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Glucose 6.phosphate deh)drol~en~se ¢~ lyxes  Ih¢ o~id~ion of 81ucose 6.phosphate, rcsohin[ in Ih¢ fo rms ,on  M 6,phosphotducunola¢lone As 
thls compound is unslubl~, i| b,~ no[ been characlerlxcd directly NMR provides, w~) to direc|ly nlonilor all componenls or a reaction and study 
lhelr slructur¢ Here w~ report some r~ults on lh~ lllu¢os¢ 6.phosphate dehydro[l~n~se rca~tlon usin8 ~P and ~C.NMR, Our tesult~ Indicm¢ lh~I 
two ddrerent laclones, namely i, (I 4) and 6 (I ~) 6 phosphotllu¢on~l~cion¢~, .re fumed as products in lhi~ reaction Th~s is in Cunlrast to ~n 
esther su~$e,qion that lllucose 6.phosphate dchydrollcnasc produc<s only ~he d.hctone On ¢h~ b~sls or~hesc r~suhs., n~w mechanisms for dehvdr.~. 

lenatlon of the sular phosphal¢ is proposed 

D.l~lueose 6 phospha{© dehydrog@nasc: Laclon¢, I)C NMR: ~ip Nh|R 

!. INTRODUCTION 

Glucose 6-phosphate dehydrogenase (D-glucose 
6-phosphate:NADP* oxidoreduction, EC I.I.I.49) 
(G6PD) the first enzyme of the pentose phosphate 
shunt, catalyzes the dehydrogenation of the anomeric 
carbon (C-l) of glucose 6-phosphate (Glc6p). It has 
been proposed that G6PD ~s speclflc for the D-anomcr 
of Glc6p [I]. Instabihty of the dehydrogenation reac- 
tion product, ~.e. 6-phosphogluconolactone, has pre- 
cluded detailed and unamblguous charactenzatLon of 
the prlmary product. 

Warburg et al. [2] estabhshed that the only stable 
product of  this reactlon is 6-phosphogluconate. They 
proposed that dehydrogenatlon proceeds vla a hydrated 
adduct of the aldehyde group of Glc6p (Sch .me I, F~g. 
.~). L,ct~l on it became clear that Glc6p exists in aqueous 
solutmn, predominantly m the pyranose fo~m rather 
than as a strmght chain aldehyde. This led Core and 
Lippman [3] to propose that the dehydrogenation reac- 
tion proceeds d~rectly w~thout the part~cxpat~on of HzO 
to yield the unstable 3-1actone as the primary product of 
oxidation. Here we report some of our experiments 
where we have stud~ed th~s reaction using ~C and ~tp 
NMR. Our main objective in performing these ex- 
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periments was to obtain chemical shift assignments (~C 
as well as 3~p) for the lactone generated in this reaction 
which can then be used in some whole-cell NMR 
studies. Interestingly, we observed the formation of two 
different lacton¢ products in this reaction. This is in 
contrast to earlier observations. These results and thelr 
~mphcauons to the reaction mechamsm are described 
below. 

2. MATERIALS AND METHODS 

2 [ Chemicals 
Glucose 6.phosphate, NADP, glucose 6-phosphate dchydrogenase 

(type VII) and baker's yeast hexokmase (type C.300) were obtained 
from Szgma. l-[IJC]g[ucose (98 8% tiC) was supplied by MSD 
Isotopes, Montreal, Canada OxldlZCd glutathlon¢ (GSSG) and 
slutathione reductase were from Boehringer-MannheLm 2-[1~C]glu • 
cose (99% '~C) was purchased from Sigma All o~her chemlcals used 
were of  analyl,cal grade. Bakers yeast G6PD from Sigma was passed 
through a blue sepharose column and elated wlth NADP Fractlons 
contalmng G6PD were concentrated in an Amlcon uhrafl l trauon cell 
This enzyme was used m the experiments E coil 
6-phosphogluconolactonase was prepared from a h,gh copy clone of 
this enzyme (plasmld kindly g~ven by Dr Lee Rosner) 

