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1. INTRODUCTION

THE treatment customarily adopted! for analysing the propagation of light
in optically active crystals is somewhat lengthy and cumbersome, and is even
so not free from approximation: its mathematical complexity being perhaps
partly the reason why an alternative quasi-theoretical analysis not involving
the electromagnetic theory is sometimes used.>® A concise yet logical
treatment of the problem is, however, easily possible without the introduc-
tion of any fresh physical hypothesis—as will be shown in this paper.

'We have merely to remember that for an electromagnetic wave inside
a crystal, it is the dielectric displacement vector D (the ° vibration ’), and not
the electric intensity E which necessarily lies on the wave-front. Hence
we seek to express E in terms of D, rather than vice-versa. Even for the case
of optically inactive crystals, such a procedure—though not commonly
adopted—is known to simplify the theoretical treatment, as may be seen

especially in the case of absorbing crystals*; and the geometric representation

of the optical properties of a crystal by an index ellipsoid follows directly
in the structure of such a presentation instead of having to be proved by
indirect means later—as is usually done.’

2. FORMULATION OF THE PROBLEM

Any wave travelling in the crystal along an arbitrary direction ‘z’ (con-
veniently taken as being normal to the plane of the paper) may be specified
by giving the x and y components of the D-vibration: Dy exp iw (¢ — z/v)
and Dy exp iw (¢ — z/v). Here v is the velocity of the wave and the ratio
(Dy/Dyz) completely defines the polarisation of the wave. Owing to the re-
quirement that the vectors D and E must satisfy both Maxwell’s relations
as well as the characteristic polarisable property of the medium, only two
specific waves can be propagated in the z-direction—the problem being to
determine their velocities, v, and v,, and their states of polarisation
(Dy/Dg); and (Dy/Dy),. |
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Maxwell’s equations for a plane-wave field reduce to the following
single equation when H is eliminated*—as is shown in standard texts’

v’D = ¢? [E — s (E.s)] (D)

where s is a unit-vector along the wave-normal. For inactive crystals the
polarisable characteristics of the medium lead to the usual relation D = e) E,
where () represents the symmetric dielectric tensor—which operates on E
to give D. But for optically active media it is assumed that

| D=(9)E+iGXE .‘ )]
where the additional antisymmetric term represents a feeble additional
polarisation which oscillates out of phase with the electric intensity (as indi-
cated by the factor i), and yet does not introduce any absorption because it
is also orthogonal to the electric intensity (as is indicated by the occurrence

of the vector product). The gyration-vector G corresponding to the direction
of propagation s determines the optical rotatory power in that direction.

3. THE INVERSE GYRATION-VECTOR

It is known that by taking the z-axis along the wave-normal (instead of
choosing co-ordinate axes along the electrical axes, as in usual treatments),
we not only confine ourselves to two components of D instead of three; in

addition, the components of the vector equation (1) take the following intelli-
gible form:

v*Dy = ¢*Ey; vDy = ¢*By; D, =0 (1g

where, it may be noted, separate and explicit expressions are obtained for
Ex and Ey.

Equation (2) which expresses D as a vector function of E, is now trans-
formed by expressing E in terms of D using the inverse vector function.
Since this inverse function will obviously contain not only a real symmetric
part but also an imaginary antisymmetric part (giving that part of the electric

intensity which oscillates out of phase with D, and is orthogonal to it), we
may write :

¢’E=(a)D — i'xD 29
The first term alone would be present for an optically inactive crystal, the

symmetric tensor (4) then defining the index ellipsoidt—being proportional
to the inverse of the dielectric tensor (see Appendix). The comparatively

3

* 'We are not here considering other theories of optical activity2:¢ in which B 3= H.

TIf @y x® + aypy2 + ... 2ay zx = 1, be the equation to the index ellipsoid, then the a;; are
also the components of the tensor (@) with respect to the co-ordinate axes chosen. '
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small second term (which introduces the optical activity) is determined by
the new vector I—which we shall refer to as the inverse gyration-vector
corresponding to the direction of propagation s.

4. DERIVATION OF THE EQUATIONS OF WAVE-PROPAGATION
Writing down the x and y components of equation (2a) and omitting

the terms containing the factor D; (since D, = 0):

CZE-'I: = alle ‘+' alsz + irsz } (3)

CzEy == angy + ame - inDx

Here a;;%° + ay5p® 4+ 2a55xy = 1, is the equation to the elliptical section
of the index ellipsoid taken perpendicular to the wave-normal. 'We now
choose the x and y axes parallel to the principal radii of this elliptical section,
which represent the vibration-directions in the absence of optical activity.
With this understanding we may, in Equation (3), set a;, =0, @y = v'? and
azy = v''%; here v’ and v” represent the velocities of the waves in the absence
of optical activity, because of a well-known property of the index ellipsoid
which may also be obtained by setting I'; =0 at the end of the present dis-
cussion. Substituting for ¢’Ey and ¢2Ey from equation (1 a) we thus obtain
as our fundamental equations:

v¥— 0"t =il, (gi’)

“

v2— "= — I, (Bﬁ;—@)
These fundamental equations are essentially the same as those obtained in
Pockel’s Lehrbuch® starting from an entirely different theory of optical
activity. There are two pairs of roots v;, (Dy/Dy); and v,, (Dy/Dz),, which
simultaneously satisfy these equations—giving thereby the required velo-
cities and states of polarisation.

