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Abstract. A new method based on the penalty-function way of satisfying equality constraints
is proposed for the determination of constrained pure state one-clectron density matrices for
closed-shell many-electron systems. The algorithm suggested can handle many constraints
simultaneously. Certain interesting features of the proposed algorithm are discussed with
numerical examples, ’
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1. Introduction

At the lowest level of approximation, the ground-state electronic structure of many-
electron atoms and molecules is described by a single-determinant wave function
constructed from a set of orthonormal one-electron orbitals, which have been
determined by invoking the variational principle (Roothaan 1951; Hartree 1928; Fock
1930; Slater 1930). These orbitals determine the one-electron density in terms of which
the atomic and molecular properties can be calculated. The importance and usefulness
of one-electron density in the context of quantum chemical concepts and calculations
can hardly be overestimated (Bamzai and Deb 1981, and references cited therein).
Instead of determining the wavefunction first and then the density one may adopt a
slightly different mode of approach. It is possible to treat the elements of the one-
electron density matrix (to be determined) as the basic variables and try to determine
the density itself directly through a variational procedure. McWeeny's steepest descent
technique (McWeeny 1956, 1957) belongs to the second category of methods. One may
note here that the density or the one-electron orbitals can be determined by applying
the variational principle to an energy functional that incorporates the orthonormality
constraints in one way or the other. Since the wavefunction so obtained is correct only
to first order, the magnitude of error in the calculated values of properties (observables)
other than energy (i.e. expectation values of operators which do not commute with H)
may well be quite high. One may try to improve the situation by resorting to the
application of the variational principle to still more modified energy functionals which
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incorporate in them certain additional constraints over and above those implied by the
required orthonormality of the one-electron orbitals. In other words, the o.ne.-el'ectron
orbitals must not only be orthonormal and minimize energy but also minimize th'e
mean-square deviations of a chosen set of calculated one-electron properties from their
exact (theoretical or experimental) values. Mukherjee and Karplus (1963) were t.he first
to attempt a calculation of this kind. Further extension was made by Rasiel .and
Whitman (1965). Later Byers-Brown (1 966) and Chong (1973)analysed the const.ramed
variational problem thoroughly which revealed the possibility of useful applicatlon.s of
the method. However, the problem has never been solved in a generalized fashion.
Mukherjee and Karplus (1963), for example, enforced the constraints in a brute-force
manner and for most of the systems of chemical interest, the technique adopted is
inappropriate. Recently, interest in constrained variational problems seems to have
been revived (Westhaus 1983). While Westhaus proposed a generalization of the
density functional formalism using constrained variations of the expectation value &
= (Y[H|¥), Zeiss and Whitehead 1983 tried to shape the one-electron density to
reproduce certain one-electron properties. The present paper deals with a general and
practicable solution of the multiply constrained variational problem by adopting what
is currently known as the method of penalty functions for enforcing relevant equality
constraints (Fiacco 1970; Fiacco and McCormik 1968; Mukherjee 1975). The problem
is formulated in two steps: first, the case of energy minimization with a sin gle constraint
imposed on the orbitals (or equivalently on the one-electron density) is formulated and
then the more general case of minimization with any number of constraints is dealt
with. Only the theoretical model for closed-shell states is presented in what follows. The
general formulation for restricted and unrestricted open-shell states will be presented
separately (Das and Bhattacharyya 1985),

2. Penalty function method

Since the method of penalty functions has hardly been used for tackling constrained
variational problems frequently encountered in quantum chemistry (see however
Mukherjee 1975) it would perhaps be useful to present a brief introduction to this
method before we take up the actual problem at our disposal. Although rather
unknown in the domain of quantum chemistry, the method of penalty functions is one
of the simplest and most well-known methods of solving the problems of mathematical

scheme in a little more concrete terms.

