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Abstract. Bound state population dynamics in a diatom modelled by an appropriate Morse
oscillator with a time-dependent well-depth is investigated perturbatively both in the absence
and presence of high intensity radiation. For sinusoidally oscillating well-depth, the population
of the mth bound vibrational level, P__ (t),is predicted to be a parabolic function of the amplitude
of the oscillation of the well-depth (AD ) at a fixed laser intensity. For a fixed value of ADgy, P,..(0)
is also predicted to be quadratic function of the field intensity (¢,). Accurate numerical calculations
using a time-dependent Fourier grid Hamiltonian (TDFGH) method proposed earlier corrobor-
ate the predictions of perturbation theory. As to the dissociation dynamics, the numerical results
indicate that the intensity threshold is slightly lowered if the well-depth oscillates. Possibility of
the existence of pulse-shape effect on the dissociation dynamics has also been investigated.
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1. Introduction

The quantum dynamics of a periodically forced Morse oscillator has attracted serious
attention in view of its usefulness as a model for gaining insight into the response of
molecular vibrations when interacting with intense radiation or laser fields [1-8].
Recent numerical studies on the dissociation dynamics of a hydrogen fluoride molecule
by monochromatic sub-picosecond pulses have shown that the dissociation probability
(Py) is less than 10~ > when the laser intensity is below 10**w/cm?. Chelkowski et al
[4-5] showed that the obtained rates of dissociation are sensitive to the shape of the
excitation pulse and an appropriately chirped pulse can achieve very selective vibra-
tional excitation with high efficiency. Brown and Wyatt [9] analyzed the bottle-
necking problem in the multiphoton dissociation of a diatom modelled by a Morse
oscillator under laser irradiation of high intensities. Recently, Gangopadhyay and Ray
[10] proposed a theory of multiphoton excitation and dissociation of a Morse
oscillator in the presence of dissipation and explored how the interplay of excitation
and dissipation with the non-linearity could lead to observable effects. Adhikari et al
[11-12] observed numerically, that the multiphoton dissociation process is characterized
by the existence of a typical threshold intensity and an induction period in much the
same way as the multiphoton ionization of atoms in strong laser fields [13-15]. Many
more studies on different aspects of the multiphoton dissociation of molecules are also
available in the current literature [16-19].

In all these studies, the Morse oscillator is characterized by a fixed time invariant
well-depth which is an acceptable picture for an isolated oscillator. However, we can
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imagine situations where the oscillator cannot be treated in isolation as it interacts with
the surrounding media while undergoin gdissociation. To be more concrete, let us think
of a diatom A4-B undergoing multiphoton dissociation in a solvent with which it
weakly interacts. We can imagine that the interaction causes temporal fluctuation of
the well-depth of the Morse oscillator about the mean or the unperturbed well-depth
Dy®. How does the oscillating well-depth modify the dynamics of dissociation of the
diatom under strong laser irradiation? Does it alter the bound state population
dynamics or affect the intensity or time thresholds observed for isolated diatoms or for
Morse oscillator with constant well-depths? We propose to probe some of these
questions numerically by directly solving the time-dependent Schrodinger equation
(TDSE) within the framework of the time-dependent Fourier grid Hamiltonian method
(TDFGH). The numerical study has been backed up by a low order perturbative
analysis wherever feasible. The plan of the paper is as follows. In § 2 we invoke the first
order time-dependent perturbation theory to obtain the qualitative features of the
bound state population dynamics for short-time scales. The time-dependent Fourier
grid Hamiltonian method [11-12] is employed for obtaining more accurate and
quantitative information on the bound state population as well as dissociation

dynamics (§ 3). The main features of the perturbative and numerical results are analyzed
in §4 for both continuous and pulsed irradiation.

