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§ 1. INTRODUCTION

IN the present paper we shall give the electromagnetic theory of light
propagation-in absorbing crystals possessing optical activity: the theoretical
presentation is a straightforward extension of that previously adopted for
transparent active crystals.! - We shall find that the results of the electro-
magnetic theory are, for most practical purposes, the same as obtained
previously? on the basis of a simpler physical idea, viz., by a ‘method of
superposition *—the results of which have been confirmed by detailed obser-
vations on the interesting phenomena displayed by amethyst.?

A complete solution of the electromagnetic theory of light propaga-
tion in absorbing active crystals has thus far been presented only for the
case of unjaxial media.* Recently an entirely new and general method of
formally solving the electromagnetic equations has ‘been introduced by
Jones® in a paper dealing with light propagation in anisotropic media (see,
however, Appendix). We shall find in §11, that it becomes essential to
~adopt this new method for solving the propagation of light along certain
remarkable directions, viz., the so-called singular axes which can exist both
in active?® as well as inactive®’ crystals.

§2. FORMULATION OF THE PROBLEM

Consider an arbitrary direction of propagation Oz in the crystal—
-which direction we may conveniently take as being normal to the plane of
the paper. Our problem is merely to determine the characteristic states
of polarisation of the plane waves that can be propagated along this direc-
tion, as well as their velocities and absorption coefficients. The reason
why only specific types of waves can be propagated along the z-direction
is that the field vectors (in particular, the vectors-D and E) of the electro-
magnetic' wave .are._constrained to satisfy . certain relations -amongst. .them-
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selves. Firstly they must satisfy Maxwell’s equations; and secondly they
must obey certain constitutive relations imposed by the properties of the
medium, and which determine the optical characteristics of the medium.
These latter relations will be determined by the polarisable characteristics
of the medium, ie., the relation which the induced polarisation bears to
the electric field of the light wave. (As is customary even in the case of
transparent active crystals we shall assume for simplicity that there is no
induced magnetization, ie., that B = H, though—as in that case—this
assumption appears to violate energy considerations.)

§3. MAaXWELL'S RELATIONS FOR A PLANE WAVE FIELD

Since we are interested in plane waves propagating in the z-direction,
the field vectors do not vary over planes normal to the z-direction. If k
denote a unit vector along the z-axis, we may use the operator Kk (3/32) in
place of the gradient operator T in the Maxwell’s equations—or rather in
the standard relation obtained by eliminating H between the Maxwell’s
equations. The latter relations (see, e.g., Page and Adams? eg. 82-9)
then assume the form :

.. 2 ‘
D=, E—k@& B )
The components of this equation take the simpler forrﬁ

2%E - AME
bzzx : Dy —_ C2 Bzzy (2)

B,=0. | | E)

The last condition implies the transversality of the displacement vector—
since we shall be concerned only with fields varying harmonically in time.
Also we shall first restrict our consideration to homogeneously polarised
plane waves, SO that :

D, E~exp. io (1—%-4) x Dy, By (4)

where 7 is the complex refractive index. Under these conditions the opera-
tion /oz becomes identical with- multiplication by — iwfi/c and the opera-
tioti /3t with multiplication by iw. Thus for a plane wave field of type (4)
‘Maxwell’s equations (with H eliminated) finally assume the elegant form

" Dy=cBy; Dy=CTy AN©)

‘where ¥ -represents the complex velocity c/i of the damped wave _
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§4. PROPERTIES OF THE MEDIUM

The dielectric displacement in the medium depends op the electric
vector, and, for a transparent optically active crystal,? D may be expressed
as an explicit vector function of E by the use of the dielectric tensor (¢) and
gyration tensor (g); it was shown in a previous paper® that it Was more
convenient to reverse the procedure and express E as an explicit function
of D by the use of the index-tensor (a), and a modified gyration tensor ().
When we turn to media possessing absorption, the components of the di-
electric tensor and the gyration tensor will become complex quantities :
in terms of our modified presentation it may be shown that the consequence
of this is that the constants of the index tensor and the modified gyration
tensor have to be replaced by complex quantities (see Appendix). Thus
the relation between E and D may be expressed in the same form ag pre-
viously given for transparent active crystals (reference 1, eq. 2 a).

