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Abstract. The dissociation of a diatomic molecule in low frequency polychromatic fields of moderate 
intensities is studied. Genetic Algorithm is invoked to search out a set of four optimal non-resonant fre-
quencies (ω1 – ω4), intensities (ε1 – ε4) the and phase angles (δ1 – δ4), for achieving a facile photo disso-
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dynamics akin to the classical one. 
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1. Introduction 

The response of free atoms and molecules in strong 

radiation field has attracted a lot of theoretical and 

experimental attention in the recent years. The theo-

retical interest primarily stems from the fact that the 

interaction between matter and radiation in strong 

field regimes poses questions that are yet to be an-

swered fully. On the experimental front the problem 

of realizing appropriate laser intensity, frequency, 

pulse shape and duration required for the emergence 

of observable strong field effects, tend to raise fun-

damental questions concerning absorbability of such 

effects. Nevertheless, efforts are on for understand-

ing and solving the problems both at the theoretical 

and experimental levels. Thus photo electron spec-

troscopy of neutral atoms in strong fields has  

detected above threshold ionization peaks,1,2 while 

emission spectroscopy of neutral atoms in intensity 

regimes where nonlinear atomic response becomes 

appreciable, has revealed the appearance of new fre-

quencies at higher multiples of the driving frequen-

cies.
3
 It is conceivable that similar phenomena can 

be observed in molecular multi-photon excitations.
4
 

There have been studies on the photo fragmentation 

of small molecular systems in intense laser fields 

where the dynamics occurs on rather short time 

scales ≤ 10 fs raising questions pertaining to the  

expected behaviour of molecular vibrations under  

intense laser irradiations.
5,6

 The dynamics of a peri-

odically driven Morse oscillator has been a good 

model for understanding the behaviour of molecular 

vibrations under the influence of continuous irradia-

tion.7–10 It has been demonstrated through numerical 

experiments that at intensities <10
14

 W/cm
2
 the dis-

sociation probability (Pd) is less than 10
–5

 when 

monochromatic continuous sub-picosecond pulsed 

IR laser is used.6 The anharmonicity of the vibra-

tional potential has been known to be responsible for 

the low dissociation probability at such intensities. 

 Photo-dissociation takes place when the energy 

eigen-states reached by the photo absorption are in 

the continuum. From an experimental point of view, 

the control of a photo-dissociation event requires 

light sources that generate (ω1, ω2, ω3, ω4, etc.) fre-

quencies. The sources may be pulsed or continuous 

wave lasers. Nonlinear theory of classical Hamilto-

nian systems has been known to predict phase de-

pendence of photo dissociation probability when 

two laser intensity sources are used.
11,12

 If the first 

laser is kept constant just above the single laser dis-

sociation threshold, the addition of a second laser 

suppresses the dissociation indicating, as if, bond 

hardening has taken place. The bond hardening  

diminishes as the phase difference between the two 

lasers increases. It has been argued from the classi-

cal nonlinear dynamical point of view that variations 
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in phase and intensity may cause appearance or dis-

appearance of stability islands corresponding to the 

common resonance with the lowest energy deforma-

tion, and movement of the region of Kolmogorov–

Arnold–Moser Tori that survive from the undriven 

system. The second is supposed to be the main  

origin of the phase space stabilization and phase  

dependence.13,14 The question of correspondence  

between the classical results and the quantum  

mechanical analogue largely remains to be probed. 

 If the single laser has a frequency much below the 

dissociation threshold, a bottle-necking to dissocia-

tion is usually observed unless the intensity is very 

high. The origin of the bottle-necking here lies in 

vibrational anharmonicity. The anharmonicity bottle-

neck to dissociation can be overcome with appropri-

ately chirped pulses in which the frequency is so 

modulated that the anharmonicity in the spacings of 

the particular vibration is matched.5,6 At higher  

intensities the coupling between the field and the  

oscillator may be strong enough to create dressed 

states of the oscillator completely obliterating the 

anharmonicity bottle neck. The dissociation rate, in 

fact has strong non-linear dependence on the inten-

sity of the radiation. Another way of bypassing the 

bottle-necking problem is multi-photon dissociation 

of a diatomic species using a bi-chromatic field with 

controlled phase difference.15,16 The use of poly-

chromatic fields with carefully chosen frequencies, 

intensities and phases, may modify the underlying 

structures in the phase space and thereby influence 

dissociation probabilities and rates favourably. 

