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§ 1. INTRODUCTION

Tue investigations of which the results are presented in this paper arose
during the study of certain specific problems in crystal optics. As investi-
gators in this ficld are well aware, the simplest procedures for studying the
Bptical properties of anisotropic media {(e.g., examination under the polarising
microscope) gencrally involve the use and study of polarised light. The
complexity of the peculiar interference phenomena exhibited and also of
their customary theoretical analysis (by algebraic methods) become quite
considerable even in the case of transparent optically active crystals like
quarlz—as may be scen by a reference to the treatises of Mascart (1891) and
Walker (1904); thisis because the two waves propagated along any direction in
such & medium are no longer linearly polarised at right angles to one another,
but arc elliptically polarised.  Nevertheless, the types of ‘oppositely’ polarised
waves propagated in such media must be termed simple compared to the
elliptically polarised waves propagated in absorbing biaxial crystals.

The remarkable interference phenomena exhibited by absorbing biaxial
crystals may be easily studied by looking at an extended source through a
platc (cut normal to an optic axis); a suitable material is the mineral iolite—
which the author had the opportunity of investigating experimentally
(Pancharatnam, 1955). (1) With the incident light polarised, and even with-
out the use of an analyser, interference rings are seen, which are feeble but are
nevertheless easily visible. (2) When, in addition, an analyser is also intro-
duced, the biaxial interference figures seen are notably different from those
seen in transparent crystals under the same conditions. (3) With the ana-
lyser in position and with no polariser—i.c., with the.incid.ezizt light com;.)lerely
unpolarised—feeble interference rings are again easily \flS.lble. (4) Finally,
even when both analyser and polariser are absent, incipient traces of an
interference pattern may be discerned.
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Viewing these particular phenomena from a slightly broader perspect:.
we see that their analysis is connected with certain general questions conce;.
ing the properties of two polarised beams travelling along the same directi -
We shall now formulate these problems since they form the main content .-
the paper. The study of the effects with a polariser alone leads us to invev.
gate the following questions: the interference of two coherent beams in difl.--
ent states of eliiptic polarisation (§ 3); the resclution of any polarised be
into two beams in given states of polarisation—which occurs at the first 1.
of the crystal plate (§ 4); and the composition of two coherent beams of dift.--
ent polarisation—at the second face of the plate (§§ 5, 6). The problem -
volved when an analyser is also introduced (keeping the incident light polaris.,:
reduces to the following: the interference of two coherent polarised beu:-
which are  brought to the same state of elliptic vibration > by the use «' .
suitable analyser (§ 8). In§9 we shall consider the addition of # coler: :
beams in different states of polarisation.

An attempt to formulate in general terms the problems associated w:
(3) and (4) leads rather unexpectedly into the subject of the partial coheres.:
of polarised beams. 'We shall leave the discussion of this subject for Part |

§ 2. THE POINCARE SPHERE AND THE STOKES PARAMETERS

For problems—such as the one we are dealing with-—where we requ:.
to handle elliptic vibrations with the same facility as linear vibrations, i
indirect specification of the polarisation of an elliptic vibration by giving ¢
equation to its rectangular components is obviously umnsatisfactory:
procedure not only leads to cumbersome calculations lacking in elegance, .-
has been pointed out by other authors, but often ceases to give physicil -
sight into the cause of the phenomena actually observed. Two other pow.:
ful methods for specifying the state of polarisation of a beam have been uwi
extensively—an analytical method due to Stokes (1901), and a geometri.:
one due to Poincaré. The conventional theoretical presentation of the sur-
ject of the ¢ Stokes parameters > may be found in Chandrasekhar (1949) w.d
in Rayleigh (1902); that of the Poincaré sphere and some of its more wci-
known properties may be found in Pockels (1906), Walker (1904), Ram:
chandran and Ramaseshan (1952), and Jerrard (1954). In PartI of the prese
paper, only the Poincaré representation is used; and we may mention ti.
this part constitutes in itself a self-contained derivation of the propertics «
the Poincaré sphere by a new procedure. The Stokes representation will ¥
required only in Part II where the subject of partial polarisation natura..
enters; but the entire subject of the Stokes representation is introduced there,

|
!
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In a new manner, through the Poincaré representation itself—by de '
| r — veloping
the ideas of Fano (1949) and Ramachandran (1952). ’ o

