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In this paper the authors have discussed various forms of
Nijenhuis tensor and its properties.

1. INTRODUCTION

We consider a differentiable manifold ¥V, of class Cm' Let there be a

8
vector-valued linear function F of class C, such that

X = a%2X (1.1 a)
for arbitrary vector field X, where

X def F(X) (1.1 b)

and a is any complex number.

Let us agree to say that F gives to V,, a differentiable structure,
briefly GF-structure, defined by the algebraic equation (1.1 @). It is well-known
that ¥V, is endowed with a w=-structure (Legrand 1956) or an almost product
structure or an almost complex structure (Mishra 1967) or an almost tangent
structure (Eliopoulas 1965) according as a2 0 or a=1lor a=iora= 0.

The rank of F in the first three cases is n and in the last case is n/2.
In the last two cases m has to be even.

Agreement 1.1—All the equations which follow, hold for arbitrary vector
fields X, Y, Z...... , eté,

If the given GF-structure is endowed with a Hermite metric g, such
that

g (7, Y) +a®g (X’ Y)=09
then we say that (F, g) gives to V,, a Hermite structure briefly
H-structure, subordinate to GF-structure.

Let us consider on ¥,, equipped with H-structure, a tensor f of the type
(0, 2), such that
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f(XY)defg(X,Y)= —g (X, Y). (1. 2a)
Then the following results hold :
JX,Y)= —f(X,Y)=a*g (X, 7Y) (1.2 8)

fIX,Y)=—a*g (X, Y)=a?g(X,Y) = —a® f(X,Y) (12¢)
Since g is symmetric, eqns (1.2a) and (1.2¢) imply that f is skew-symmetric.’
If for an H-structure _
(Dy E)(Y)=0, (DyF)(Y)=10 (1.3 aj
is satisfied, then we say that V, is a Kahler manifold.
If for an H-structure
(DxF) (¥) + (DyF) (X) = 0 (13 6)

is satisfied, then we say that ¥, is an almost Tachibana manifold in the broad
sense.

A bilinear function ¢ is said to be pure in the two slots, if
p(X,Y) —a*y (X, Y,)=0. (1.4a)
It is said to be hybrid in the two slots, if

(X, Y+ a*y(X,Y)=0. (1.4 b)
From the above we note that f is hybrid in X and Y.

2. NpenHUIS TENSOR

Nijenhuis tensor with respect to F is a vector valued bilinear function
N given by (Yano 1965)

NX X)=(X, V] + [X, Y] - [X, Y] - (X, Y]

=X, ¥l+a[X, Y] -[X,Y]-[X Y] (21)

where [X, Y] = DyY—DyX, and D is Riemannian connexion,

Then the following equation hold (Duggal 1971)

N(X.Y)=— N (Y, X) (2.2 a)
NX,Y)=N (X,Y)= —N(X,Y) (2.28)
NX,Y)=a* N(X,Y)= —N(X,Y)= - N(X, 1Y) (2.2 ¢)

12
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From (2.2 ¢), it is clear that N (X, Y) is pure in X and VY.
Also, if ¥, is equipped with an almost tangent structure, then

NX,V)=NX,¥)=N(X,Y)=0.
Theorem 2.1 —Let us put

P (X, Y) def [X, 7] -- [X, Y]. 2.3)
Then

P (X, ?)=—a=P(X,Y)=a8([j\",_;]~[JZ',Y‘]) (2.4 a)

P(X’,f')=—azP(X,?)=a4([;,—}']—[x,f']) (2.4 b)

P(X,Y)=—-P(X,Y)=[X, Y] - a%[X,Y]) (2.4 ¢)

P(X, ¥) = — P(X, Y) = a® (a® [X, Y] X 7). (2.4 d)
Consquently

PX,7)+P(X,Y)=—a*N(X,Y)=—N(X T) (2.5 a)

P(X,Y)+a*P(X,Y) = — N(X,Y) =a*N(X,Y) (2.5 b)

a?P(X,Y)+ P(X, ¥Y)= —a® N(X, ) (2.5 ¢)

a® (P(X,Y)+P(X,7))=—-N (X, Y (2.5 d)

Proof: Barring (2. 3) throughout or different vectors in it and wusing
(1.1 a) we get (2.4a) — (2.4 d).