¢®E = (@)D — i’ x D. ©

Here (@) is a symmetric tensor—the complex index-tensor; and I is an
auxiliary vector which depends on the direction of the wave-normal s, being
given by

F=(@)s @

where (y) represents the tensor of optical activity *—a general tensor with
complex components. It is convenient to express the above relations in
terms of tensors having real components; these tensors will in turn separately
determine the various optical characteristics of the medium. :

Thus in (6) and (7) we may substitute
@ =@ +i® 3
() = G+ 16). )

Here (a) and (b) are the usual index- and absorption-tensors which occur
for example in optically inactive absorbing crystals, and which define the
index- and absorption-ellipsoids; (y) is the tensor of optical rotation which
was referred to in our paper on transparent active crystalst as the modified
gyration tensor. The new tensor (y) may be called the tensor of circular
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dichroism for reasons which will become apparent as we proceed In
eq. (6) it is clear that we may further substitute

F=r+ilr | o (10)
where 4 ‘ o '
| I=@)s | @y
I'=(@)s. | o (12)

§5. SOLUTION OF THE ELECTROMAGNETIC EQUATIONS

We now write down the x and y components of the vector aquauon
(6) after -expanding the cross-product and omlttmg terms in D, (smce the
latter ‘is equal to zero).

(13)

¢®Ey = 1Dy + (ﬁla + ifz) Dy
2B, = (G, — i) Dy + @Dy |

Subsututmg for czEx and czEy from (5) we obtam as our fundamcntal equa-
tions: =

02— an = (512 + ifz) (%y_

(14)
D — Gy = (G, — iT) (22
9o = (31 — i) (Dy)
In general there will be two pairs of roots v, (Dy/Dy)q and vy (Dy/Dg,;)b which
will -satisfy these simultaneous equations. These will give the complex
velocities and states of polarisation of the two waves.that can be propagated
in the z-direction. If we multiply the two equations of (14) to eliminate
(Dy/Dy) we obtain the following quadratic in 2 whose roots vg* and vy’
determine the complex velocities (i.e., -the velocities and absorp’uon coefli-

cients of the waves):

Ch _all)(—z”azz)“a122+rz | (15)

Subtracnng the second equation of (14) from the first to ehmmate V2, we get

(am + ZF z)( ) (@15 — ZI' z) (D—) = — (au - azz)

@t ,m( ) + @ = 0 (38) - @ — iFy= 0. @0

4
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This is a quadratic in (Dy/Dy) and its roots specify the states of polarisation of
the waves. Since these roots will in general be complex, the waves wil]
be elliptically polarised. '

The task of discussing in greater detail the velocities, absorption coeffi-
cients and states of polarisation of the waves is complicated by the fact that
all the coefficients occurring in (15) and (16) are really complex quantities:

Gnk = api + ibpi ; Iy = Ty + il a7

It is worthwhile pointing out that the anx and bpx (which are the components
of the index and absorption tensors respectively) are also the constants
occurring in the equation to the elliptic sections of the index- and absorption-
ellipsoids by the xy plane; in other words . the .equation to these elliptic
sections are respectively

apx? 4 apy® + 2a,5xy = 1 }

(18
buix? + bapy? + 2bipxy = 1 18

Also Iy is the scalar parameter of optical rotation already met with in the
case of transparent optically active crystals!; whilst I’ may be called the
scalar parameter of circular dichroism for reasons which will be discussed
in the next section.

§ 6, CIRCULAR DICHROISM AND ITS DIRECTIONAL VARIATION

The characteristic effect introduced by the presence of the parameter
T, may be best revealed by supposing linear birefringence and linear dichroism
to be absent, i.e., by setting [in equations (15) and (16)],

Ay = Ay =a; ap=0; by = bay = by~ by =10
i.€.,

Such a situation actually occurs for a direction of propagation along the
uniaxial axis in a crystal of uniaxial symmetry, since the sections of the index-
and absorption-ellipsoids will be circular. Equations (16) and (15) then yield

%:;{;i; vi=gF I, )

This means that the waves are right and left circularly polarised and if o,
and v; be the complex velocities of the circularly polarised waves, then

512 — T2 = 2T, | - (20)
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The complex velocity v is related to the actual velocity v and the extinc-
tion coefficient « by the usual relation

n— ZK ( + lKv) (21)

the terms containing the square of the extinction coefficient being negligible
in magnitude. Introducing this in equation (20), we obtain to a high degree
of approximation

"r“"nl=rz‘5§‘3=i’o 22)
«1—:«,=1’Z'-ﬁ3—=% 23)

where vy, is a mean velocity.