2. Perturbative bound state dynamics

Since the diatomic molecule is represented by a Morse potential, the unperturbed
Hamiltonian (H,) is given by

2

Ho=3—+ Dip{l —exp[ — B(x — x,) 1} &)

The parameters of H,, are so chosen as to describe the bound vibrational levels of
hydrogen molecule [D, = 0-17440 a.u., p=102764a.u, x., = 140201 a.u].
Now let us suppose that the well-depth D', , of the oscillator oscillates with time. If

the time-dependent well-depth be represented by D'z, the Hamiltonian becomes
time-dependent. :

2
H, =3+ Dy {1 —exp[ — Bl — x,9)1)? @)
where we have chosen D!, = D9+ ADf(1),f(t) being the temporal modulator of AD
such that at t =0, H, = H,,. A simple choice for f(#)is f(t) =sin wt. As time proceeds,
the well-depth D!, therefore varies sinusoidally. The Hamiltonian H, is manifestly
phenomenological. But we may offer some rationalization in the following way. If the
Morse oscillator (H,) interacts weakly with the surrounding (H,) through an interac-

tion term V), the equilibrated system eigenstates can be found by solving the following
eigenvalue equation [20].

Hy Vo\(Co\ .(C |
(V;‘;’, Hf)(cs)“E(cf)' (2a)
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Equation (2a) caﬁ be split into a pair of coupled eqgs (2b) and (2c)
H,Cy,+ V,,C,=EC, (2b)
ViCy+ H,C,=EC,. . (2¢)

Using the fact that C;= — (H,— E)~! V},C,, we can recast (2a) as |
[Ho— Vou(H,—E)"'V1Co = EC,

which can be written as

[Ho + Veff]CO =EC,
ie.,
HCo= EC,.

Over a long-time scale V,,, may be replaced by a time-averaged interaction and be
treated as a constant quantity. But while probing on a very short-time scale one would
notice a time-varying V.. Wehave treated V,;, as a sinusoidally oscillating term so that
"H— H,ast—0and V,, averaged over a characteristic period of oscillation is zero.
This simplifies the problem greatly.
The other perturbation present in the system is external and works on a faster time scale.
The characteristics of the time-varying field which couples with the oscillator are as follows,

V'(x,t) = g, S(t)x sin wt;

where g, is the electric field strength and w the laser frequency, and S(z) is a pulse shape
function. When the field is continuous, S(t) = 1. For pulsed fields S(¢) can have many
different forms. However, we shall make use of the following three forms only in the
present study:

. t
Q) S()=sin?Z;
tP

(ii) S(c)=1—|1—?

p

.

3

(iii) S(t)=exp[—y(t—t,)’]

where ¢, stands for the pulse duration. So the total Hamiltonian representing a Morse
oscillator with oscillating well-depth and interacting with an external time-varying

field is given by
P2 0 . 2t s -
3)
i . 2mt
=§—m —DYp(1 —exp[— B(x —x.4)])* +AD sin—
x (1 —exp[— B(x — X,g)])* + 8o S () x sin ¢
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where
H1=ADSiH"2—n—t(1""CXP[_ﬂ(x—“xeq)])z and H2=3(>S(E)XSina)t,
T

The zeroth order Hamiltonian (H,) is clearly the free Morse oscillator Hamiltonian of
constant well-depth D9,,. . '

Now we consider the different cases that may arise; for e.g. (1) when the external
time-varying field is present but the well-depth does not oscillate, ie., & # 0, but
AD = 0; (ii) when the well-depth oscillates but t}.w field is absel}t, 1.e., 6o =0,but AD 5 0;
(iii) when the well-depth oscillates and the applied ﬁqld 1nte}181ty 1s non-zero, i.e., &, # 0
and AD % 0. In what follows we make a perturbative estimate of the population of
different levels, assuming a short-time interval and not too high fields.

(i) when ey #0, but AD =0:
If £ #0 and AD =0, the Hamiltonian of the system becomes
H(t)=H,+ H,(t)
where
H,(t) = g, S(t)x sin wt. )

For the sake of simplicity we consider that the field is continuous ie, S(t)= 1. Thus, |

H,(t) = g, x sin .

Let the system be in the mth eigenstate of Hy, (@5) at ¢ = 0. The perturbation throws @°
‘ into a linearly superposed state P (t) with

N
¥(O)= Y a,(t)®exp(—iEft/h);

k=1
where

H, @) = E?®? and
., 0¥
ih=(Ho+ H,(®).