2 2 NMR spectra 
~)P (202 5 MHz) and ~C (125 8 MHz) spectra were recorded uslng 

Bruker AM-SO0 )nstrument equlppcd wlth a 10 mm muhlnuclear 
probe, a variable t em~ra tu re  controller and an Aspect-3000 com- 
puter 3~p chemical shlftS have been measured wnh respect to - 85% 
H~PO4 placed in a caplllary as an external reference I~C shlfts are 
relative to external TSP (sodlum trtmethyl sllyl 
proplonatc-2,2,3,3-d4) All saff~ples cOfitaffled 20% D20 for field/ffe. 
quency lock All spectra were recorded at room temperature 
{24± l°C) wlth ~H.broad band decouphng, 
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Ill ItN q'~i~,tlm¢lit ~here Ih~7 dehydrollelt~e t'¢lt~lHSl~ was nlultllor¢~ 
by "P.NMR, t~i¢~l ~mpl t  composition tat:  :~ mM (|leap, 0.1 m,~l 
NADP, I m,M MliCI=, 10 mM o,tldlied Idul~lhlot~. illattsdd~l~e 
reduct=s¢, 40 m~,! Trlethin©lamlne.HCI, pH 1.0 TI~ reaction ~r.~ 
started by Itddittcm of G6PD. NAI3PH produced in ehe re~mlcn w,.~ 
r~-oxldl~ed by illut=tthlone, 

In the exINrlntemt white ~C.NklR was uwd I~ monitor lb. rea~, 
tie,s, I,[ ~ tCI or : . l  t ~C]81.¢ose ($-6 raM) w~  flr~| ¢onverNd to Cll¢~p 
by In¢ludmll tO mM ATP, IO mM MIICI= ~nd yeccsl he~okln~se lin 
40 mM Trletha~olaminc,HCI, pH 7, This ten . ta lon  was ~llowed t¢~ 
proceed overnlllht at room temperature SobseqUenlly, jhtlathion¢ 
and illutathlone rcductase were =tdded w the re~,:tlon mhture T l ~  
lapse =r~clr= were rlcorded tmmediateb" al~er the ad~tlon of G6PD 

3. RESULTS AND DISCUSSION 

Since the substrata as well as product(s) of the G6PD 
reaction have a phosphoryl 8re.p, the reaction catalyz. 
ed by this enzyme can easily be monitored using ~tp. 
NMR, Time lapse ~=P-NMR spectra were acquired after 
addition of G6PD to Glc6p, Fig, I shows some of these 
~tP.NMR spectra. OIc6p gives rise to two resonances 
(peaks 1 and 2 tn Fig. la) at 4,39 and 4.46 ppm, cor- 
responding to e~ and,8 anomers, On starting the reaction 
by addmg G6PD, a new resonance (peak 3, Fig. la) at 
4.27 ppm is observed. Intttally, as the intensity of peak 
3 increases, a correspondtng decrease in intensities of 
peaks 1 and 2 (F~g. la-d) is observed, In the later part 
of  the reaction, peak 3 could be resolved into two peaks 

rS tmd 6) which ~re separated by -0,06 ppm. These 
resonances (l~ak 3 or pe#kt 5 and 6) arc tmnslenl in 
nature and eventually only one r=,mnanec m 4,40 ppm 
is observable (Fiij. II), 