The state of polarisation of a completely polarised beam is directly speci-
ﬁc.d by the form of the ellipse traced by the tip of the displacement vector—
this being mvariant for a compleiely polarised beam, unlike the intensity
and absolute phase which may be subject to statistical fluctuations. Poin-
f:aré introduced a mapping whereby any particular form of elliptic vibration
is represented by a specific point on the surface of a sphere—the points on
the ‘ Poincaré sphere’ exhausting all the conceivable forms of elliptic vibra-
tions. The definition of the mapping allows the ellipse represented by a point
P to be visualised directly in terms of the longitude 2) and latitude 2w of the
point: for A is the azimuth of the major axis of the elliptic vibration and
tan o the ellipticity. Alternatively the point P may be specified in cartesian
co-ordinates instead of 1 polar co-ordinates—with the XY plane coinciding
with the equatorial plane. As Perrin (1942) had observed, the three pami
meters introduced by Stokes for characterising a completely polarised beam are
proportional to the cartesian co-ordinates of the point P—the constant of pro-
portionality being the intensity of the beam which is taken as the fourth
Stokes parameter.

Two elliptical vibrations whose states of polarisation are represented by
diametrically opposite points on the Poincaré sphere will be said to be oppo-
sitely polarised. The conventional procedure of decomposing any elliptic
vibration into two rectangular linear vibrations (represented by two dia-
metrically opposite points on the equator) is a particular case of decomposing
it into two elliptical vibrations of opposite polarisation. The fundamental
property of the Poincaré sphere relates to such a decomposition (see Fig. 1)
and is the following:—

1. When a vibration of intensity I in the state of polarisation C is de-
composed into two vibrations in the opposite states of polarisation A and A',
the intensitics of the ‘A-component’ and the ‘A'-component’ are Icos* 3 CA
and I sin® L CA respectively.

All the results proved in this paper are deduced from the above theorem.
We shall not give the proof of the theorem since a proposition equivalent to
the above has been proved by other authors (see §8 below).

Since according to Theorem I, the sum of the intensities of the oppositely
polarised component beams are together equal to the intensity I of the resul-
tant beam we deduce the following well-known result.
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Fic. 1

II. Two oppositely polarised beams cannot constructively or destructively
interfere.

§3. INTERFERENCE OF TWO NON-ORTHOGONALLY POLARISED VIBRATIONS

The interference of two linear vibrations not orthogonal to one another
can be analysed by resolving the first vibration into two vibrations which
are respectively parallel and orthogonal to the second vibration. The inter-
ference of any two elliptically polarised vibrations will now be handled in a
similar manner. We shall prove the following proposition.

II. The intensity I of the beam obtained on combining two mutually
coherent beams 1 and 2, of intensities I; and I, in the states of polarisation
A and B respectively, will be given by the general interference formula:—

I=1,+ I, + 24/1,1,cos %c cos & (1)

Here ¢ is the angular separation of the states A and B cn the Poincaré
sphere (see Fig. 2). Thus cos?ic is a  similarity factor * between the states
of polarisation, which determines the extent of interference and which varies
from unity (for identically polarised beams) to zero (for oppositely polarised
beams). The significance of the ‘ phase difference ’ 8 between the beams will
be elucidated below.