 With this background in view, we propose to  

investigate the photo-dissociation dynamics of a het-

ero diatomic molecule in continuous IR laser fields 

with four different frequencies (ω1, ω2, ω3, ω4) none 

of which are ‘on-resonance’ or have ‘above thresh-

old’ intensity. The focus of the investigation has 

been: (i) to explore the dependence of photo-

dissociation rate and probability on frequency ratio; 

(ii) to find out the best set of four non-resonant fre-

quencies and the corresponding below threshold  

intensities that lead to faster and more complete dis-

sociation; (iii) to find out the frequency resolved  

energy gain pattern; (iv) to understand the nature of 

the bond stretching dynamics and the motion of the 

system in the so called ‘quantum phase space’—

with a view to asserting is there any signature of 

bond hardening? 

 We carry out the proposed calculations in the 

framework of time-dependent Fourier Grid Hamil-

tonian method and use the time-dependent Hell-

mann–Feynman theorem to partition the total energy 

input over component frequencies. Floating point 

Genetic Algorithm17–20
 has been used to search out 

the optimal frequency ratio, intensities and phase 

angles for different components of the polychro-

matic field. 

2. Methodology 

2.1 The TDFGH formulation 

The TDFGH method
21–23

 follows quite easily and 

naturally when the time-dependent variational recipe 

is invoked within the framework of the FGH
24,25

 

method. We can describe of a diatomic molecule-

poly-chromatic field system, by a one-dimensional 

time-dependent Hamiltonian H(x, t) where, 

 
 H(x, t) = T(x) + V0

(x) + V(x, t),  (1) 

 

for linear coupling (no electrical anharmonicity) 

 

 
1

( , ) | | sin( ),
n

i i i

i

V x t x e tε ω δ

=

= +∑  (2) 

 

and 

 

 
1

1

( , ) ( ) | | sin( ),
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i i i

i

V x t f x x e tε ω δ

=
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where 

 
2

( ) /
( ) ,e

x x bf x e− −

=  (4) 

 

for a Gaussian type of coupling (electrical har-

monicity is present) b in (4) is so chosen that the  

dipole moment displays maximum around ν = 8–10 

before falling to zero value as x → ∞. So the time-

dependent Hamiltonian describing our system can be 

represented as  

 
 H(x, t) = T(x) + V 0

(x) + V(x, t) or V1(x t), (5) 
 

    = h
0
(x) + V(x, t) or V1(x, t), (6) 

 

where V
 0
(x) is the appropriate Morse potential de-

scribing the diatomic species. εi is the intensity of 

the electric field of the radiation of frequency ωi and 

phase δi and n is the number of component frequen-
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cies present. At t = 0, the initial states are eigen-

states 0 ( )
i
xφ  of the isolated Morse oscillator Hamil-

tonian h
0
(x) while for t > 0 the wave function ψ (x, t) 

can be described by a time-dependent superposition 

of the unperturbed eigenstates of the Morse oscilla-

tor, i.e. 

 

 0

1
| ( , ) ( ) | ( , ) ,

i

i

x t a t x tψ φ〉 = 〉∑  (7) 

 

where 
0

1
| ( ) |x

n

i p px x xφ
=

〉 = ∑ 〉Δ  in the FGH representa-

tion
24,25

 of the unperturbed function. In TDFGH
21–23

 

method we represent |ψ
 
(x, t)〉 on a uniformly discre-

tized grid (spacing Δx, length l, no. of grid points nx) 

with time-dependent grid point amplitudes as fol-

lows 

 

 | ( , ) ( ) | ,
x

n

p p

p

x t w t x xψ 〉 = 〉Δ∑  (8) 

 

with the orthogonality conditions on the grid speci-

fied as 

 

 〈xp|xq〉Δx = δpq. (9) 

 

Application of Dirak–Frenkel variational princi-

ple
26,27

 then leads to the evolution equations of the 

grid point amplitudes wp(t) as follows 

 

 
1

( ) | ( , ) | ( ), 1,2, ... .
x

n

p p q q x

q

i w t x H x t x w t p n

=

= 〈 〉 =∑� �  

 (10) 