Again, using (1.1a), (2.2) and (2.4) in the following equations :

N(X,Y)={X, Y1+ a*[X, Y] — [X, Y] — [X, Y]

NX,Y)=[X, Y]+ a®[X, Y] —a*[X, Y] — a® [X, Y]

N(X, V) =a? (X, ¥] + a® [X, Y] — [X, V)] —a® [X, Y]

N(X,Y) = a?[X, ¥] + a®[X, Y] — a? [X. Y] — a* [X, Y]

N, ¥)=at[R Y]+ a* [X, F]1—a* (X, Y] — . T}

— ——

N(X,¥)=a*[X, Y] + a* [X, Y] — a* [X, Y] — a* [X, Y]
N(Y’?)=as(a5[X,Y]+[X, ﬂ_[X’Y] - [X’Y])

N(X’s y)=a’(a’[X’Y]+[X:ﬂ—ag[X’Y]_a’X[X97])
we get (2.5a) — (2.54d).
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Note 2.1 : Some more relations of the type (2.4) and (2.5) can be obtained
but they reduce to (2.4a,b,c,d) and (2.5 a, b, ¢, d).

Remark 2.1: If ¥V, is equipped with an almost tangent structure then
from (1.4 b) and (2.5 b), it follows that P(X, Y) is hybrid in X and Y.

Theorem 2.2—Let us put

Q (X, Y) def a® [X, Y] - [X, ¥]. (2.6)
Then
QU 7)= — Q (X, ¥) = a* (LX, ¥] — [X, ¥]) (2.7 a)
QXN =-a QU —a (X, F1—a®[X,¥]) (75
(X, Y)= —Q (X, Y) = a® ([X, Y]—[X, ¥]) (2.7 ¢)
QX V)= —a* Q(X,¥) =a* (IX, 7] —a® ¥, Y. 2.7 4)
Consequently
QX,Y)=+a*Q0((X,Y)=N(X, Y)=a* N(X, Y) (2.8 a)
QWX,Y)—Q(X, Y)=N(X,7Y) (2.8 b)
Q(X,¥)~a*Q(X,Y)=N(X,7Y) (2.8 ¢)
Q(X,¥) + Q(X, ¥)=N(X, 7). (2.8 d)

Proof : The proof of these equations follows the pattern of the proof
of the Theorem 2.1.

Corollary 2.1—We have in GF-structure

PX,Y)=0Q(X,Y)=—P(X,Y) (2.9 a)
P(ia Y)'—‘_Q(X,Y):—agQ(Xa i’) (2.9b)
P(x,7)=-Q X, V)=—a"P(X,7) ' (2.9 ¢)
P(X,Y)=a*Q (X, Y) (29 d)

Proof : The statement follows from (2.4), (2.7) and (1.1 q).

Corollary 2.2—We have in GF-structure
NXY)=PX,V)+Q(X, Y) (2.10 a)
NX,Y)=P(X,Y)-Q(X,7Y) (2.10 b)
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N(Y,f’)-————P(X,?)—I—aZQ(X,Y) (2. 10 ¢)

NX,Y)= —a*P(X,Y) — a2 0 (X.Y). (2.10 d)

Proof : Equation (2.10a) is the consequence of the equations (2.1 a)
(2.3) and (2.6). The relation (2.10 b) is obtained by (2.8 b) and (2.9 a).
We get (2.10c¢) by using (2.7¢) and (29 ¢) in (2.8 a). Barring (2.10 ¢)
throughout, using (1.14) and (2.7 a), we get (2.10d).

Note 2.2: Some other relations of the type (2.9 a. b, ¢, d) and
(2.10 a, b, ¢, d,) can be obtained but they reduce to them.

Remark 2.2 : If V, is equipped with an almost t-ngent structure then
due to (1.4 b) eqn. (2.8 @) shows that Q (X, ¥) is hybrid in X and Y.

Theorem 2.3—1If we put

U (X. ¥)defa? [X, ¥] — [X, ¥]. (2.11)
Then

U(X, }) =—a® U(X,Y)=a?({X, Y] - a*[X, 7)) (2.12)
Consequently

UX,Y) -U(X, Y)=N(X,Y). (2. 13)

Proof : Barring X, Y in (2.11) and then throughout tnere sulting equation
obtained and using (1.1 a), we get (2.12). Barring X in (2.1 ay and using (1.1 @)
we get (2.12). Barring X in (2.1 a) and wusing (1.1 a), we have

N(XY)=a®[X, Y]+ a® [X, Y] — [X, Y] — a® [X, Y]

=(a®[X, Y] — (X, ¥]) — (a® [X, Y] — a? [X, Y])

=U(X,Y)—U(X,Y) (2.14)
which is (2.13).

Theorem 2.4—1et us put

V (X, Y) def (X, Y] + [X, T]. (2. 15)
Then

V(X,Y;=V(X,Y)=a%o? [X, Y] +[X, T]). (2.16)
Consequently

V(X,Y)- V(X,Y)=a* N (X, Y) (2.17)
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Proof : The statement follows the pattern of the Theorem 2.3.

Note 2.3 : Other relations for U(X,Y) and V (X,Y) can also be
established as for P (X, Y)and Q (X, Y).

Remark 2.3 1 If V,is equipped with an almost tangent structure then
U (X, Y)is also hybrid in X and Y.