It will now be clear why I', and I',” may be referred to as the parameters
of optical rotation and circular dichroism corresponding to the direction of
propagation z. The values of these parameters for a general direction of
propagation s may be denoted by I's and I'y’. The parameter of optical
rotation has been shown to be a quadratic function of the direction cosines
of propagation by virtue of (11) (see ref. 1, § 6); the same statement must
therefore be true for the directional variation of the parameter of circular
dichroism. If we lay off two radii vectores r; and r, parallel to the direction of
propagation such that their lengths are given by

1 3

=T l=p- "0 (24)
1 p 3 '

pa= T [= o0~ (25)

then (24) and (25) define respectively a surface of optical rotation and a sur-
face of circular dichroism. Given these surfaces we may determine I's and
I'y’ for any direction of propagation, or alternatively the coefficients of circu-
lar birefringence and circular dichroism (p, and o,) for any direction.* (The
sign to be attached may be supposed to be marked on the surface.)

§ 7. ANALYTICAL PRESENTATION OF THE METHOD OF SUPERPOSITION

The states of polarisation of the waves propagated along any direction
as well as their velocities and absorption coefficients may in principle be

* We take the mean velocity v, for the direction in question to be given by equation (14)
of reference 6.

"‘L»"’“‘“ rem——————
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obtained from equations (15) and (16). In practice, in order to be able to
study the variation of these properties with direction the results would have
to be cast into a simpler parametrical form—as Voigt!® was compelled to do
even in the case of inactive absorbing crystals. Now the propagation in
an absorbing active crystal has been previously analysed without using the
electromagnetic theory, by a method of superposition; this method when
developed by the use of the Poincaré sphere, leads to results which ar; auto-
matically in such a parametrical form, and we shall show in the next section
that these results can be modified so as to represent accurately the results of
the electromagnetic theory. Unfortunately the modifications necessary can
be perceived only if the results of the method of superposition, instead of
being expressed in simple parametrical form, are expressed analytically by
equations formally similar to those of the electromagnetic theory. For this
purpose we shall in this section develop the consequences of the super-
position method not by the geometrical methods of our previous paper,? but
by analytical methods, along the lines followed by Jones!:'* who has
adopted a matrix calculus treatment.

A detailed physical description of the method of superposition may be

found in references 6 and 2. Let D be the vibration at the plane z in the
crystal.t The vibration which would obtain at the plane (z 4 dz) if the

crystal were transparent and inactive may be represented by B -+ 31]3. This

vibration may be obtained by multiplying the components of ]3 along the
principal planes of linear birefringence Ox’ and Oy’ by the factors

exp. (— i %nldz)

and
exp. (— l%f:,z . nzdz) respectively.

Then |
3Dgr = — i i: Do 26
0Dy = —i %T 15Dy .

+ The displacement vector is here written as a two-dimensional vector since it lies on the

> .
wavefront, Also the vibration is taken as De ¢, i.e., in the present section the time factor is not
included within the symbol for the displacement vector, which is therefore only a function of z.

8
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This may be written symbolically as \
2 27 =
3D = — i~ dz [#] D. 2n
0 .

where [n] represents a symmetric 2 X 2 matrix or tensor operator whose
principal directions coincide with the principal planes of linear birefringence
and whose principal values are n; and n,—determined from an index-ellipsoid
as for a transparent inactive crsytal.

-)
Similarly let 2,D represent the partial increment to the initial vibration

D when subjected to the infinitesimal operation of linear dichroism (corres-
ponding to the thickness dz). Then we will have

2D = — %’f &[] D | (28)

where [«] represents a symmetric tensor whose principal directions coincide
with the principal planes of linear dichroism and whose principal values
are «; and «, as given by an absorption ellipsoid [see eq. (12) of ref. 6].

Under the combined effects of linear birefringence and linear dichroism

the partial increment D'B to the initial vibration ]_5 may be obtained by
adding (27) and (28). We may then write

D = — i%’ 4z [7] D - (29)

the components of the symmetric tensor [7] being given by
flyy = Mij — iKy (30)

where the n;; and «j; are the components of [#] and [«] respectively.