In the first order therefore the transition probability from an initial eigenstate (n) of the
unperturbed Morse oscillator (H,) to a state (m) caused by the applied field is given by

lak(t, e )[2‘._3cz><mlx|">2 4sin’(@,, —w)t/2 1
m\%80)|” = 4k (@, — @)? (a’in~w2)

X [2 sin(a) + wmn)t/z Sin(wmn - CU) t/z +4 Sinz(wmn - CO) t/2]
4sin?(,, + 0)t/2]
(@t

|-rrnten

where

2ih

a;(t,sohm[expi(wmn—w)t—, 1 expi(w,, +w)t + 1] ©

(a)mn - CO) (Q)mn + CO)
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and (m|x|n) = (@%|x|D°>, 0, = (ES — EO)/%; and &, is the electric field strength of

the applied radiation, w is its frequency which is supposed to te slightly off-resonance.

la(t,€)|> or PL (t,¢)is then the population of the mth state of the unperturbed Morse

oscillator created by the applied off-resonance time-varying electric field of the-
radiation. ’

(i) when eq =0 but AD #0
In this case,

Ht)=H,+ H, ()
where
H,(t) = AD sin(2nt/7)[(1 —exp[— f(x — x.4)])*].

Now expanding the exponential term and considering only terms up to (x — xeq)2 we
obtain, :

H,(t)=H{"(t) = AD sin(2mt)/ f(x — %, ).
The first order transition amplitude al (¢) is therefore given by
ADp? 5
g i 5l
expi(w,, —2rn/))t—1 expi(w,, +(2nr/7)t— lil
X — .
(@ — (27/7)) (@, + (27/7))
The first order transition probability from the state n to the state m due to oscillations of
the well-depth alone is therefore given by
(AD)*B*
16 h?
4sin*(w,,, — (2n/1))t/2 _ 1
(wmn - (ZTC/T))Z (a)mn - (47'52/1.'))

X <4 sin (com,, + ?)t/?. — sin(cumn - %)tﬂ

. 5 2 sin?(w,,, + (27/7))t
+ 4sin (a)mn + T)t/2) +4 O+ TP :1 (7

P (t,AD) in fact gives the population of the mth vibrational level of the unperturbed
Morse oscillator of well-depth DZ® created by a sinusoidal temporal fluctuation of the
well-depth with an amplitude AD.

al(t,AD) =

|an(t, AD)[* = P,,,(t, AD) = {ml(x = xgq)?|m>?

(iii) when both e, %0 and AD#0
In this case |
Ht)=Hy+H,(t)+ H,(t)=Hy+ H'(¢)
H'(t) = ADsin(2nt/1)[1 — exp[ — B(x — x,,)]11* + go x sin ot
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Now making approximations already introduced in (i1), we may write H'(f) as
- H'(t)=HY(t)AD sin(2nt/7) B(x — x2.)? + exsin wt.

The first order transition amplitude for the oscillator with oscillating well-depth in the
presence of the applied time-varying non-resonant field is then given by

ay(t,eoAD) = %o M!xl”) [exp i(w,,

t—1 expi(w,, +w)t+ 1]
2ih

—w)
(@, — @) (w,,, + ®)
ADﬁz(ml(x x i [exp i(w,,, —(2n/1))t—1 -

(
i (@ — 2/7))

_e&xpi(w,, + (2n/1)t —1
(@ + (27/7))
The corresponding transition

final perturbed state m caused
field of the radiation that act

probability from an initial unperturbed state n to the

by the oscillating well-depth and time-varying electric
in unison is therefore given by

lay(t, &y, AD)|2 = P,..(t,ey,AD) =

ealm|x|n>*[ 4 sin®(w,,, — w)t/2 1
4h2 (wmn - a))z (win - wi’.)

[2 sin(w + w,,,)t/2

- . 4sin?(w,,, + w)t/2
_ 2 _ mn
X SIN(@,,, — 0)t/2 + 4sin*(w,, — w)t/ 2} + (@, + )

(ADY2g* 4sin*(w,, — 2n/D)/2 1
T oenr 1Ml X n) ‘2[ R ) I Pre oy

X (4 sin (a)mn + g;)t/Z —sin (co,,m - %E) t/2 + 4 sin? (cum + %) t/2)
4sin*(e, + (Zn/rnt] ADB*eo{(x — x, 2,
T Gt QRO 8
4 [2 cos(w — (2n/1))t — 2 cos(w,,, — (2m/1))t ~2cos(w,,, — w)t +2
(O — (27/7))(0,,, — )
2cos(w + (2n/7))t — 2 COS(@, — (27/1))t — 2.008(@,,, + )t + 2
B (@ — /1)), + @)