Let us suppose that F(x) is the function to be minimized subject to the constraints
that

fix) <0 i=1,2...n

we also introduce the following definitions:

2, t20,
t) =
9o(t) {O, t<0.
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We may now define a function h(x, f) (the penalty function) as follows:

W B =83 g0l i)

i=1
It is clear that
h(x,f)=0 if xeD,

where D = {x: fi(x) <0,i=1,2,...n} :

If x¢D, h(x, ) >0 and also h(x, f)— + oo as B — oo. With these definitions the
subsidiary (auxiliary) minimization problem then reduces to the unconstrained
minimization of the function F(x) where,

F(x, B) = F(x) + h(x, ).

It is obvious that the construction of h(x, f) as suggested here is not unique. Many
alternative definitions are possible for h(x, p) or the auxiliary function F(x, p). 1t is
sufficient for h(x, f) or F(x, f) to have certain specific features for achieving
convergence [Laenberger 1971]. For our purpose, however, the Morrison function
type of choice for F(x, ) appears to be the best (Morrison 1968). This involves a slightly
different construction of F(x) in that one now assumes

F(x, B, F ) = [F(x)~ F ,()]*+ B[f(x) - b]*,

where F,(x) stands for the lower bound to the constrained value of F(x) and the
constraint condition on x is f(x) = b. Instead of dealing with functions, however, we
shall be dealing with functionals. Nevertheless the basic structure remains the same.

3. Theory

3.1 Single constraint

Let P be the trial one-electron spatial density matrix (n x n) for the ground state of our
2m electron system in a discrete orthonormal basis. The constraints on P are

P* =P, ‘ (1a)
and TrP =n. o (1b)
Then the unconstrained -energy functional E is given by

E = 2TrhP + TrPG(P), ' (2)

“where | | "

hpg = <y |h| >,

and :

Gpg = 2J 4 (P) = Kyg(P),
Jpq = ZP'S <¢P¢S|g|¢q¢r >’ qu = ZPrs <¢p¢slg’¢r¢q >’

where g stands for r [} . The functional containing the constraint (1) on P incorporated
in it can be easily written as '

E, =E+BTr(PP—PR, o 0
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where f is a penalty weighting factor having the dimension of energy. Let us assume
that E§Fis the exact Hartree-Fock energy of our system. We may now define a modified
constrained energy functional as follows:

E. = (E-E¥)+8, Tr(P*~ Py, | “)

By being the penalty weight factor of appropriate dimension. If we now treat the
elements of P as our basic variational parameters, then by setting 6E, = O we can arrive
at the equation for the iterative determination of P. Note that, for minimum of E, the
two necessary conditions are

E = E§F,

| 5)
and P:=p, \
so that at the minimization point, the trial density matrix must satisfy the idempotency
constraint (1) as also must the trial energy E merge with the exact Hartree-Fock (ur)
energy as closely as possible. We have presumed so far that E§F is known. The more
realistic case is when E ¥ is not known to start with. In that case, a workable algorithm
for the variational determination of P can be based on a slightly different functional Et

where
Et¢=(E-E))*+p, Tr(P*—Pp, ©)

E isalower bound to E &*, the actual value of which can be updated at any stage of the
iterative process by some well-defined procedure (to be defined later). The variational
condition on E £ requires that

0E{=2(E—E,)6E+ B, Tr (4P —6P2 +2P)6P = () G
Since,
OE = 2Tr (h)5P + 2Tr G(P) 6P,

= 2Tr (h+ G(P))6P,
equation (7) becomes
HE~E)Tr{[h+ G(P)]}P + B, Tr {(4P® — 6P? + 2P)} 6P = (),
which further simplifies to

Tr [{ (E—E,)[h+ G(P)]} +% (2P -3P2 4 P):lcSP = (. (8)
Since the variations in the density variables SP are arbitrary and independent, (8)
implies that '

(E~E)[h+G(P)] + (2P* —3p2 4 P)%i =0,

which rearranges to ‘.
E-E,)[h+ G(P)]Brt+(2P3—3P2 4 P)=0. )