é
Thus the state of vibration ]3 =+ 3'D at the plane z -+ dz for an inactive
absorbing crystal is given by writing equation (29) in full: |

¥Dy = — z‘%;-’ dz (iyyDgs + 715Dy)
. @1

, .2 _ -
d Dy = —1 }\““0 dZ (anx '+‘ nzsz)

These equations correspond to eqg. (29) of reference 6; the ni; have the same

significance as in that paper and are determined from the sections to the
index- and absorption-ellipsoids.
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-> >
Let (D -+ 33D) represent the vibration obtained by subjecting the vibra-

-)
tion D to the infisitesimal operation of rotation through an anticlockwise
angle pdz—where p (= pyr/A,) is the optical rotatory power for the direction
z as determined from a surface of optical rotation according to equation (24).

Then

Dz + 2Dy = Dy — T podz. Dy
’ (32)
Dy + 3Dy = ;‘;podsz + Dy

- 3 - - ‘)
It remains to consider the partial increment 3 D due to the operation
of circular dichroism (corresponding to the passage dz): this operation con-

sists in resolving the initial vibration. D into its left and right circular compo-
nents and multiplying the amplitudes of these components by (1 — 7/} . 0ydz)
and (1 + 7/, - 6yd2); oy is the coefficient of circular dichroism (corresponding
to the difference in the extinction coefficients of the circularly polarised
components) as obtained from a surface of circular dichroism according
to equation (25). Clearly this operation differs from the operation of optical
rotation (regarded as circular birefringence) only in that the constant iog occurs

->

in place of po. Let 3"D represent the partial increment to the initial vibra-
->

tion D due to the combined effects of optical rotation and circular dichroism

(for the thickness dz). Then according to what has been said above D

will be given by an expression which is similar to the expression for 33]5 [Which
may be written down from equation (32)] except for the following difference
the constant po will have to be replaced by p where

P = po + iog. (33)

In other words we will have

w -
'/:\';dx. . PDy

B”Dy=+‘;‘%'d2'pr

anx —_
€2))

If D -+ dD represents the vibration at the plane z + dz in the optically

._)
active absorbing crystal then dD represents the total increment to the initial
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vibration D under the combined effect of all the operations mentioned above.
Thus d]_D) is given by adding (31) and (34):

dDy = — i?\—: dz {iyDy + (s — % iP) Dy}

dDy = — i%)zf dz {(fuz + % 1P) Dy + ngsDy}

(39)

‘ >
We wish to determine the particular states of polarisation of D for which
the vibration is propagated unchanged with a specific complex velocity. From
equation (14) we see that for such a disturbance we have

d]_s:——i%rdz.r‘zf) (36)
Writing down the x and y components of (36) and comparing with (35)
we finally obtain

(37)

which determine the characteristic states of polarisation D,/D, of the waves
and their complex refractive indices i—according to the method of super-
position.

§ 8. SIMPLIFICATION OF THE RESULTS OF THE ELECTROMAGNETIC
THEORY

The equations (37) deduced by the superposition method are formally
similar to the equations (14) deduced by the electromagnetic theory. It
may be shown that the quadratic equation for Dy/D, which may be obtained
from (37) will have coefficients proportional to the corresponding coeffici-
ents in equation (16)—the factor of proportionality being (— c¢/2vp®). It
follows that the states of polarisation of the waves as obtained by the
electromagnetic theory are identical with those obtained by the super-
position method. Hence the points representing these states of polarisation
on the Poincaré spherel may be .determined exactly as described in
ref. 2—the parameters (¢, ) which specify the states of polansatlon being
the same in both methods.

~ { The Poincaré sphere merely represents a method of mapping states of polarisation, and
hence need not be used only in conjunction with methods of superposition.
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In the second place, because of the formal similarity between equations
(37) and (14), it is clear that for every equation derived by the method of
superposition a corresponding equation obtainable from the electromagnetic
theory may be written down by inspection—merely by replacing the symbols
according to a scheme which transforms (37) to (14). In addition to the
replacement scheme already used for this purpose in inactive absorbing
crystals (ref. 6, § 8), we have only to add that the symbols p, and oo have to
be replaced — 2I'y and — 2I';’ respectively. Simple expressions for the refrac-
tive indices and absorption coefficients of the waves have been derived in
ref. 2, §9 ¢, by the superposition method (using the Poincaré sphere). The
corresponding equations from the electromagnetic theory will be:

v =1 (a + a) + % @ — a)* F QIR . cos 24. (38)