These equations can be numerically integrated once 

values of wp(t = 0) are provided. For the optimiza-

tion of field parameters the dissociation probability 

at a given instant is computed without the imposi-

tion of absorbing boundary condition as follows. We 

compute the generalized overlap amplitudes of 

|ψ
 
(x, t)〉 with all the nb numbers of bound states of 

the unperturbed Morse oscillator. The dissociation 

probability at time t is given by 

 

 
2

0

( ) 1 ( ),
bn

d i

i

P t s t

=

= −∑  (11) 

where 0 | ( , ) .
i i
s x tϕ ψ= 〈 〉  Therefore, 

 
0 2

0

( ) 1 | | ( , ) | ,
bn

d i

i

P t x tφ ψ
=

= − 〈 〉∑  (12) 

Pd grows in time with oscillations and the slope of 

ln Pd(t) with respect to t gives the instantaneous dis-

sociation rate constant Kd(t). Computed this way 

may still Kd(t) have a lot of oscillations. For a more 

meaningful presentation of dissociation rate constant 

ln Pd(t) may be averaged over a number of time 

steps (t = nΔt, n = 1000, typically) 

 

 
0

1
( ) ( )d .

t

d d
P t P t t

t
′ ′= ∫  (13) 

2.2 The genetic algorithm used for optimization 

( )
d
P t T=  is expected to be a function of the compo-

nent frequencies (ω1 – ω4), the corresponding inten-

sities (ε1 – ε4) and the phase angle δ1 – δ4. The 

parameters are optimized by a floating point genetic 

algorithm developed by us.28 The strings Sk ≡ 

1 2 3 4 1 2 3 4 1 2 3 4
( , , , , , , , , , , , )k k k k k k k k k k k k

S ω ω ω ω ε ε ε ε δ δ δ δ  are 

one-dimensional arrays containing all the informa-

tion about the four component field. The constraints 

on the variables are the following: 

 

 
01 01

. .0 75 1 25 ,
k

i

i

ω ω ω≤ ≤∑� � �   (13A) 

 

 2

0
,

i

i

ε ε=∑  (13B) 

 

 2 2 , 1,2,3,4.
i

iπ δ π− ≤ ≤ =  (13C) 

 

The fitness function of the kth string (which is 

sought to be maximized) is defined as follows: 

 

 
2

( )
,

k
f e π λ−

=  (14) 

 

where T is the time required to reach the value 

Pd(T) = 0⋅8 (see (12) for the definition of Pd(T) and 

λ is a scalar chosen by the user. Roulette wheel  

selection with arithmetic crossover, mutation, diver-

sification
28

 on a population of size Np = 10 has been 

used. The crossover probability , mutation pro-

bability pm, and diversification probability pd have 

been kept fixed at 0⋅80, 0⋅40 and 0⋅04, respectively. 

The mixing amplitude for crossover has been set at 

fc = 0⋅75 ± 0⋅25 depending on whether the random 

number r(0 < r < 1) generated at the crossover stage 

is less than or greater than 0⋅5. The mutation inten-

sity fm and the diversification intensity fd have been 
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allowed to vary dynamically following the scheme 

outlined below. 

 Let Nf be the number of offsprings in a generation 

with the maximum fitness value. If Nf /Np < 0⋅1 we 

reset either the mutation or diversification intensity 

fm = 0⋅9*fm or fd = 1⋅1*fd, randomly while if 

Nf /Np ≥ 0⋅3, we reset the same parameters with  

either fm = 1⋅1*fm or fd = 0⋅9*fd, randomly. If fm ≥ 10 

or fd ≤ 10
–10

, the process is terminated. After selec-

tion, crossover, mutation or diversification, 50 per-

cent of the offsprings are chosen on the basis of 

elitist screening while the remaining 50 percent are 

chosen randomly. 

 Once the optimal parameter sets are found, we do 

a final calculation of Pd(t) and the dissociation rate 

by using the absorbing boundary condition.
29

 The 

rate of the decrease of the norm N(t) of the wave 

function directly gives the dissociation rate while 

N(t)/N(0) gives Pd(t), the dissociation probability at 

time t. 