_ 2cos(w + (2m/t)t — 2cos(w,,, + (2n/t))t -2 cos(w,,, — w)t + 2
(@0, + @n/1))w,,, — )

. 2 cos(w — (2n/1))t — 2cos(w,,, + (2n/7))t — 2 cos(w,,, + w)t + 2]

(@, + (27z/t))(w,,,,, + w)

=Pon(t,e,AD=0)+ P, (t,e=0,AD) + Prm(t, €5, AD) (8)
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P, .(t, &, AD) represents the part of the time-dependent population of the mth state
of the unperturbed Morse oscillator (H,) that is created by the interference of the
population excitation—deexcitation dynamics caused by well-depth oscillation and the
applied time-varying field. The overall expression of P, (t, &y, AD) suggests a parabolic
dependence of the population on the electric field strength (e,) when all other system
parameters viz., AD, B, etc., are fixed. The expression also reveals parabolic dependence
of P! onAD atfixed ¢y and . However, these are first order results and are therefore of
limited validity. We therefore propose to calibrate these predictions against near exact
solutions of the corresponding TDSE equation by invoking the TDFGH method
proposed earlier by Adhikari et al [11-12] and later extensively applied by Sarkar et al
[21-22]. Since the TDFGH method is not yet widely known, we would briefly discuss
the salient features of the method.

TDFGH method
Let us start with the TDSE,
¥ ‘

S 9

ihi— HY 9)
where

2
H=H,+ V'(x,f)= 5—m + V() + V(%0 ' (10)

We can employ the FGH method [23-24] to evaluate the eigenfunctions and eigen-
values of H, giving

Ho|90(x)> = 0| @0(x)), i=1,2,...N, | (11)

‘where N is the number of grid points used for representing |®{) in the co-ordinate
space.

N
02> =Y [x;>Axwy (12)
i=1
{w?} in (12) represent the values of the co-ordinate representative of the state function
|®9(x)) at the grid points, the values of which are obtained by the standard variational
recipe [23-24]. The FGH method can be used to propagate the wave function on the

same grid as shown by Adhikari et al [11-12]. Thus, when the perturbation is switched
on, the state function ¥(x, t) is given by

1m0y = T I 86w (13)

The amplitudes (w,(t)) are now time-dependent quantities and their evolution equa-
tions are as follows

w,-=%2_ [ <oty  Holx,y + Gl Ve 0] x> Twi(e). (14

Once initial values of {w,} are specified, (14) can be numerically integrated on the
specified grid by Runge-Kutta or Bulirsch—Stoer method [25]. The matrix elements of
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H, and V of (14) can be evaluated using the FGH method

CelHyx,) =A~Ix[ i exp[27r§\(7i —j)/n]}{Tl} + V(x, 6, (15)
where e ’

T, = [hz/zm](lAk)z, Ak =(2n/NAx) and 2n= N-—1
and

IV Dlx,> = Vix, 0506, —x) (16)

Once w;(t) and hence W(x,t)are obtained, the projections of ¥ (x,t) onto the eigenstates
of H, generate time-dependent overlap amplitudes

5,0 =KW (x> i=1,2,3,...N (17)

The S,(2) essentially represent the population of the ith eigenstate of the unpertyl{bed
Hamiltonian at a time {¢} after the perturbation is switched on. If the system is initially
in the unperturbed ground state, S,(0) = 1 and § {0)=0(j#1).Fort> 0, S;(¢) begin to
change with time as the perturbation V causes excitati 1

unperturbed system. S(t)s, therefore, providea complete description of the dynamics of
level population in terms of which changes in a]l observables can be calculated and
interpreted. Once the oscillator is excited to an unbound level, dissociation takes place.
Using the S,(z) values, we can therefore define the dissociation probability P, as follows,

P =13 I 0100y =1 - ¥ 5, (18)

In (18), n, stands for the number of bound states supported by the unperturbed
Hamiltonian (ie. the free Morse oscillator of Constant well-depth, in this case). In what

follows, we discuss the numerical results obtained from TDFGH method and the
expectations based on first order perturbation theory.