The above relation may be obtained as follows. The vibration 2 may be
replaced by two oppositely polarised vibrations—one in the state of polarisa-
tion A of the first beam, and the second in the state of polarisation A" ortho-
gonal to A. These vibrations (which we shall denote by 24 and 2A" r¢s-
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Fic. 2

pectively) will be coherent with vibration 1 and will have intensities I, cos® 1¢
and 1, sin? Lc respectively (§2, I). The vibration 1 being in the same state of
polarisation as vibration 2a (over which it has a phase advance 9, say), can
be combined with it to yield a vibration (1 - 24) of intensity

I; + I cos® k¢ + 24/L1, cos %c cos &

We are thus left with the vibration (14- 24) and the vibration 24" which
are in the opposite states of polarisation A and A’. The resultant intensity I,
obtained merely by adding their intensities (§ 2, II), is that given in formula
(1) which we wished to deduce.

An explicit expression for the similarity factor between any two states
of polarisation (in terms of the azimuths A;, A, of the major axes and the
ellipticities tan w,, tan w, of the two vibrations) may, if necessary, be obtained
from the following relation (obtained by spherical trigonometry):—

COS ¢ = 8N 2w, Sin 2wy, + €08 2w COS 2w, COS 2 (A — A)  (2)

It may be noted that cos ic is equal to the visibility of fringes (as defined by
Michelson) obtained under the conditions [, = I,.

In the above discussion the quantity & has been introduced as the phase
advance of the first beam over the A-component of the second beam. There
are two properties of 8 however which enable us to speak of it as the absolute
difference of phase between the two beams themselves—though they are in
different states of polarisation. In the first place we note that if the first
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beam is subjected to a particular path retardation relative to the second, then
S as defined above decreases by the corresponding phase angle; in the second
place we note that as long as no path retardation is introduced between the
two beams, any alteration of the intensities of the two beams will not change
the value of & as defined above. Hence we will be guilty of no internal in-
consistency if we make the following statement by way of a definition: the
phase advance of one polarised beam over another (not necessarily in the same
state of polarisation) is the amount by which its phase must be retarded relative
to the second, in order that the intensity resulting from their mutual interference
may be a maxinum.

This phase advance is identically equal to &, and the above definition
liolds only for nom-orthogonal vibrations.

By picturing an elliptic vibration as being made up of its rectangular com-
ponents, it becomes apparent that the coherent addition contemplated in this
section, of two beams in different states of polarisation will yield a resultant
beam which is also elliptically polarised. The intensity of this having been
determined, the next step logically would be to determine its state of polarisa-
tion. This problem we shall relegate to § 5, and take up in the next section
the converse problem which is simpler to handle.

§4. DECOMPOSITION OF A POLARISED BEAM INTO Two BEAMS IN
GIVEN STATES OF POLARISATION

The method of approaching the gencral problem described in the heading
is immediately made clear by regarding the following particular case, illustmthi
in Fig. 3. Suppose that a linear vibration C has to be split into two linear
vibrations A and B (with which it makes angles 46 and L« respectively).  The
intensities of the A- and B-vibrations may be obtained by the parallelogram
law; more specifically, by equating the projections of the B- and C-vibrations
in the direction orthogonal to the A-vibration, we obtain the intensity of the
B-vibration as proportional to (sin 1b/sin 4¢)*, where Le is the angle between
the A and B vibrations.
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By similar reasoning we shall prove the following proposition.

IV. If a beam of intensity I in the state of polarisation C is decomposed
into two coherent beams | and 2, in the states of polarisation A and B res-
pectively, the intensities of these beams will be given by

sin?ia.

sin? b
sin® 3¢’

I, =1 2 (3)

I, = sin? 3¢
1 sin? %¢

where «, b and ¢ are the angular separations BC, CA and AB respectively
(see Fig. 2).

To prove the proposition, we decompose each vibration into two vibra-
tions of polarisation A and A’. The sum of the A’-components of the vibra-
tions 1 and 2 must together be the same as the A'-component of the given
vibration 3. Tlie vibration 1, however, has no A’-component since we have
chosen A’ opposite to A. Hence the A’-components of vibrations 2 and 3
are identical. Equating their intensities (as given by § 2, I) we have I, sin? ¢
= Isin®}b. Similarly, we can show that I, sin® ¢ = I sin® 1a, thus establish-
ing relations (3) above. [The expressions (3) for the intensities I; and I, could
be written explicitly in terms of the constants of the eclliptic vibrations by
substituting the expression (2) for cos ¢ and similar expressions, obtained
by cyclic permutation, for cosa and cos b. It can thus be shown that the
expressions (3) are equal to the more lengthy expressions deduced directly
by Stokes (loc. cit.).]