5. THE VELOCITIES AND STATES OF POLARISATION OF THE 'WAVES

Multiplying the two equations of (4) to eliminate (Dy/Dz) we obtain the
following quadratic in v2, whose roots v, and v,? give the velocities of the
waves :

(©® — 0') (v — v"%) = T2 o)

Subtracting the second equation of (4) from the first to eliminate 2
we get:
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Dy Dx . 'U,2 —_ 72 .
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This is a quadratic in (Dy/Dy), and its roots uniquely determine the states of
polarisation because of the relation:

Dy _ Dyl s

Dp ™ TDz[*
where the ratio | Dy | : | Dy, | is obviously the ratio tan 6 of the (real) ampli-
tudes of the y and x components of the D-vibration; and R is the relative
phase difference between these components. Since the right-hand side of
(6) is entirely imaginary it follows that both roots of the equation are imagi-
nary (R = +7/2). Further since the roots of (6) are obviously reciprocals
~of one another, it follows that if one root is of the form (B1/A;) €'™2, the other
will be (A;/B,) e¥™2,  This signifies that both vibrations are elliptically
polarised with their respective major axes along the two perpendicular princ-
pal planes, the vibrations being of the same ellipticity but traced in opposite
senses.

The value of tan 26, which determines the common ellipticity of the two
vibrations is obtained directly from equation (6) by substituting in it the
value of (Dy/D) which is equal to (+ i tan 6,) for the right elliptic vibration
and (— itan 0,) for the left elliptic vibration:

[tan 26 | = |2 T/ (v — v™2) | M

Similarly the difference in the squares of the velocities of the two waves
may be obtained from (5)—since it is the square-root of the discriminant:
(0, — 0,%) = (V"2 — v"?) + (2I,)? @®)

In the absence of linear birefringence (i.e., if we imagine v’ = v"), the

-waves Will be circularly polarised according to (7), the rotatory power p being
obtained from (8) as:

p=(0fon?) - T, - 0
- where v is a mean velocity (see Pockels?).

We may mention that because of an approximation made in the usual
treatment, its resultant equations differ slightly from (5) and (6); also, equa-
tions (7) and (8) are the accurate forms of the approximate relations obtained
by the method of superposition.23 v
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6. THE VARIATION OF ROTATORY POWER WITH DIRECTION

The gyration vector G, and hence in the present treatment the inverse
gyration-vector I", are both vectors not having their axes fixed with respect
to the crystallographic axes,} but are linear vector functions of the direction
of propagation. Thus G = (g)s and I"'= (y) s, where the gyration tensor
(¢) and hence the modified gyration tensor (y) are both nine-component
tensors. The rotatory power is however determined, according to (9), only
by the resolved component I's of the inverse gyration-vector along the direc-
tion of propagation. (We are here denoting this by I's instead of I'; since
we are choosing an arbitrary co-ordinate system xy’z’.) Since an analogous
result holds in the usual treatment it follows as in that case® that this scalar
parameter of rotation I'y is a quadratic function of the direction cosines
I'm'n’ of propagation:

Is =yl 4 szm'z'l- yastt' 2 2y3l'm’ + 2yam'n’ + 2yan'l
where

;’ij = '5' ('yij + 7ji)9 (ls js = 1’ 2, 3)'

The discussion of optical activity in relation to crystal symmetry follows
as in the usual treatment.

Finally, the author wishes to express his gratitude to Prof. Sir C. V.
Raman, F.R.S., N.L., for his kind interest in this investigation.

7. SUMMARY

In the usual treatment of the optical activity of crystals, the displacement
vector of the light wave is expressed as a function of the electric vector—this
being done with the aid of the dielectric tensor and the gyration-vector. The
treatment is made more concise and tractable by using the inverse vector
function and expressing the electric vector in terms of the displacement
vector, since it is the latter which necessarily lies on the wave-front; this
can be done by using the inverse of the dielectric tensor (which defines the
index ellipsoid), and an inverse gyration-vector (which determines the rota-
tory power for the particular direction of propagation considered). The
inverse gyration-vector (like the gyration-vector) is itself a function of the
direction of propagation, being related to it by a modified gyration tensor—
which consequently determines the rotatory power for all directions.

t The new treatment given in Sommerfeld’s Optics® is deficient in this respect.
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APPENDIX

Since the index ellipsoid defined by the tensor (a), and the inverse gyra-
tion-vector I' may be directly taken as the phenomenological quantities

required to describe the propagation along any particular direction s, the
relation between I' and the gyration-vector G would not usually be required.
The relation may however be obtained by writing (2) as D=D’ + iP", where

D'=(¢E; P"=GXE (11)
Substituting for D in (2 a)
?E = (@) D' + I'XP" + i(a)P"— i'x D’
Equating real parts agd neglecting I'XP” in comparison with ¢2E:
@ =c*(9? (12)

Equating imaginary parts: (a) P’ = I'xD’. Choosing axes of co-ordinates
X, Y, Z, along the principal electrical axes of the crystal, the X-component
of this relation is

axpx” == Fy.Dz’ -— FzDY’
or, by virtue of (11), if ex, ey, €z, be the principal dielectric constants,
ax (GYEZ — GzEy) = I'y (&E;) — I (evEy)

We may separately equate the coefficients of Ey and E; occurring on both
sides since this relation has to hold not just for one value of the ratio Ey/Eg,
there being two polarised waves that can be propagated along the same
direction. Hence, using (12),

Iy =

€z€x FZ“"";E;[ GZ: FX_;;E GX (13)
The relation between the components of the modified gyration tensor and
those of the gyration tensor may now be easily written down:

c? c? c? .
Yii=—— 81i» Ya = — Lai; V3i = ——— &si (i=1,2,3).

€y €z €z€x €x €y