L2038
¢

K =31+ by) + 3 /(b — )% + RI;)2 . cos 2. (39)

For directions of propagation not in the vicinity of an optic axis it can
be shown (as in ref. 2, §7) that the velocities and absorption coefficients of
the waves may be determined from the index and absorption ellipsoids.
It is only for directions in the vicinity of an optic axis that the complications
caused by the ellipticity of the waves make their appearance: for such direc-
tions, since the birefringence is mecessarily small, the difference between
the above expressions and those given by the method of superposition will
not in general be of any practical significance.

§9. THE SINGULAR AXES

Among the most remarkable of the properties of absorbing crystals—
both inactive and active—is the possibility of the occurrence of so-called
singular axes. A singular axis represents a direction for which the qua-
dratic equation (16)—which determines the states of polarisation of the
waves—has equal roots; the condition (b2 = 4ac) under which this can
obtain ensures at the same time the equality of the roots of the quadratic
equation (15) which determines the velocities of the waves. Thus along
a singular axis there is only ome particular state of polarisation which can
be propagated without change of form. In a previous paper? we have already
discussed (with reference to the particular example of amethystine quartz)
the following problems: the conditions under which it is possible for sin-
gular directions to exist in optically active crystals, the location of these
axes, and the state of (elliptic) polarisation of the single wave that can be
propagated along a singular axis. In the present paper, therefore, we con-
fine ourselves to the following interesting query: what will happen when

o SR
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a plane wave incident along a singular direction is in a .state of polarisation
other than that which alone can be propagated unchanged along that axis?
In the particular case when the incident vibration is in a state of polarisa-
tion orthogonal to that of the wave which can be propagated unchanged along
the singular axis, it had been supposed by Voigt!® (in the case of inactive
crystals) that the incident light would be totally reflected away, the reflection
being partial in practical cases. That this is far from being the case has
been shown experimentally by the author both in the case of iolite” (an
optically inactive crystal) and amethyst3 (an optically active crystal). The
experimental results in the former case were readily explained® in detail
(ref. 6, § 6 b) by a direct application of the method of superposition—accord-
ing to which the incident vibration would obviously be propagated with
a progressive change in its state of polarisation. The same treatment and
results apply mutatis mutandis o optically active absorbing crystals also.
Furthermore, it had been argued from considerations of continuity that
the results given by the method of superposition could not really be con-
tradictory to those of the electromagnetic theory. But how exactly the
propagation of an arbitrary vibration along a singular axis could be directly
handled by the electromagnetic theory was not apparent to the author till
the publication of a recent paper by Jones>—in which is contained a new
method of solving the electromagnetic equations in any anisotropic medium

(transparent or absorbing). We present the method in a slightly modified
form suitable for our present use.

§10. THE WAVE EQUATION FOR A PLANE WAVE PROPAGATED WITH
CHANGE OF POLARISATION

In this section we wish to write down a suitable equation to represent
a plane wave in a homogeneous medium, the wave being in general propa-
gated with a progressive change in its state of polarisation. Firstly we shall

-) ooy

take the vibration D at any plane z to be varying as €% so that

D_ .2+ 2

d L2

5= Z—A; cD. (40)
Here the displacement vector has been written as a two-dimensional vector
_)
D since it is entirely transversal to the wave according to (3). As for the

dependance of D on z, the form of the equation to be assumed is immedi-
ately suggested by equations (31) and (35) of §7. The vibration. at the
plane z + dz may be taken to be a linear vector function of the vibration
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at the plane z (at the same instant), since it is not assumed that both are neces-
sarily in the same state of polarisation. We may then write

N
Doy @
where [n'] is a two-by-two matrix operator. This resembles exactly the
equation (36) which is satisfied by a usual plane wave of the form (4), but
for the following difference: the refractive index 7 has been replaced by a
‘ refractive index tensor’ [#'] in order that the same equation may represent
a general plane wave propagated in a homogeneous anisotropic medium.
This procedure is essentially in the same spirit as that of replacing the real
refractive index by a complex quantity in order that the form of the usual
equation to a plane wave in a transparent isotropic medium may still be
retained to represent what is really a damped wave in an absorbing isotropic
medium.