The beams 1 and 2 will have a definite phase relationship with one
another which, as we shall see, depends in a remarkable fashion on the mutual
configuration of the points A, B and C.

From (1) we have

[— (I, + 1)
§ = . AT 2
> 24/1,1,c08 %c¢

Substituting for I, and I, from (3),

sin? 3a 4 sin®? 1b — sin® L¢

— COS & = . :
2 sin %a sin 1b cos 4c

(4)

If C’ be the point diametrically opposite to C (Fig. 2), then denoting by «',
b’, ¢ the sides of the triangle ABC’, we will have

cos? ta’ + cos®* tb" + cos?dc — 1

— COo8 & = 2
2 cos 34’ cos b’ cos %c

The expression on the right-hand side is the cosine of half the solid angle
subtended by the triangle C'BA at the centre of the sphere (see M’Clelland and
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Preston, 1897, Part 1, Ch. 7, p. 50, Ex. ). Since the Poincaré sphere
has unit radius, we arrive at the following unexpected geometrical result.

V. When a beam of polarisation C is decomposed into (wo beams in
the states of polarisation A and B respectively, the phase diflerence & between
these beams is given by

|8 |=m—}|E (5 4)

where the angle | E" | is numerically equal to the arca of the triangle C'BA
colunar to ABC. (E’ is also the spherical excess ol the triangle C'BA, e
the excess of the sum of its three angles over 7.)

Hitherto we have fixed the state of zero phase difference between two non-
orthogonally polarised beams by the criterion that the resultant intensity pro-
duced by mutual interference should be a maximum.  We can equally well
use the fact (shown by relation 5 «) that the beams in the stte of polarisation
A and B will have zero phase difference when the resultant state of polarisation
C (produced by their mutual interference) fies on the are direetly joining A
and B (for then the colunar triangle will have the arca ol a hensispherel,
On the other hand, the beams will be opposed in phase (o | ), when the
resultant state of polarisation C lies on the grearer segment of the great circle
through A and B (colunar triangle has zero arca).

The relation (5 «) does not give the sign of o the phase advance of
vibration 1 over vibration 2. We shall now resolve this ambiguity. 1t s
clear (from considerations of continuity) that the sign of o remains the same
for all positions of the resultant polarisation ¢ lying on any one side of the
great circle AB, the magnitude of & being between 0 and 7 and that & changes
sign (without discontinuity) as the resultant polarisation ' crosses from ome
side of the great circle AB to the other. (This is forced by the physical re-
quirement that the addition of the beams | and 2 with specific intensitics and
a specific phase relationship should lead unambiguously to a unique state of
polarisation C of the resultant beam.)  We can now show that the phise
advance ol vibration 1 over 2 will be positive il (as is drawn in Fig. 2) the
point C appears to the left of AB as we proceed from A o B on the surfiace
of the sphere.  To prove this proposition it is suflicient to show that this rule
of signs is true for a particular pair of non-orthogonal states A and B, (For
it can then be shown to hold for an adjacent pair of points A and B, from con-
tinuity arguments, and hence for any pair of states A and B.)  As a particular
case which proves the general rule, we may sce in Fig. 3 that if the [finear
vibration A has a positive advance of phasc over the finear vibration B, the
resultant vibration will be left-clliptic. The results of the discussion of this
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paragraph can also be summarised by using the sign convention that the
arca £ of the triangle C'BA be counted positive only when the sequence of
points C'BA are described in a counter-clockwise sense on the surface of the
sphere. We can then wrile