Itis not difficult to see that (9) immediately leads to an iterative (self-consistent) scheme

- for the determination of the orthonormality-constrained density matrix P that satisfy

our variational condition on energy also. To do this; however, we must have a means of
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estimating E ; locally. Assuming that E® is a current estimate of the lower bound to the
ground state energy (currently being approximated by E ‘) to be determined, we can
rewrite (9) easily as follows:

P, =3P} 2P} —2[h+G(P)](E,— E)Bi " (92)
We may now note that the two sides of (9a) will not be equal unless we have got the
appropriately constrained density matrix (i.e. a correct solution of (9)). Otherwise the

right side of (9a) merely furnishes a new estimate of P = P, leading us therefore to the
following iterative scheme.

Pi“"PiH=3Pi2_2P?“2[h+G(P)](Ei‘Eiz)ﬂl—l’ (10)
with

E' = E\ +a{Tr(4]4)}'7, (11)
where

A; = Pi+2P} —3P? +2[h + G(P)] (E— E}) By !, (12)

and ais a parameter satisfying the condition 0 < a < 1 and E'is the constrained energy at
the ith iteration. Clearly, the iterations terminate only when

(B ~Ey) =0,
implying that
ES =B,
a condition that can be fulfilled only if
Tr (4]4)) = 0,

which means that appropriately constrained density matrix P has been found. In course
of iterations Tr (4]4;) is expected to decrease gradually as () |E;— E%| - 0 and (ii) as
idempotency constraint on P is satisfied more and more exactly (note thatif P? = P,, P,
+2P} —3P} = ().

3.2 Multiple constraints

Let us suppose that the set of Hermitian operators {ﬁk} (which may not commute with
the many-electron hamiltonian K, see Mukherjee and Katplus 1963) represents a set of
observables of our system. Let b?’s represent the exact (theoretical or experimental)
values of these observables for our system in the ground state. If we now demand that
the variational criterion for the orthonormality constrained wavefunction or the one-
electron density matrix should not only aim at minimising the energy, but also minimize
the mean square deviation of the calculated values of the observables from their
experimental counterparts at the cost of obtaining a slightly inferior value of E, we
should not use E % but use a modified functional (E \c) Which incorporates in it all the
additional constraints. One must not fail to note that we are attempting a minimization
in the least square sense. This is particularly important since H and a set of
noncommuting Hermitian operators { B, } cannot have simultaneous eigenstates. Thus,
with a trial one-electron density P, we can define a functional E\c (MC stands for
multiple constraint) as follows (8, and A,’s are penalty weight factors of appropriate
dimensions)

Eyc= (E-El)?+ B, Tr (P*—P)? + Y {Tr(PB,)—b2}? 4, (13)
k
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clearly, E\,. = 0 only if E = E}F, p2 = p
and 2ATr(PB) ~ b0} = 0,
k

Again, for practical applications E§*will not be known to start with so that we replace it
by a suitable estimate of a lower-bound to E§F (say E,) and redefine the functional as
follows:

E»Ikc =(E—E)*+p, Tr (P>~ P} + Y [Tr (PB,) — A (14)
‘ k

If an arbitrary variation 8P is now introduced in P, the first order change in the
constrained functional will be given by

OE i = 2(Ei“ED5Ei+ﬂ1 Tr {(4P?_6Pi2+2_Pi)5Pi} "
+2.[2(Tr (PB,)— b)) Tr (B, oP)] 4
k

=4E;—E)Tr {h+ G(P))oP;}
+ By Tr {(4P? — 6P? +2P)5P;)
+2,2d} Tr (B, 6P) 4, (15)
ok

where d}, represents the deviation of the calculated value of the kth property from its
exact or experimental value at the ith iterative stage, P; is the trial one-electron density
matrix at the ith iterative stage and E, is the corresponding trial energy while E i is the
lower bound to E estimated at the ith stage of the process. At the stationary point, §E o
= O for arbitrary variation 6P in P and this condition leads to an iterative scheme for
the self-consistent determination of P. Thus since 6E§. = 0 and 6P is arbitrary, we
have from (15)