 The energy E delivered to the oscillator by the  

radiation of frequency ωi is computed from time-

dependent Hellman–Feynman theorem as follows 
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Average energy delivered over the time span t at fre-

quency ωi one optical cycle at frequency ωi is 

 

 
0

1
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t
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t
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The integration is done numerically. The average 

numbers of photons of frequency ωi absorbed over a 

time span of t is given by 
 

 
( )

( ) .i

i

i

t
n t

ε

ω

=

�
 (19) 

Equation (18) and (19) are used to compute the fre-

quency resolved energy gain pattern of the molecule 

along with the number of photons absorbed. 

3. Results and discussion 

We have initially experimented (numerically) with 

different two, three and four component fields. It 

turns out that optimal designing works best for a 

four component polychromatic field. No significant 

effects of designing could be seen with two or three 

component fields. We therefore propose to present 

in this communication the results pertaining to four 

component fields only. The molecule studied is lith-

ium hydride which is modelled by an appropriate 

Morse oscillator (table 1). The TDFGH calculations 

have been carried out on a grid of length 30 a.u. 

with an absorbing potential located at xc ≥ 20. Sixth 

order Runge Kutta method has been used to inte-

grate the time-dependent Schrödinger equation with 

a time step of 0⋅025 a.u.  

 The dissociation threshold of the molecule lies at 

0⋅092 a.u. which the diatomic molecule can reach by 

absorbing 13 (nω0
) photons of 0 → 1 transition fre-

quency (ω01). The number of photons of frequency 

ω1(nω1
) required to reach dissociation threshold is 24 

while nω2
 = 45, nω3

 = 104, nω4
 = 312. The GA based 

optimization through the entire parameter space 

spanned by frequency ratio, intensities and phase 

angles lead to an evolving fitness function displayed 

in figure 1a. The increase of fitness occurs in steps 

and saturates after 45 generations. Search profiles 

for the field parameters are displayed in figures 1(b–

d). The actual optimal intensities are ε1 = 0⋅00976, 

ε2 = 0⋅0128, ε3 = 0⋅01003 and ε3 = 0⋅0099 a.u. The 

phase angles are δ1 = 3⋅2534, δ2 = –4⋅448, δ3 = 

1⋅1606 and δ4 = –1⋅6261, while the frequencies are 

in the ratio 45 : 46 : 47 : 48. The optimal frequencies 

are ω1 = 0⋅00201, ω2 = 0⋅00193, ω3 = 0⋅00189 and 

ω4 = 0⋅00197 a.u. These optimal parameters have 

been used for designing an optimal four component 

field for achieving the most facile photo-

dissociation. The coupling between the field and the 

molecule is assumed to be linear. The dissociation  

 

 
Table 1. Morse parameters of lithium hydride used in 
the calculation reported. 

Molecule x
e
 (a.u.) D

e
(a.u.) β μ (a.u.

–1
)  

 

LiH 3⋅01533  0⋅092  0⋅712  1604⋅8 
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Figure 1. GA evolution profiles. (a) Plot of fitness function vs. number of generations, (b) frequencies vs number of 
generations, (c) phase vs number of generations, (d) frequency vs number of generations. 

 

 

Figure 2. Plot of the dissociation probability using dif-
ferent frequency ratio with absorbing boundary condition. 
(a) for discretely optimized prime frequency, (b) for GA 
optimized parameters, (c) for discretely optimized non-
prime frequencies. 

probability has been computed with absorbing 

boundary condition imposed for xc ≥ 20 a.u. on a 

grid of 30 a.u. and displayed in figure 2a. 

 We have displayed in figures 2b–c the growth of 

dissociation probability computed by us for a dis-

cretely optimized field with four prime and four 

non-prime frequencies, respectively. The result ob-

tained with fully optimized four frequency field and 

only discretely optimized four prime frequency field 

are practically identical while result obtained with 

the field with four non-prime frequencies are mani-

festly worse. The fact that continuous optimization 

of the frequencies of the polychromatic field pre-

dicts three frequencies that are mutually prime and 

that the discrete optimization also led to a set of four 

prime frequencies of the polychromatic field indi-

cate that there could be something fundamentally 

different in the prime and non-prime frequency 

cases. 
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Figure 3. (a) Variation of the net field with time for four prime and four non-prime frequencies, (b) dissociation  
dynamics of LiH in a polychromatic field with effective intensity 0⋅02 a.u.; with no phase lag among the components, 
(c) when the relative phase lag among the component frequencies is –π/8, (d) dissociation dynamics on grids of differ-
ent length when no phase difference exist among the four components. 

