 ≡ ρ1(α). (20)

The shock is therefore smaller in height, lying below
ρ = 1/2. A zero height shock at the boundary is now
possible if the following two conditions are met: (i) the
injection rate α is such that the outer solution gives the
peak density at the boundary, i.e., ρo(α) = ρc, and (ii)
the withdrawal rate is such that the accumulated density
γ is also ρc. Under these conditions, the density will then
have an infinite slope at the x = 1 boundary. Therefore,
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γ = ρc = ρo(α) gives a critical point. This locates an
off-center critical point C1 in Fig 3c, with

γc1 = ρc and α = αc1, (21)

where αc1 satisfies Eq. 11 with ρo = γc1.
The density profile close to this critical point C1 (for

r < 0) is shown in Fig. 4a. These are obtained by a
numerical solution of Eq. (6a) in the limit of small ǫ.
For 1

2
> γ > γc1, the shock height starts increasing with

γ until the shock connects ρ = ρ∗ and ρ = 1/2. This
is the largest shock one can produce from the left peak
of the current. For a range of γ there is the possibility
of a downward shock. One sees an overcrowded region
sandwiched between the α-phase and the γ-phase, even
though both α and γ are less than 1/2, but the shock
is centered around 1/2. The downward shock shifts to-
wards x = 1 as γ is changed and it disappears as it hits
the boundary. At this point the downward shock gets
converted into a depleted boundary layer. With increase
in γ, the depleted layer undergoes a boundary transition
to an accumulated layer leading to a second shock from
the second peak. There is no obvious symmetry relation
between the two upward shocks except for their centers.
The sequence is shown in Fig. 4a. For γ > 1 − ρ∗, the
two shocks merge into one bigger one centered around
ρ = 1/2.

Next, consider α > αc1 as shown in Fig. 4b. With the
largest shock from the low density peak of the current,
it is possible for the density to reach the second peak of
the current, ρ = 1 − ρc, at x = 1. This gives the second
critical point because the shock height starts from zero
as γ exceeds 1 − ρc. The second critical point C2 at
(αc2, γc2) is determined by

γc2 = 1 − ρc, (22a)

g(γc2) = 2Ω (1 − xs) + g(0), (22b)

g(0) = 2Ω xs + g(αc2), (22c)

0.9 0.95 1

0.3

0.6
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0.35

0.71
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0.41
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ρ

0.9 0.95 1

0.3

0.6

0.66
0.70

0.62

0.71

γ

x

ρ
(b)

FIG. 4: Plots of ρ(x) vs. x (r = −0.2, u = 2.2, Ω = 0.1)
from numerical solution. The values of γ are indicated on
the plots while α is kept fixed, close to αc1 in (a) and αc2 in
(b). In (a), as γ increases, one sees a sequence: (i) the shock
developing from zero height (γ = 0.35) to a maximum (γ =
0.39), (ii) an additional downward shock (γ = 0.41) which
goes towards the boundary (γ = 0.56), (iii) the emergence of
another upward shock of finite height (γ = 0.70) , and (iv)
finally a bigger shock symmetric around ρ = 1/2 (γ = 0.71).
(b) shows the sequence for the second critical point. There is
no downward shock here, while the first shock is of maximum
possible height. To be noted is the depletion layer for γ =
0.62.

where xs is the position of the first shock, and g is from
Eq. (9) with r < 0. Fig. 3c shows the nature of the
phase boundary for a given value of r < 0. These two
critical points C1, C2 merge as r → 0. Given the form of
g(ρ) in Eq. (8b), we find

| γc1 − γJ | ∼ | γc2 − γJ | ∼ |r |
1/2
, (r → 0−), (23)

where γJ is the critical value at r = 0. The power law
dependence is expected to be universal. The bifurcation
at point J is shown in Fig. 1a in the projected plane
of γ-r. The full three dimensional lines[20] are shown in
Fig. 1b. An analysis as done for the r > 0 case shows
that the shape of the boundaries at these new critical
points would be similar to that for the r > 0 case, i.e the
shape exponent will be χ = 1/2 as in Eq. (19), implying
universality.

Let us now consider the special point J. The physical
picture developed above remains valid here. The tricrit-
ical point J, being at the intersection of the shock line
and the dual line, is at

gr=0(γJ) = 2Ω + gr=0(αJ), γJ = 1/2. (24)

Since S1(ρ) ∼ (ρ− 1/2)3, the shape exponent is

χJ = 1/4, (25)

where χJ is defined as

γ − γJ ∼| α− αJ |χJ . (26)

The phase boundary is shown in Fig. 3b. The first order
transition lines as shown in Fig. 3 become surfaces in
the three dimensional phase diagram. These first-order
surfaces end on critical lines and these critical lines are
shown in Fig. 1b. The locus of the intersection of the first
order lines for r < 0 (triangle in Fig 3c) in the extended
phase diagram is a line ending at J. This is the line on
which both the shocks connecting ρ = ρ∗ to ρ = 1/2 and
ρ = 1/2 to ρ = 1 − ρ∗ are just at x = 1. This completes
the identification of J as the tricritical point where a first
order line is converted into a continuous one.

The crossover from the tricritical to the critical be-
haviour is obtained by expanding Eq. 11 around α =
αJ , ρo = γJ and r → 0+. The shape of the transition
curves and also the height of the shocks near the tricrit-
ical point can be described by a scaling form

α− αJ ∼ |γ − γJ |
1/χJ F

(

r |γ − γJ |
−ψJ

)

, (27)

where F(x) is a scaling function with the crossover expo-
nent ψJ = 2. For x→ 0, F(x) → constant while for large
x, F(x) ∼ x. For r 6= 0, with γ close to the critical value,
the scaling variable becomes large and one recovers the
critical value χ−1 = χ−1

J − ψJ = 2. This also shows the
importance of the tricritical point because it controls the
scaling behaviour in its neighbourhood.

Within the window of the single shock phase for r < 0,
there is a region of downward shock bounded by critical
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and first order lines. The peculiarity of the downward
shock is that it does not traverse the whole lattice but
goes critical within the track. The thickness of the region
in the phase diagram is determined by the shallowness of
the minimum at ρ = 1/2. Details of these lines and the
region will be reported elsewhere.

In summary, we have shown that the repulsive inter-
action induced particle-hole symmetry breaking in the
form of a double peaked current in one dimensional asym-
metric exclusion process leads to a nonequilibrium tri-
critical point. This tricritical point controls the scaling
behaviour in its neighbourhood. The tricritical expo-
nents are different from the critical ones and an addi-

tional crossover exponent is required for the crossover to
the critical behaviour. The phase diagram also shows a
region of downward shock. It remains to be seen if this
is a necessity for the nonequilibrium tricriticality.
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