3. Results and discussion
(1) Bound state population dynamics

population of the ground and the first
three excited vibrational levels of the Morse oscillator with constant well-depth

(AD =0) computed numerically by the TDFGH recipe, as the electric field of the
applied radiation interacts with it. Figure 1(b) shows the perturbatively computed

conclusion is therefore that the oscillating well-depth does not alter the gross dynamical

54
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Figure 1(a). Growth and decay of level populations of the ground and the first .

three excited states of a Morse oscillator with constant well-depth as the electric
field of the applied radiation interacts with it.
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Figure 1(b). Perturbativély computed population versus time profile of the first
excited state of the same system depicted in figure 1(a).

features of the population-time profiles, although the excitation or relaxation rates in
the presence of the well-depth oscillation may be quite different from their constant
well-depth counterparts (see later).

Figure 3(a) shows the numerically computed (by TDFGH method) population of
a vibrational level (k = 2) of the Morse oscillator with oscillating well-depth (AD # 0) as
a function of the intensity (¢,) of the applied field. The overall parabolic nature of the
profile mirrors the prediction of the first order TDPT. Figure 3(b) shows the behaviour
of the numerically computed population P,,(£) — AD profile for a fixed value of ‘¢;’, the
applied field strength. From the figure it is seen that the population of the given state
monotonically increases as AD increases. Thus, the perturbation theoretical prediction

that the dependence of the population on AD would be parabolic for a fixed value of &,
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is not echoed by the numerical results. May be, much smaller AD values would have
ensured the validity of the particular perturbative result. Figure 3(c) shows the
population dynamics of the three highest bound vibrational levels for the AD # 0 case
which is basically similar to that observed for the lower states. From the observe-d
population dynamics it appears that if the applied field intensity is below a cengm
threshold, excitation is the only process to reckon with and the dissociation probablht_y
is negligible. Once the threshold is crossed, rapid onset of dissociation of the diatoguc
molecule sets in. It would therefore be interesting to know how the dissociation

56
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Figure2. Growth and decay of level populations of the ground and the first three

excited states of the Morse oscillator in the presence of the radiation when
well-depth oscillates sinusoidally with time.
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Figure 3(a). Numerically computed population

jure D (by the TDFGH method) of
a v:bratlo_nal level (k = 2) of a Morse oscillator with oscillating well-depth (AD ()
as a function of the intensity (g) of the applied field,
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Figure 3(b). Numerically computed population of the k=2 level shown as
a function of AD for a fixed value of ¢, the strength of the applied field.
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Figure 3(c). Numerically computed population versus time profiles of the three
highest bound vibrational levels.

probability depends upon the applied field intensity, when the well-depth oscillates.
The specific questions to be probed are the following. Does the well-depth oscillation
alter the dissociation dynamics observed for a constant well-depth Morse oscillator? Is
there any pulse-shape effect on the temporal characteristics of the dissociation process?
Before focussing on these aspects of the problem, we would like to see whether an
oscillating well-depth affects the excitation or relaxation rates induced by the field.
Let us suppose that we start with the system in the ground state of the unperturbed
oscillator at ¢t = 0. Figures 3(d) and (e) show the growth of the population of the first
excited state as the applied field interacts with the Morse oscillator of (i) fixed, and
(ii) oscillating well-depth, respectively. The limiting slopes of these curves give the total
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Figure3(d). Growth of the population of the first excited state as the applied field
interacts with the Morse oscillator of fixed well-depth (¢ = 0-06, AD = 0-0).
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Figure 3(e). Growth of the population of the first excited state as the applied field
interacts with the Morse oscillator of oscillating well-depth (¢ = 006, AD = 0-08 7).

rate of excitation into the first excited state, which are recorded in table 1. For a Morse
oscillator with a time-dependent well-depth, the excitation rate is larger showing
constructive interference between the field-induced and the oscillating well-depth
controlled excitations. If we start with the oscillator in an excited state, we can similarly
compute the rate of relaxation caused by the external field as well as by the internal
perturbation set up in the system due to oscillation in the well-depth. For k =1 level,
these rates are also reported in table 1 both when AD =0, &, 0 and AD #0,8,#0.

Thus, the well-depth oscillation is seen to enhance the excitation rates but depress the
relaxation rates in a Morse oscillator interacting with the radiation,
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Table 1. Computed excitation and relaxation rates of a given vibrational level of a Morse
oscillator in the absence and presence of well-depth oscillation.