2E;~EY)(h+G(P))+ (2P} — 3P+ P)f, + Y AdiB, = 0, - (16)
k
Rewriting (16) slightly, we have the iterative scheme we are looking for
where _ A
Ak = lk/ﬂu
E7'=E\ +a{Tr (AT A7, 7 (18)
Ai=2E—E)(h+G(P)B* +2P} ~3P2 4 P+ YT, diB, (19)
. ' k

and a is a damping factor satisfying 0 < a < 1.

4. Results and discussion

The two schemes outlined in §3 for the self-consistent determination of singly or
multiply constrained one-electron density matrix of an atomic or molecular system are
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quite general. If the only constraint imposed on P is the orthonormality constraint, the
iterative scheme based on (9) should lead to the Hartree-Fock density itself. However,
one must carefully study the convergence behaviour of the iterative sequence generated
by (10) and (17). To test the numerical viability of the algorithms suggested we will
present here the results of some exploratory calculations. The calculations have been
performed at the cNDo/2 level of approximation (Pople and Segal 1965). Since our main
purpose here is to show that the proposed algorithms are indeed workable, the use of
cNDO/2 level of approximation is of no major consequence. Apart from providing
evidence of workability these results also shed some light on the convergence behaviour

of these algorithm and should provide a guideline for similar investigation in an ab
initio framework.

4.1 The case of a single constraint

In figure 1 we have displayed the convergence profile of the proposed algorithm (cf
equation (10)). The molecule used is CO with the experimental C-O bond length. The
iterative procedure was started with a trial non-idempotent one-electron density matrix
Po(P% # Py) which led to an energy E° = —36797114 a.u. much below the actual -
Hartree-Fock energy within the CNDO/2 approximations. The value of the Morrison-
function (functional in the present case) at the start was 0406376 and the starting value
of the lower bound to the constrained energy (E 0) was set equal to E9 = — 37-296020
a.u. The monotonic but slow decrease in the magnitude of the Morrison-functional is
clearly evident from the figure. Although the figure displays the progress of the
minimization only upto 67 iterations, the iterations were continued well beyond 67
iterations. At 67th iterations, E = — 3633791404, E, = —36:338096 a.u. which are
already close to HF result. In 92 iterations the functional decreased to a value as low as
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Figure 1. Actual value of the auxiliary (constrained) functional shown as a function of
number of iterations. The system is carbon monoxide molecule at equilibrium geometry.
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107°. The energy E' and the lower bound E', merged with one another. The energy E so
calculated tally nicely with the pr energy of the system under CNDO/2 approximations.

4.2 The case of more than one constraint

The exploratory calculations under this heading have been carried out on lithium
hydride molecule (rpig = 2:3428 a.u.). In addition to the idempotency constraint, one
external constraint has been imposed on P in that we demand

Tr{PB,} =Y,

where B, = ¢-r and by is the constrained expectation value of B, which we want the
constrained density P to reproduce. Tr {PB,} with P taken to the Hr density of Li-H
under cNDO approximations was found to be equal to 2-62 D. Figure 2(a) shows the
convergence behaviour of the algorithm where the constraining value of the observable
by was chosen equal to 275D while figure 2(b) represents an identical plot with 'b?
= 2:8D. In each case, there is oscillation in the functiona] value to start with when P is
highly non-idempotent. The oscillatory behaviour is seen to be replaced by a smooth
and monotonically decreasing tendency after the first few iterations. Although smooth,

the approach to convergence is rather slow and we fee] that some kind of damping or
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Figure 2(a). Minimization of the auxiliary functiona] shown as function of the number of
iterations in the multiply constrained case, The system of LiH molecule with by =275D (see
text for details. (b) The same plot with b9 = 2.80 D.
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interpolation technique has to be introduced to accelerate the approach to convergence.
This is being studied at present. As expected, the constrained density P leads to energy
higher than the Hartree-Fock energy. The sacrifice in energy (AE) being higher, higher
the value of |by — b}¥| (Byers Brown 1966).