It is known |h~t G6PD e,t#lyxes tl~e oxidation of 
GIc6p into 6-phosphogluconolactone (6.PGL). Beinii 
unslable, the I~tone andergocs spontaneous hydro- 
lysis, resulting in the formation of 6-phosphotlluconic 
acid (6-PGA), Thus peaks S And 6, which are tran=ient 
in nature can be attributed to 6-PGL(s) and the peak at 
4,40 ppm to 6-PGA, The identity of  peaks S and 6 was 
further confirmed in an experiment (nol shown) where 
p,rtf icd 6.phospho$1uconolactonase (from E. co/~') was 
added v.hcn c~nsiderablc resonance inl~.nsity was ob- 
servable for peaks $ and 6, These two peaks disap- 
peared rapidly ~vith corresponding increase tn intensity 
al peak 4. Addition of 2 mM 6-PGA after spectrum.i 
(Fig, I) resulted in increased intensity at peak 4, Thus 
peak 4 at 4,40 ppm is assignable to 6.PGA and the cran. 
sient nature of  peaks $ and 6 indicates that they are due 
to ass precursors being convertible to 6-PGA by the ac- 
tion of  6-phosphogluconolactonase. 

Smce the chemical modification in this reaction oc. 
curs at C-I of Glc6p, we decided to characterize further 
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Fag I Tame.lapse 3~P.Nh4R spectra of the converslon of GIc6p to 
6.PGL catalyzed by G6PD Sample compos~tlon ts described tn sec- 
tmn 2 Panel A presents the spectra plotted at  various .m e  intervals 
while data were betas acciu~red contmuously. Spectrum (a) is after 32 
scans, whereas (b) =s after 64 scans T~me lapsed after addition of 
G6PD at the end of each spectrum m panel A are (a) 10, (b) 14, (c) 
18, (d) 29, (e) 35 mm In panel B data were acquired between (f') 
40=45, (8) 49-56, (h) 57-64, (t) 65-72 El) 77-85 rain After spectrum 
(0, 2 mM 6-PGA was added to the sample and spectrum (.J) was 

recorded 

PPrl 

Fig 2 Characterization of products of (36PD reaction by ~C-NMR 
using l-[J~C]G|c6p. A few relevant spectra a:quired at dlfferent tlme 
intervals after acldttlon of G6PD are shown Sar~ple composmon ~s 
given ArJ secuon 2. Note that various spectra are plotted w~th d~fferent 
verucal scale expansions for the sake of clarity Spectrum (A) before 
adding G6PD, (B) between 0-9, (C) between 18-27, (D) between 
27-36 and (E) between 60-69 mm after the adds~lon of  G6PD The 
chemtcal shtfts of various resonances are (a)95 4, (b) 99 2, (c) 176 9, 

(d) 180 1 and (e) 182,1 ppm 
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the n~|ure of the produet++ by ~C.NMR grin8 IJsC 
enriched ~ubttrate, I.[°C]| lucose wml converted to 
O1¢6p a= d~m:rlb¢d in section 2. Time lapse °~C.NMR 
,tl~ctrt~ after addi|ion or O6PD are presenled in Fill, 2, 
Phosphorylation of Iluco.e at C.6, does ne~ affect th~ 
chemical shlrtt+ of C.i, Resonances observed at 9~2 and 
99,1 ppm (peaks a and b, Fi~, 2) ~re f r o m .  and ,d 
anomers or Glc6p (and/or Iluco~e), Addi(ion of G6PD 
results in the appearance of two more resonances at 
1"/6,9 and 180.1 ppm (peaks c arid d in Fig, 2B). With 
pasSalle of time, theme two transient remonance~ (c and 
d) disappear and ev=ntually all =~C label appears at 
182,1 ppm (peak c in Fig. 2C). In this experiment trace 
amounts of MnCla were included in the ~ample, in order 
to identify the resonance clue to -COOH ilroup. Selec- 
tire broadening of peak e allows us to assign it to 
-COOH of 6-POA. The transient nature of peaks c and 
d, as well as the lack of any effect of Mn([l) on the line 
width these resonances are commensurate with our 
assignment of these two resonances to > C = O group of 
6-POL(s), In this experiment it was not possible to 
follow the concentrations of various species as the 
observed intensities of > C = O carbons were Low due to 
their long spin-lattice relaxation times*. Fig 3 shows an 
analogous experiment where 2-[~C]glucose was used. 
and ~' anomers of Glc6p (and/or glucose) give 
resonances at 74.4 and 77.1 ppm (peaks a and b in 
F~g. 3), Transient resonances at 73,9 and 75,3 ppm 
(peaks c and d m Fig. 3) are due to lactones and peak e 
at 76.9 ppm is due to 6.PGA, Since there is no change 
:n the number of hydrogens d~recfly attached at C.2 
position of the sugars in this oxxdatton reaction, spin- 
lattice relaxation times of ='C-2 of precursors and 
products remain m the same range. Thus the intenstt,es 
of various ~C resonances arising from C-2 of various 
sugars can be approximated to their actual concentra- 
uons. Th,s permits us to quanmate the changes m the 
concentrations of lactones and 6-PGA with time. Fig. 4 
compiles such data. Here, the mtenmties of various 
resonances have been plotted as a function of time. The 
steady state nature of the intermediates precludes 
denvatmn of  true first order rate constants for decay m 
the intensities of peaks c and d. However, apparent rate 
constants derived for the decrease in the concentration 
o f t  and d resonances are 4.1 ×10 -4 and 8.2× 10 "4 s -~ 
respectively. These rate constants are very mmilar to the 
ones reported earher for 6-PGL(s) [4]. 