Rate of excitation to the Rate of relaxation of the
first excited state first excited state
System (ps™%) (ps™)
i) Morse oscillator i) 179 i) 8:30
with fixed well-depth
ii) Morse oscillator ii) 2-84 i) 6:16
with oscillating well-depth
018004

> 01500 (i)

- o

o 3

@ 012003
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z 3
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Figure 4(a). Dissociation probability versus time profile for the oscillator with
(i) fixed well-depth (ii) oscillating well-depth, for a fixed value of &,.
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Figure4(b). Computed dissociation probability P, as a function of the intensity of
the applied field of the laser for the oscillator with (i) time-invariant well-depth
(ii) time-varying well-depth.
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(ii) Dissociation dynamics

(a) Dissociation probability, time and intensity thresholds: We first consider the case,
when the field is continuous. Figure 4(a) shows the P -time profile for the oscillator
(i) with fixed well-depth (i) with oscillating well-depth, for a fixed value of &,. The
oscillating well-depth is seen to lower the time-threshold slightly with respect to the
constant well-depth Morse oscillator. v

Figure 4(b) shows how the computed dissociation probability of a Morse oscillator
at a given time (f) varies with the intensity of the applied time-varying field with (i)
time-invariant well-depth, (i) time-varying well-depth. In both cases, a clear threshold
intensity (e = ¢,) is seen to exist beyond which the dissociation probability rises
sharply. From the figures, one would be tempted to conclude that, the oscillation of
well-depth lowers the threshold intensity compared to that observed in the constant
well-depth case, when illumination is continuous.

We have monitored at this point the wave function as the molecule dissociates.
Figures 5(a—c) show the wavefunction at different stages of evolution after the field is
switched on. As the system gains energy from perturbing field, more and more nodes
appear in W(x, t) and the effective spatial extension of W(x, t) increases.

When a pulsed field is used, the picture that emerges from the continuous-field-
oscillator model is seen to change a lot. Figure 6(a) shows how the dissociation
probability varies with the field intensity &, in (i) the fixed well-depth case, (ii) the
oscillating well-depth case, when the intensity varies as sin?(nt/t,). From the figures
a picture opposite to that observed in the continuous field case is seen to emerge i.e., the
oscillating well-depth increases the threshold intensity of dissociation when a pulsed
field is used. Figure 6(b) shows the dissociation probability versus time profile in
(i) continuous laser field; (i) pulsed laser field with sin® dependence; (iii) triangularly
pulsed laser field; (iv) laser with Gaussian pulse shape, when the peak intensity (¢,) and
laser frequency (o) are the same in each case. From the figures it is seen that compared
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Figure 6(a). Dissociation probability versus intensity profile for the oscillator
with (i) fixed well-depth (ii) oscillating well-depth for pulsed laser fields.
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Figure 6(b). Dissociation probability versus time profile for (i) continuous laser

field (ii) pulsed laser field with sin? dependence (iii) triangularly pulsed laser field.
(iv) Gaussian pulsed laser field.

to continuous irradiation, the pulsed laser field lowers the dissociation probability of
the diatom at any given time. But the gross features of the P, versus time profile for
three different types of pulsed fields are not very different [4-5]. It would be interesting
to analyze the kind of effects that a Morse oscillator with a randomly oscillating

well-depth would bring about. We will address ourselves to this problem in a future
communication.

4. Conclusions

By studying the bound state population and dissociation dynamics of a model diatomic

species whose binding energy oscillates with time, we come to the following con-
clusions: ,
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(i) The bound state population dynamics as predicted by first order TDPT, almost
corroborates with the numerical results obtained from near exact TDFGH calcula-
tions as long as the perturbation is small and short-time scales are considered.

(ii) When the well-depth oscillates slowly, which is the actual situation when the system
interacts with the surrounding medium, the threshold intensity decreases to a small
extent for dissociation under continuous irradiation; but, for pulsed fields, oscillating
well-depth is predicted to increase the threshold intensity of dissociation.

(ifi) The nature of the dissociation probability versus time profiles and the actual extent
of dissociation appears to be almost the same for pulses of different shapes that we have
studied. However, a different choice of V¥, could change the picture completely. The
problems of microscopic derivation of Ve and thus, H , and a fully quantum
dynamical study of the processes of our interest are presently under way.
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