 

 

 We have therefore investigated the problem fur-

ther by using different sets of frequency ratios, two 

of them being in the ratio of primes and the other 

two sets being in non-prime number ratio (ω 

1 :
 
ω 

2 : 

ω  

3 :
 
ω4 = 1 :

 
2 :

 
4 :

 
8, ω 

1 :
 
ω  

2 :
 
ω 

3 :
 
ω  

4 = 1 :
 
16 :

 
32 :

 

64). The exact frequencies of this four sets are 

(ω 

1 = 0⋅003954, ω 

2

 =
 
0⋅002129, ω3 = 0⋅0009125 a.u. 

and ω 

4 = 0⋅000301 a.u.), (ω 

1 = 0⋅001755, ω2 = 

0⋅001790, ω 

3 = 0⋅00185 and ω 

4 = 0⋅00189 a.u.),  

and (ω 

1 = 0⋅0004866, ω 

2 = 0⋅000973, ω 

3 = 0⋅00194 

ω  

4 = 0⋅00389 a.u.) and (ω 

1 = 0⋅00005488, ω 

2 = 

0⋅001033, ω 

3 = 0⋅00206 and ω 

4 = 0⋅004134 a.u.)  

respectively. In each case the same effective inten-

sity and strength of linear molecule-field coupling 

have been used for comparison. The distinct differ-

ence in the performance of the prime and non-prime 

frequency polychromatic fields is curious. To probe 

it further, we have displayed typical profiles for the 

net fields as a function of time obtained by mixing 

prime and non-prime frequencies in figure 3(a). The 

nature of the time variation of the net field is widely 

different in the two cases and we anticipate that the 

difference in the response of the diatom to the two 

types of fields is partly due to the difference in the 

net field experienced by the molecule. The dissocia-

tion profile for each set is plotted in figure 3(b) for 

the zero phase cases δ = 0. Figure 3(c) shows the  

effect of introducing a relative phase difference of 

δ = (–π 
/8) in a four prime as well as non-prime fre-

quency polychromatic field. The most facile disso-

ciation apparently takes place when ω  

1 :
 
ω  

2 :
 
ω 

3 : 

ω  

4 = 101 :
 
103 :

 
107 :

 
109 and the least facile disso-
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Figure 4. Plots of number of photons absorbed vs time for LiH undergoing dissociation in a polychromatic field with 
ω 

1 :
 
ω 

2 :
 
ω 

3 :
 
ω 

4 = 1 :
 
3 :

 
7 :

 
13 and effective intensity 0⋅02 a.u. (a) with no phase lag, (b) with relative phase lag –π /8. 

Plot of average Bond length vs time for LiH in a polychromatic field with ω1 :
 
ω2 :

 
ω3 :

 
ω4 = 1 :

 
3 :

 
7 :

 
13 with effective 

intensity 0⋅02 a.u., (c) with relative phase lag of –π /8, (d) with no phase lag. 

 

 

ciation is achieved with figure 3(c) also shows the 

greater efficiency of the prime frequencies over their 

non-prime counterpart in the presence of a definite 

phase difference. Sirko and Koch’s work
16 

revealed 

that the presence of rational frequency ratio is re-

quired for the existence of common resonances and 

controlled phase variations could affect the struc-

tures of such common resonances leading to the 

possibility of controlling ionization probability of H 

atom. Present results indicate the possible existence 

of similar features in multi-photon dissociation of 

diatoms. 