3 om— B (5b)
§ 5. Tue ComposiTioN oF NON-ORTHOGONALLY POLARISED PENCILS

When two coherent beams of intensities I, and 1, (in the states of polar-
isation A and B respectively) are combined, the resultant state of polarisation C
may be specified by the angular distances b and @ of the point C from the points
A and B (see Fig. 2). According to (3) these are given by

ll - sin®e; sin® b = l" - sin® ¢ (6)

sin® b

where 1is the resultant intensity given by (1).  On proceeding from A to B
the point C appears Lo the left or right according as 9§ is positive or negative.
An alternative method of finding the state C will be given in Part 11.

The following geometrical facts are uselul for qualitatively locating the
state C. When the phase diflerence between the two beams is altered without
altering the ratio of their intensitics, the state C moves along the locus
sin® Lassin® b constant;  this is a small circle (with its centre on the great
circle through AB) which cuts the arc AB internally and cxternally according
(o this riatio (see M'Clelland and Preston, loc. cit., Part 1, Ch. T1, p. 66, Ex. 1).
On the other hand, when the ratio of the intensitics of the beams is altered
without altering their phase difference, the state C moves along the locus, B’ =
constant: this is a small circle passing through A and B with its centre on
the great circle which is the perpendicular bisector of the arc AB (M’Clelland
and Preston, foc. cit., Part 1, § 101). The point C is thus determined by the
intersection of these two families of small circles.

§6. T CoMPOSITION 0F Two OPPOSITELY POLARISED BEAMS

When @ polarised beam is split into two orthogonally polarised compo-
nents, A and A’ the fundamental property ol the Poincaré sphere enunciated
in §2, 1, gives us information regarding the intensitics of these components
but tells us nothing about their relative phase relationship.  When we wish
to enquire into the latter, we run into the apparent difficulty that the state
of relative phase between the two beams which could be taken as the standard
or *zero " with respeet to which any additional phase differences could be
measured, cannot be delined as in § 3 by their interference properties—because
there is no such interference to talk of.  'We can however avoid the difficulty
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by restricting ourselves to the following query which alone is of practical
importance (see Fig. 1).

If, after decomposing a beam of polarisation C, into two oppositely
polarised beams of polarisation A and A’ respectively, we retard the phase
of the A’-component by an amount 4 (relative to the other), and also alter
their intensities in any specified manner, what will be the resultant state of
polarisation C?

To find the distance of C from A (see Fig. 1) constitutes no problem;
for, from the first theorem (§ 2, I) itself we see that the ratio of the (final)
intensities of the A" and A beams must be equal to tan* 3CA. Our question
therefore really concerns the magnitude of the angle CAC,—regarding which
we shall prove the following proposition.

VI. The angle CAC, is equal to the phase retardation 4 introduced.

it is remarkable that this second imporiant property of oppositely polar-
1sed vibrations follows in the ultimate analysis as a consequence of the first
fundamental property itself—for we shall prove it is a limiting case of the
properties of two non-orthogonally polarised vibrations as they tend towards
states of opposite polarisation.

For convenience let us regard the initial and final states of polarisation
C, and C as given (see Fig. 2). We first decompose the beam of polarisation C,
into two beams of polarisation A and B respectively, where B is chosen such
that the arc AB contains C,. By introducing a phase retardation 8 between
these beams of polarisation A and B, altering their relative intensities suitably
and then compounding them, we can produce a beam of polarisation C.
According to § 4, V, we have 6= = — 3E', where E’ is the area of the triangle
C'BA. We wish to find the limit towards which & tends, as the state of polar-
isation B tends towards the state A’ opposite to A. As the point B moves
towards A’ and ultimately coalesces with it, the area of the triangle CBA
obviously becomes equal to the area of the lune enclosed between the great
circular arc AC;A’ and AC'A’, this area being 2 ZC, AC’. Hence we have

4= 7 — LCAC = CAC,

thus proving the required proposition. It is clear from (5 &) that the angle
CAC, must be measured positive in the counter-clockwise sense as indicated
in Fig. 1, in order that it may have the same sign as 4 (which is the amount
by which the A-component is advanced in phase).