* One of the problems in usin$ NMR resonance signal mtenstty as 
d~rect meas.re of the concentration Is the possibility of partial satura- 
tion due to rapid pulsing during data acquisition Parucularl~ so in 
the case of carbonyl sroups, which are generally characterized by 
rather Ionp. I~C.T2 relaxation times, e.8. for an aqueou~ solution of  
6-PGA, TI for > C = O carbon is - 10 s which would require extreme- 
ly long delay periods in order to record th~s resonance at its full In- 
tensity 
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P~i, 3, Characterlzatmn of produ¢|s of GEPD reaction by =JC.NMR 
usin$ 2.[=~C]alu¢ose See section 2 for details Spectrum (A) before 
add=don of G6PD, (B) 3 3, (C) 13,2 and (D) 175 mm after the addition 
of G6PD, Chemical slufes of various resonance= are (a) 7"1 t, (b) 74 4, 

(¢) 75 3, (d) ?3,9 and (e) "~6 9 ppm, 

3.1. Asatgnmenta of  resonances 
In the convermon of Olc6p to 6-PGL with G6PD, C-I 

of Glc6p which ~s an asymmetric carbon (and hence 
Glc6p exists as ~ and d anomers), loses thts asymmetry. 
In the NMR spectrum (~3C,3~P or 'H), two anomers 
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FJ8 4 Variation of intensity of peaks ¢, d and e (from Fig 3) with 
tlme Peak c (D----~), peak d (0 - - -0 ) ,  and peak e ( x - - x ) .  
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IliV¢ rbe to two resonances. However, with th~ loss of 
~symmetry at the anomeric c~bon, only one resonAnc¢ 
should be observed for th~ laclone. Contrary to this ex. 
peetafion, in all our ¢x~rlmtnts two resonances which 
are attflbutmble to lactone(s), are observed (Mi. l, 
pe~ks ~ .nd 6; Fils. 2 Ind 3, pea~ c and d), The con. 
tendon that these two resonances arise from l~ctone(s) 
is supported by (a) the tr~nsien| nature of these 
resonances, (b) addi|ion of bacterial 6-phosphoiluco- 
nolacton~se enhances the rate of disappearance of these 
resonances and (c) chemical shifts of carbonyl carbon 
of ! -4 ('X) and l-S (6) gluconolacttnes are comparable 
to peaks d and c in Fi~. 2 [S]. In an experiment where 
we studied the rate of spon¢ane©~s hydrolysis of ~. 
Eluconolactone (supplied by Si~lnna), resonance from 
the > C = O  carbon of lactone was observed at 1'/6,9 
ppm. These results permit us to ~ssi~n peak c (I'/6.9 
ppm) in Fi~, 2 to l-S(<~) and peak d to 1-4 
(.y)-6-phosphogluconolactone. 