 When the nature of the coupling between the oscil-

lator and the radiation field is changed to a Gaussian 

type of coupling (V1(x, t) of (4)) some quantitative 

change is observed in the time dependence of the 

computed dissociation probability. If f (x) of (3) is a 

Gaussian with b = 3⋅15 the molecule is found to un-

dergo dissociation at a higher threshold intensity 

compared to the linear coupling case (0⋅04 a.u. vis-

a-vis to 0⋅02 a.u. in the linear case). Table 2 shows 

the comparative features of the dissociation charac-

teristics observed with linear and Gaussian coupling, 

respectively keeping the other parameters of the 

model unchanged. Gaussian coupling lowers both 

the dissociation probability and dissociation rate,  

although the profiles may not reveal any qualitative 

differences. 
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Figure 5. (a) Plots of average bond length against time ongrids of different length for frequency ratio 
ω1 :

 
ω2 :

 
ω3 :

 
ω4 = 1 :

 
3 :

 
7 :

 
13 and effective intensity of 0⋅02 a.u. without any phase lag among the components. Quan-

tum phase space structures of LiH undergoing dissociation in a polychromatic field with ω1 :
 
ω2 :

 
ω3 :

 
ω4 = 1 :

 
3 :

 
7 :

 
13 

with effective intensity 0⋅02 a.u., (b) with no phase lag, (c) with a phase lag –π/8 among the components. 

 

Table 2. Average dissociation rate constant and dissociation probability of lithium hydride for linear and Gaussian 
type of coupling between the molecule and the field. 

 Intensity Frequency Nature of Predicted rate Dissociation  
Molecule (a.u.) ratio coupling constant (averaged) (a.u)

–1
 probability at t = T 

 

LiH 0⋅02 13 : 7 : 3 : 1  Harmonic  0⋅0009  0⋅73 (50000) 
LiH 0⋅05 13 : 7 : 3 : 1  Gaussian  0⋅00013  0⋅63 (50000) 
LiH 0⋅04 13 : 7 : 3 : 1  Gaussian  0⋅000035   0⋅27 (350000) 

 

 

 

 The qualitative features of the response also do 

not depend much on the length of the grid. We have 

computed the dissociation profiles of LiH, with 

three different grids of lengths L equal to 12 a.u., 
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20 a.u. and 30 a.u., respectively; and in each case, 

we have obtained almost similar dissociation pro-

files. These profiles are displayed in the figure 3(d) 

for comparison. 

 We have analysed the time and frequency resolv-

ed pattern figures 4(a–b) of the gain in number  

of photons by the diatomic molecule in the ‘prime 

frequencies’ scenario both when there is a phase dif-

ference (figure 4a) and there is none (figures 4b). 

The growth rate of the number of photons absorbed 

(nω) is more or less the same for the first three fre-

quencies i.e. (nω1
), (nω2

) and (nω3
) are nearly equal. 

(nω4
), however registers an initial decrease, passes 

through a minimum and then increases again to 

match ω1 or ω2, when δi = –π/8 (figure 4a). If the 

phase difference is made to disappear, (nω4
) shows 

sharp rise after passing through a minimum and 

(nω4
 >> nω1

) or (nω2
) or (nω3

) in the long time limit 

(figure 4b). 

 The evolution of bond length with time for δi = 

–π/8 shows almost linear increase with oscillations 

while for δi = 0 there is saturation as t → ∞ (figures 

4c–d). In either case, absorbing boundary condition 

has not been imposed. The effect of the length of the 

grid used on the observed bond stretching dynamics 

is investigated in figures 5a. In each case there is an 

initial linear increase followed by a saturation near 

〈x〉 = L/2 where L is the length of the corresponding 

grid. All other features of the bond stretching dyna-

mics are qualitatively similar. We have followed 

how 〈x(t)〉, 〈px(t)〉 evolve during the dissociation 

process where 〈a〉 indicates the ensemble average of 

a. The 〈px(t)〉 versus 〈x(t)〉 plots may be thought of as 

providing a quantum phase space picture of the 

process. 

 The ‘quantum phase space’ structures for L = 

20 a.u. are displayed in figures 5b–c. A localization 

is seen to occur at 〈x〉 = 10 a.u. The presence of 

phase difference affects the phase space structures 

and the localization around 〈x〉 = 10 a.u. seen to be 

more pronounced in the zero phase difference (δi = 0) 

case. The other features are quite identical for δ = 0 

(figure 5b) and δ = –π/8 (figure 5c). We tend to con-

clude therefore that a suitably tuned four component 

field could lead to faster and more complete disso-

ciation of a diatomic molecule and a good way to 

tune would be to select prime frequency ratios or use 

GA to predict the appropriate frequencies, phases and 

intensities. The frequency resolved energy gain pat-

tern is complex but the underlying bond stretching 

dynamics seems to follow the classical pattern. 