The particular property of the Poincaré sphere which has led to its exten-
sive application in tracing the passage of polarised light through transparent
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birefringent media follows as a corollary of Theorem VI above. On passage
through any plate of such a medium, the emergent state of polarisation C
can be obtained from the incident state C, by a rozation of the sphere by an
anticlockwise angle 4 about the axis AA’, where A represents the state of
elliptic polarisation of the faster of the two orthogonally pelarised waves.
(The author has not come across a general proof of this much-used property
of the Poincaré sphere in any of the references quoted.)

A second corollary of the proposition VI is the following; when the
ratio of the intensities of the orthogonally polarised beams is altered without
altering their phase relationship, the locus of the resultant state of polarisa-
tion C is the great circular arc ACA’.

§7. DEFINITION OF THE ‘PHASE DIFFERENCE ' BETWEEN
OPPOSITELY POLARISED VIBRATIONS

It will be a great convenience in connection with a later discussion to
set up an arbitrary standard with respect to which the relative phase relation-
ship between two orthogonal vibrations may be measured.

When two orthogonal linear vibrations of equal intensity combine to
yield a linear vibration bisecting the right angle included between the direc-
tions OX and OX’ of their vibrations, we customarily say that the linear vibra-
tions are in phase. (There will be no ambiguity regarding whether the vibra-
tions are to be regarded in phase or opposed in phase, if we choose both the
radii vectors OX and OX' within the interval, =2 > 0 > — =2, with respect
to a fixed radius vector Or on the wave-front.)

Fig. 4

In conformity with this, we may define two orthogonal elliptic vibra-
tions of equal intensity as being in the same phase when they combine to
yield a linear vibration OY bisecting the right angle included between the
directions OX and OX' of their major axes (see Fig. 4). The radii vectors
OX and OX' are taken parallel to the major axes of the left- and right-elliptic
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vibrations respectively and arc chosen such that OXX'Z forms a rigm-h%mdc\?
system—OZ being the direction of propagation. In terms of ng Ifz\nnczn’u
representation (see Fig. 1), the above definttion has the following significance.
The states of polarisation of two oppositely polarised vibrations are represented
by the points A and A’ on the upper and lower hemisphere respectively,
while the linear vibration OY is represented by a pomnt Y. The point Y is
one of the two opposite points on the cquator at an angular distance of 72
from both A and A’; on procceding from A to Y the upper pole appears
to the left, as indicated in the ligure. The A- and A’-components of the
vibration Y (and hence of any vibration represented by @ point on the great
circular arc AYA’) arc defined to be in the same phase,

The case of opposite circular vibration is not covered in the above defi-
nition. We may define two such vibrations of cqual intensity to be in the
same phase when they yield a lincar vibration OY parallel to a fixed radius
vector Or on the wave-front.

The phase advance of onc polarised vibration A over an orthogonally
polarised vibration A’ is then cqual to the angle CAY (mceasured positive in
the counter-clockwise sense), where C represents the resultant state of vibra-
tion obtained on compounding the two. Henceforward we may speak of
any one polarised beam as having a delinite phase advance 8 over another
coherent polarised beam without implying that the two beams are non-ortho-
gonally polarised.

§ 8. INTERFERENCE OF THE COMPONENTS OF TwoO POLARISED BIAMs
TRANSMITTED BY AN ANALYSER

It 1s well known that light of any arbitrary clliptic polarisation ¢ may be
extinguished by means of an appliance consisting of a suitably oriented quarter-
wave plate followed by a linear analyser at the proper setting: when light
of the opposite polarisation C is incident on (he same appliance the inrensity
of the transmitted light will be equal o that of the incident  as nity be directly
shown (Stokes, 1901), without using any properly of the Poincaré sphere,
Any appliance having both the above propertics will be referred to as an
analyser C.