4.3 Certain general characteristics of the algorithms

() The choice of penalty weight factors ( B: or 4,) appears to be highly critical. A proper
choice of B, (or 4, as the case may be) may force convergence on an otherwise diverging
sequence. Generally, one has to start with a small value of B, or X, which are made to
increase progressively as the density gradually approaches the constrained region of the
density variable. ‘

(i) A good estimate of E 9 is very essential. In the multiply constrained case one starts
with the HF density in general. Since the constrained energy E. > E§¥, E{isin reality an
upper bound to E,and can be set equal to (E %r+0)where ¢ & 0-1 a.u. The constant a in
(11) or (18) is crucially important in controlling the overall behaviour of the
corresponding iterative sequences. In the multiply constrained case — 1 <a<O0(E,is

an upper bound) while in the orthonormality constrained case 0 < a < L

(1i1) Itis possible to diversify the algorithm further and use a hybrid algorithm that uses
both the Lagrangian multiplier and penalty function ways of satisfying equality
constraints. Such a scheme is being numerically tested at present. The comparative
features of this hybrid algorithm and the purely penalty function-based alternative
techniques will be presented separately (Das and Bhattacharyya 1985).

(iv) It is possible to minimize the constrained functionals directly by adopting the
steepest descent technique for example, or by adopting the method of conjugate
gradients (Mukherjee 1975).

(V) The extension of these algorithms to the unrestricted open-shell case is straightfor-
ward. For therestricted open-shell, however, there are certain additional complications.
The algorithms for handling the open-shell problem will be presented shortly (Das and
Bhattacharyya 1985).

Acknowledgements

The authors sincerely thank the Department of Science and Technology, New Delhi for
a research grant. The authors wish to thank Dr D Mukherjee and Dr (Mrs) Bharati
Bhattacharyya for useful discussions. '

References

Bamzai A S and Deb B M 1981 Rev. Mod. Phys. 53 593

Byers Brown W 1966 J. Chem. Phys. 44 567

Chong D P 1973 J. Chem. Phys. 59 1721

Das K K and Bhattacharyya S P 1985 Chem. Phys. Lett, (Communicated)

Fiacco A V 1970 J. Opt. Theory. Appl. 6 252

Fiacco A V and McCormik G P 1968 Nonlinear programming: Sequential unconstrained optimization
technique (New York: Wiley)

gl




290 K K Das, Priyotosh Khan and S P Bhattacharyya

Fock V 1930 Z. Phys. 61 126

Hartree D R 1928 Proc. Cambridge Philos. Soc. 24 89
Laenberger D 1971 J. Opt. Theory Appl. 7 39

McWeeny R 1956 Proc. R. Soc. (London) A235 496

McWeeny R 1957 Proc. R. Soc. (London) A241 239

Morrison D D 1968 SIAM J. Numer. Anal. § 83

Mukherjee A and Karplus M 1963 J. Chem. Phys. 38 44
Mukherjee D 1975 Int. J. Quant. Chem. 9 943

Pople J A, Santry D P and Segal G A 1965 J. Chem. Phys. 43 S129
Pople J A and Segal G A 1965 J. Chem. Phys. 43 5136

Rasiel Y and Whitman D R 1965 J. Chem. Phys. 42 1965
Roothaan C C J 1951 Rev. Mod. Phys. 23 69

Slater J C 1930 Phys. Rev. 35 210

Westhaus P 1983 J. Chem. Phys. 78 6833

Zeiss G and Whitehead M A 1983 Inz. J. Quant. Chem, 24 651