4. Conclusion 

It appears that above a threshold of effective inten-

sity poly-chromatic fields with four incommensurate 

non-resonant low frequencies could lead to facile 

photo-dissociation of diatomic-molecules with high 

average rate and percentage of dissociation. The 

quantum phase space structures of the dissociating 

diatoms reveal pictures that are reminiscent of the 

classical non-linear dynamical bond breaking dyna-

mics. Relative phase differences do not modify the 

gross features of phase space structure although they 

affect dissociation rates. 

Acknowledgements 

One of the authors (SG) would like to thank the 

Council of Scientific and Industrial Research 

(CSIR), New Delhi, Government of India for the 

award of Senior Research Fellowship. R S and S P B 

thank the Department of Science and Technology 

(DST), Government of India, New Delhi for a gen-

erous research grant. 

References 

1. Mittleman M H 1982 Introduction to the theory of  
laser–atom interaction (New York: Plenum) 

2. Some theoretical aspects of infra-red lasers pumped 
by electronic-to-vibrational energy transfer: Atomic 
and molecular process with short intense laser pulses 
(ed.) Brandrauk (New York: Plenum) 1988 NATO 
ASI series B 171 461  

3. Bandrauk A D and Wallancevol S C 1992 Coherent 
phenomenon in atoms and molecules in laser fields 
(New York: Plenum) NATO ASI, series B: 287 65 

4. Aupanel E E, Jean Marc Gauthier and Bandrauk A D 
1993 Phys. Rev. A48 2145 

5. Chelkowski S and Bandrauk A D 1990 Phys. Rev. 
A41 6480 

6. Atwood D, Soni A and Wyler D 1990 Phys. Rev. Let. 
65 2335 

7. Goggin M E and Milonni P W 1988 Phys. Rev. A37 
796 

8. Breuer H P, Dietz K and Holthaus M 1988 Z. Phys. 
D8 349 

9. Bloembergen N and Zewail A H 1984 J. Phys. Chem. 
88 5459 

10. Letokhov V S 1983 Non-linear laser chemistry (Ber-
lin: Springer) 

11. Shapiro M and Brumer P 2003 Rep. Prog. Phys. 66 
859  

12. Ehlotzky F 2001 Phys. Rep. 345 175 
13. Constantoudis V and Nicolaides C A 1997 Phys. Rev. 

A55 1325 



S Ghosh et al 

 

766 

14. Constantoudis V and Nicolaides C A 2005 J. Chem. 
Phys. 122 84118 

15. Schumacher D W, Weiche F, Muller H G and 
Bucksbaum H P 1994 Phys. Rev. Lett. 73 344 

16. Sirko L and Koch P M 2002 Phys. Rev. Lett. 89  
274101 

17. Holland J H 1975 Adaptation in natural and artificial 
systems (Ann Arbar, MI: University of Michigan  
Press) 

18. Goldberg D E 1989 Genetic algorithms in search,  
optimisation and machine learning (Reading, MA: 
Addision Wesley) 

19. Michaelwicz Z 1995 Genetic Algorithms + Data 
Structure = Evolution Programs} (London, UK: 
Springer) 3rd edn 

20. Saha R, Chaudhury P and Bhattacharyya S P 2001 
Phys. Lett. A291 397  

21. Adhikari S, Dutta P and Bhattacharyya S P 1992 
Chem. Phys. Lett. 199 574  

22. Adhikari S and Bhattacharyya S P 1992 Phys. Lett. 
A172 155 

23. Adhikari S, Dutta P and Bhattacharyya S P 1996 
Chem Phys. 206 315  

24. Marston C C and Baliant Kurti G B 1989 J. Chem. 
Phys. 91 3571  

25. Balint Kurti G B, Ward C L and Marton C C 1991 
Comput. Phys. Commun. 67 285 

26. Dirac P A M 1993 Proc. Cambridge Phys Soc. 26 
376 

27. Frenkel J 1934 Wave mechanics (Oxford: Oxford 
University Press) 

28. Ghosh M, Sharma R and Bhattacharyya S P 2007 
Chem. Phys. Lett. 449 165  

29. Erkol H and Demiralp E 2007 Phys. Lett. A365 55 
 

 

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