Since light of any other polarisation P may be decomposed into two co-
herent beams of polarisation C and C’, the intensity transmitted by an analyser
C will be equal to the C-component of the incident beam. I we assume the
fundamental Theorem I, § 2, it follows that an analyser C transmits a fraction
cos® ZPC of the intensity of light of polarisation P. Conversely, one of the
simplest proofs of the fundamental Theorem I, lics in the dircct analytical
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proofs of this property of an analyser given by Fano (1949) and also by Rama-
chandran and Ramaseshan (1952).

As was pointed out in the Introduction, the problem to be now discussed
arises when we wish to consider the phenomena exhibited by a plate of an ab-
sorbing biaxial crystal when kept between a polariser and an analyser. Emerg-
ing from the crystal plate along any particular direction will be a coherent
mixture of two beams 1 and 2. Let their states of polarisation be A and B,
their intensities I, and I,, and let the phase advance of the first beam over the
second be 8. (The state of polarisation of the resultant beam will not be
required here and will not be denoted by C.)

In order to compute the intensity transmitted by an analyser C, we first
resolve each of the two vibrations into the opposite states of polarisation
C and C’ (see Fig. 2). The C-components of the beams of polarisation A
and B will have intensities I; cos2 +b and [, cos® 1a respectively (§ 2, I). Since
these components will have some definite phase difference &', say, they can
interfere. Hence the resultant beam obtained by combining the beams 1
and 2 will have a C-component whose intensity I¢ is given by

Ic = I, cos? b + I, cos? da + 2 v/LI,cos facos 3bcos 8 (7)

Similarly the C’-components of the beams 1 and 2 will have intensities

I; sin? 1b and I,sin? 1a respectively, and a definite phase difference 8”, say.

Hence the C'-component of the resultant beam will have an intensity I, given
by

I = I, sin? b 4 I,sin? ta + 2 /1,1, sin $a sin b cos 8" ®)

Since an analyser transmits only the intensity I it remains to determine 8’

in terms of the phase difference between the beams 1 and 2, and the analyser
position C.

Now 8" represents the phase advance of the C-component of the beam
of polarisation A over the C-component of the beam of polarisation B; while
8” is the phase advance of the C’-component of the beam of polarisation A
over the C’-component of the beam of polarisation B. Hence it follows from

a consideration of VI, § 6, that 8" — 8' = + C (where the positive sign has to
be taken if C lies on the side of AB shown in Fig. 2). Furthermore, the
intensity I of the resultant beam obtained on compounding 1 and 2 is equal
to the sum of the intensities of the C- and C’-components (§ 2, II).

Hence adding (7) and (8)

=1, + I, + 2 /L1, {cos %a cos b cos &’
+ sin %a sin 3b cos (8" 4+ C)}
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Expanding cos (8’ + C), it can be shown by applying the standard expressions
for the spherical excess of a triangle (M’Clelland and Preston, loc. cit., Part 11,
p. 37, Art. 104) that the above relation reduces to

I=1I+1,+4+ 2 +/1I,cos c cos (8’ 4+ 1E)

where E represents the area of the triangle ABC itself (counted positive or
negative according as the sequence of points A, B, C describe the periphery
of the triangle in the counter-clockwise or clockwise sense). The intensity |
is also given directly in terms of the phase difference & between the beams 1
and 2 by the expression (1) of § 3. Comparing the two we get the value of
3" to be substituted in (7):

5 =5 —1E 9)

VI1l. Hence when a mixture of two coherent beams of intensities I, and
1, in the states of polarisation A and B respectively, is incident on an analyser
C, the transmitted intensity I is given by

Ic =1;c0821b + 1, cos21a
+ 2 4/1,1, cos Sa cos b cos (6 — 3E) (10)

where & is the phase advance of the beam of polarisation A over the other,
a, b and ¢ being the angular sparations BC, CA and AB respectively and E the
area of the triangle ABC.