Intramolecular esterlfication occ,rs m hydroxy acids 
(e,g, 6.PGA) leading to the formation of 7 (1-4) and/or 
<~ (1-5) lactones (cyclic esters) with loss of  a water 
molecule, Under acidic conditior~s, formation of lac. 
tone is favoured, whereas treatmem~ with base results m 

rapid openinj up of the rinl~ to live the open chain acid 
form. In n solution of 6-PO~ ~1 neutral pH, we could 
nol detect -ny I~ctone by NMR, l| h~s been reported 
that when 6-POA is dissolved in IN HCI, equilibrium is 
towards the form~lion of' lactoncs [6], A sernple of 
2-[ z ~C]6.PGA was lyophilized and dissolved in IN HCI. 
z)C spectrum of this sample showed two resonances at 
'/4.6 ~nd '/5,8 ppm. The intensity of' re~on~nce ~t '/4.6 
ppm was much hilher ( -  3-fold) as compared to the in- 
tensity of' resonance a~ '/~,8 ppm (data not presented). 
Since ~.lactones ~re intnnsically more stable as com- 
pared to 6-1actones, higher imensky resonence will be 
assiilnable (o -rlactone, On the basis of observed dif- 
fer©nee in the intensity of two resonances and the ap- 
parent rate constants of spontaneous hydrolysis (see 
above), we can assisn resonance c and d (Fig, 3) to 7" 
lactone and 8-lacmnes respectwely. 

3.2, Mechonism o/  deh.vdrogeantion 
The dehydrogenation reaction cataiysed by G6PD 

was first thought to proceed via a hydrated adduct of 
the aldehyde group of Glc6p (2,9) (Scheme [, FiE. 5), 
This proposal was supported by the demonstration that 
6-PGA was the only stable product of the Glc6p oxida, 
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FIg 5. Scheme I and II represent the re~ctlon mechamsms proposed earher, Scheme Il l  depicts the mechamsm consistent w~th the experimental 
results presented here (se~ text for details) 
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tion. With th~ realixation that Olc6p in solution exists In 
the pyranose form rather than as the straisht chain 
aldehyde, Cod and Llpmann [3] proposed that the 
dehydrollenltion reaction proc~ds directly without the 
participation or  HzO to yield the unstable &lactonc as 
the primary product of the reaction (Scheme [l,  Fig. 3). 
However, the unstabl~ lactone was never directly 
characterized. 

We were interested in studying the flux of metabolites 
through the l~ntose phosphate pathway in some 
mutants o f  yeast using NMR (in vivo), This led us to 
undertake these experiments to obtain chemical shifts 
for l-:~C, 2-:~C and ~P of' &phosphogluconolactone, 
In the course of  these experiments, we detected the for- 
marion of two lacrosse ptoduct~ in the O6PD catalyzed 
oxidation of GIc6p. This observatzon cannot be explain- 
ed on the basis of mechanisms proposed earlier (scheme 
l and If, Fig, 5). Sch0me Ill in Fig, 5 represents a 
mechanistic proposal ~o explain the formation of two 
lactones, The essential feature of th~s scheme is that 
although the enzyme may be accepting the pyranose 
form of Glc6p as a substrata, dur,ng catalysis an open 
chain intermediate (e ~n Scheme Ill, Fig 5) must be 
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formed leading to the formation of 6-PGA at the active 
site or the er~yme. Before release or the product from 
the active she or the enxyme, intra.mole~:ular e~terifica- 
tlon occurs. This results in the formation of  1-4 ().) as 
well as 1-5 (~ laetones at the active site which are then 
released from the enzyme, 

Aekm)wlalgemfm#: We Ihank Dr;, (3, KtlJhnJmo~orlhyand 2. Lobo 
for h¢Ipf~l dli(u~lons NMR eXlXrlrnen(s w0re clvri~ om al NMR- 
F.¢ilhy rJ F.R, Ccl;~b~, ~ornbay 400 00S We |hank lhe f.¢llily 
stuff'. 
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