o From (40) and (41) we obtain by d]ﬁ'erentlatmg with respect to ¢ and
z respectively ‘

hd
22D g 0 D
S e 322" (42)

The above equation represents the wave equation satisfied by the disturbance

propagated with change of polarisation; it resembles the usual form of

the wave equation to a plane disturbance except that in place of the square

~of the velocity we have the matrix operator ¢ [n']"2

As a simple example of a plane disturbance propagated with progres-
sive change of polarisation we may remark that when a plane wave which
is linearly polarised at a suitable azimuth is incident normally on a quarter-
wave plate the incident linear vibration goes through progressive stages of
elhptlc polarisation and then emerges circularly polarised.” This ‘example
also illustrates why, in usual cases, we need not directly seek general solu-
tions representing disturbances propagated with change of polarisation:
as will be evident in the example quoted, such a general solution is obtained

by superposing the two .characteristic plane wave solutlons of the usual

form (4)—provided two such distinct solutions exist.

§11. SecoND METHOD OF SOLVING THE ELECTROMAGNETIC EQUATIONS

Qur task is now to determine the refractive index tensor [n'] or alter-
natively the tensor ¢®[n’]-2 The result is sufficiently elegant to be stated
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straightaway. Justas in an isotropic medium we have n? = ¢, where « is
the dielectric constant, in the present case it will be shown that

[7']2 = [€], (43)
where [e¢] is the two-by-two matrix connecting ]—5 and E:

-> -5

D = [¢] E. (44)
Here E represents the  projection’ of the electric vector on the wavefront,

being thus defined by the x and y components of the actual electric vector.

To establish (44) we note that the Maxwell’s equations (2) may be written
as

D
3D,
ST A “5)

The properties of the medium can be expressed in the form

¢°E = [A] D 46)

where [A] is a two-by-two matrix whose components may be written down
from equation (13).

From (45) and (46) we have

325 325
T e | @7

Comparing with (42) we find that whatever be the state of polarisation
of Da solution of the form (41) is possible with ,
2% = [A] (48)

This relation is equivalent to (43) as may be seen by comparing (44)
and (46). Thus the refractive index matrix [n'] can be determined$ for any
direction of propagation from the relation

[#]1=c[A]? o (49)

We may briefly refer to the connection between the present method of
solving the electromagnetic equations and that adopted in §S5. Though
the wave equation (42) in general describes ‘a disturbance propagated with

§ Only the physieally significant square root of [A]-! is to be taken. For this and other
- mathematical questions, which arise in the representation by matrix methods see Jones®H.
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a progressive change of polarisation this is not always the case. It will
obviously reduce to the customary wave equation (for a homogeneously

polarised disturbance) for those particular states ]3 which satisfy the relation
-> >
[A]D = 22D ’ (50)

the complex velocity of the wave being ». It will now be seen that the
equations (13), previously used in § 5, are really the components of this vector
equation, and as is shown by the procedure adopted there—the above

>
equation is wsually satisfied for two states of D (the eigenvectors of the
matrix A) with two corresponding values of v? (the eigenvalues of the matrix

>
A). For these particular states of D the equation (41) must also
reduce to the form (36), i.e., in the terminology of matrix calculus, these

+
states of D are also the eigenvectors of the refractive index tensor [n'], the
corresponding eigenvalues being the complex refractive indices of the waves.

From what has been said above, it is clear that a singular axis represents
a special direction for which the matrix A has only one eigenvector, and
correspondingly only one eigenvalue. This does not in principle lead to
any difficulty in determining the refractive index matrix [»'] from (49), though
of course the peculiar properties of [A] mentioned above are also carried
over to [n]. On the other hand, when we adopt the method of superposi-
tion the refractive index tensor [n'] is considered as the sum of four parts
each of which (it is assumed) may be directly determined in a simple fashion
from the four corresponding surfaces defining the optical properties of the
media. Thus whether we adopt the superposition method or the electro-
magnetic theory, no special difficulty arises in determining the refractive
index tensor [n'] for propagation along a so-called singular direction.
Along a singular direction—as, indeed, along any other direction—we can
have plane disturbances which are propagated with a progressive change
of polarisation: the speciality about a singular direction is, however, that
such a disturbance cannot in turn be regarded as the sum of two plane waves
of constant polarisation—there being orly one wave of the latter type.