It isto be noted that the above result must also hold in the limiting case
when the two beams incident on the analyser are in the orthogonal states of
polarisation A and A’. In this case, if AYA’ be the great circular arc (Fig. 1)
with respect to which the phase difference 6 is measured (ref. §7), then E (which
now becomes the area of the lune AYA'CA) is equal to twice the angle CAY.
The expression (9) may in this case be further simplified by the substitution
cos 3a = sin 3b.

§9. THE ADDITION OF n COHERENT BEAMS

Suppose a mixture of 3 coherent beams of polarisation A;, A, A; s
incident on an analyser C. Let 26; denote the length of the arc CA;, 8;; denote
the phase lag of the beam 7 over the beam j, and E;; be the area of the
triangle A;CA;. 'We have obviously

8ij = — 0ji; Ei; = — By (11)

The C-component of the first vibration may be written as 4/I; cos 8, c et
where ¢ e'“tis a vibration of unit intensity in the state of polarisation Cj.

+ The components of the vector ¢ are the complex amplitudes of the components of the elliptic
vibration.
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If Ac et denote the C-component of the resultant vibration obtained on
compounding the three vibrations, then according (o (9) we will have,

A VIeos 0 A/l cos Uy exp i (8yy - SEy)
/T, cos Oy exp i (8 — 3E,y)
Since the phase lag ol the  C-component of (he sccond beam over
the C-component of the third 1s according to (8), given by (3, -+ E,;) we have

(82:; ,Izl-i:::i) (‘312 Ll-ilz’) o (31:; T ,lel:;) (12)

with simitlar expressions connecting all the d;5. Hence the intensity 1 trans-
mitted by an analyser €' being equal to AA*, will be given by
o =2 Tcos=0; | ) V1ilj cos 0 cos 0 cos (8;; — 4By)  (13)

[P

The resultant intensity 1 of the beam obtained on compounding the three
beams will be cqual to the sum of the intensitics 1, and [, where 1 is the
intensity transmitted by the orthogonal analyser C'. The resultant ntensity
can in this manner be shown to be given by

- 21 ij} v 1ilj cos egj cos b (14)
£

It is obvious that the same argument holds when there are a mixture of
n coherent beams: the formula (13) gives the intensity (ransmitted by an
analyser C, while (14) gives the resultant intensity. The state of polarisa-
tion of the resultant beam will be deduced meidentally in Part 1. 'We may
here merely note that by deducing the intensity transmitted by any analyser C
we have a method of deducing the resultant polarisation of the beam: for
example, we could find the particular analyser for which the transmitted
intensity 18 zero.

In conclusion the author wishes to express his deep sense of indebtedness
to Professor Sir C. V. Raman, ¥.R.S., N.I., withoul whose encouragement this
work could not have been wrilten.

§10. SUMMARY

The superposition of two coherent beams in different states of elliptic
polarisation is discussed in a general manner. Il A and B represent the states
of polarisation of the given beams on the Poincar¢ sphere, and C that of the
resultant beam, the result s simply expressed in terms of the sides, a, b, ¢ of
the spherical triangle ABC.  The intensity 1 of the resultant beam 1s given by:

l = 11 -|~ 12 Jr 2 ’\/1112 cos “i‘c COoS 87
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the extent of mutual interference thus varies from a maximum for identi-
cally polarised beams (¢ = 0), to zero for oppositely polarised beams
(¢ =m). The state of polarisation C of the resultant beam 1s located by
sin® 1a = (I;/) sin® 3¢ and sin®1b = (I,/I) sin* Zc. The ‘phase difference’
5 is equal to the supplement of half the area of the triangle C'BA (where C'
is the point diametrically opposite to C). These results also apply to the con-
verse problem of the decomposition of a polarised beam into two others.

The interference of two coherent beams after resolution into the same
state of elliptic polarisation by an elliptic analyser or compensator s dis-
cussed; as also the interference (direct, and after resolution by an analyser)
of n coherent pencils in different states of polarisation.
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