The author owes a debt of gratitude to Prof. Sir C. V. Raman, at whose
instance the initial experimental investigations on amethyst and iolite were
undertaken by the author, and without whose encouragement the subsequent
theoretical investigations on the properties of absorbing crystals would not
have been possible.
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§12. SuMMARY

The propagation of light along an arbitrary direction in an absorbing
active crystal is solved by extending the treatment previously given® for
transparent active crystals—the index tensor and the modified gyration
tensor being replaced by corresponding tensors with complex components.
The two waves are in general elliptically polarised, in states identical with
those given by a method of superposition?; their velocities and absorption
coefficients are likewise simple functions of the parameters which specify
these states of polarisation on the Poincaré sphere.

Attention is drawn to the propagation along any singular direction
(n active or inactive crystals) where only ome homogeneously polarised
plane wave solution is obtained—and not two. A more general theoretical
approach’® becomes necessary to establish—in agreement with experiment—
that other solutions also exist, representing plane disturbances propagated
with a progressive change of polarisation. For such a disturbance the
wave equation satisfied by the displacement vector differs from the usual
form only in that the square of the velocity has to be regarded as a tensor
operator. © - - - - - .
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APPENDIX

(@) Derivation of the constitutive relation in the Jorm (6).—The relation
between D and E for an optically active absorbing crystal may be written as

D=(9)E+P, + P, (46)

The portion of the induced polarisation P, contributes to the mean absorp-
tion and the linear dichroism, while P, leads to optical rotatory power and
circular dichroism. These are given by the expressions (see ref. 9):

P,=—i()E; P,=iG X E. 47

For usual values of absorption and optical activity P, and P, are so
small that terms of the second order in P, and P, may be ignored. Hence
to this degree of approximation P, and P, may be expressed as functions of
D by substituting in (47) an approximate value of E obtained from (46),
viz.,, E = (e*)D. We then obtain

(E)E:D_Pl—Pg
=D+ i(fe)D—i(Re)D
where the operator G X is replaced by an antisymmetric matrix operator
R (see, e.g., ref. 8, eq. 85.2). We then obtain
E=()D+i(etee)D —i( «Re ) D, (48)

If we choose axes of co-ordinates X, Y, Z along the principal axes of the
dielectric tensor (e) it can be shown by actual matrix multiplication that

the operator (¢*Re™?) is equal to the operator 1/c? - T'x, where

— 2 —— — 2 — — ) 2 —
Fy=-% .Gy T = .Gy; F,=-¢ G,. (49)

z
€y €z Y €z€x €x €y

Comparing (48) with (6) and (8) we see that the vector of optical activity

—

I'is given by the above equations, while the index and absorption tensors
are given by

(@) =ct(eh); ) =c*(tee™). (50)

It must be remembered that G = (&) s, where (g) is the complex gyration
tensor and s the wave-normal. If we write this relation in full (see ref. 9)

it follows from (49) that the relation between the components of the tensor
A8
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of optical activity (y) and the components of the complex gyration tensor
(&) will be given by
c? c? . c?

*8im; Yam = &am;: VYsm =
€y€z ° €z€x €x €y

(m=1, 2, 3).

“8m  (51)

?71m =

(b) An error in Jones’ paper—In a paper by Jones® dealing with propa-
gation in anisotropic media, the constitutive relation between D and E for
an optically active medium has been expressed in a form which has been
thought to be equivalent to that given above [eqs. (46) and (47)] but is really
quite different from it. In particular the term P, in (47) has been assumed
by Jones to be given by

P,=_{®V}xE (52)

where V is the gradient operator and (g) the complex gyration tensor. That
this relation is quite different from the customary form (47) may be easily
seen in the particular case when we seek plane wave solution of the usual
form (4) so that V =iw#jc.s. The relation (52) then becomes

P, = ifi (G X E). (53)

This is of course vitally different from the expression given in (47) since
according to (53) the refractive index 7 which is one of the unknowns to be
determined will itself be involved in the constitutive relations; more gene-
rally the refractive index tensor (#’) will itself be involved in the matrix [A]
occurring in (43). Accordingly, the relations given by Jones expressing

his * N-matrix’ in terms of the complex dielectric and gyration-tensors are
in €error.
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