For the following discussions, we suppose V, to be equipped with an
H-structure subordinate to GF-structure unless stated otherwise.

We know that the Nijenhuis tensor for F, with a suitable connexion D
with respect to gis given by

N(X,Y)=I[X, Y] +a* (X, Y] — [X, ¥] — [X, Y]

If we put
'N(X, ¥, Z2) def — a® g (N(X, Y),Z) = — g(N(X, V), 2). (2.18)
Then
'N (X, Y, Z) is skew-symmetric in X and 7, i. e.
‘N(X,Y,Z)y= —"'N(Y, X, Z) (2.19)

'N(X, V,Z) ="'N(X, Y,Z) ="'N(X, ¥, Z) = a* 'N(X, Y, Z).

Corollary 2.3 : Let us define

'P(X,Y,Z) def g(P (X, Y), Z) 2. 20 a)
(X, Y, Z) def g (0 (X, Y), Z) (2.20 b)
"U (X, Y, Z) def g (U (X, Y), Z) (2,20 ¢)

VXY Z) def g(V (X, Y), 2). (2.20 d)

Then 'N (X, Y,.Z) can be put in the form

a®*'N(X,Y,Z) =a®'P(X, Y, Z)+'P (X, ¥, 2Z) (2.21 a)
a®'N(X,Y,7) =a*'Q(X,Y,2) + 'Q(X, Y, 2) (2.21 b)
a®*'N(X,Y,Z)y=a*'U(X,Y,2)+'UX,7,2) (221 ¢)
a2'NX,Y,Z)=a*'V(X,YZ)+ 'V (X, Y, Z). (2.21 d)

Proof : The equation (2.21 a) follows from (2.2¢), (2.55) and 2.20 ).
By using (2.2 ¢), (2.8 a) and (2.20 a) we get (2.21 b).

The remaining two can be proved similarly.
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Caorollary 2.4—We have
VX.Y)=a* VX, Y) = a( X, Y]+ [X, Y] ) (2.22)
Then
‘WX, Y, Z) = & 'V(X, Y, Z). 2.23)
Consequently '¥(X, Y, Z) is pure in X and Y.
Proof : Using (2.20d) in (2.22), we have (2.23).
The equation (2.23) together with (1.4a) implies that '"V{X, Y, Z) is pure
m X, Y.

Note 2.5 . 1If the givemn H-structure is subordinate to an almost tangent
structure then equations (2.21a)—(2.21d) imply that

'PX,Y,2)="0X,Y,2Z)=UZX, Y,Z)="VX, ¥, Z)=0.

Theorem 2.5—The necessary and sufficient condition for a manifold with
an H-structure subordinate to the GF-structure to be a Kahler manifold is

a® DY = D, ¥ (2.24a)
equivalently

a® DY = Dy¥ (2.24b)

DyY = Ds¥ (2.24c)

DyY = D,¥. (2.24d)

Proof : We know that
(DxF) (Y)+F(DyY) = DyY
or
(DxF) (Y)+DxY = D,Y.
Substituting from (1.32), we have
D,Y = D,Y.
Barring and wsing (1.14) in this equation, we get (2.24a).
Barring X in (2.240), we obtain (2.24b). The equation (2.24c) follows

from barring (2.24b) and using (l.1a) and (2.24d) can be had by barring X
in (2.24¢) after using (1.1a).
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Corollary 2.5—For a Kahler manifold, we have

a*[X, Y] = [X, ¥ (2.25a)
a'[X, Y] = [X, T] (2.25b)
[¥, 7] =¥, 7] {2.25¢)
[X, Y1=1X, ¥). {2.25d)

Proof : Interchanging X and ¥in (2.24a) and subtracting the resulting
equation obtained from {2.244), we get (2.25a). Barring X in (2.254), we get
(2.25b). By barring (2.25b) throughout and using (1.1a), we obtain {2.25¢) and
(2.25d) follows from barring X in (2.25¢) and using {1.1a).

Remark 2.4—Since for a Kahler manifold, Nijenhuis tensor vanishes, we
have

a*P(X, Y) = —P(X, Y) (2.26a)
a*Q(X, Y) = —Q(X, Y) {2.26b)
a*UX, Y) = —U(X, Y) (2.26¢)
a,V(X, Y) =_Vi}_?) (2.26d)

Theorem 2.6—The netessary and sufficient condition for a manifold with
an H-structure subordinate to the GF-structure to be an almost Tachibana
manifold is

e DY+ DpX) = 5;?4- Dy X 4 {2.27a)
equivalent to
a*(D3Y+D,X) -_-T);iﬂa’pyx {(2.27b)
D3¥ +DyX = a*(D3Y+ D3X) {2.27¢)
D3¥ +D3X = DyY+DyX. 2.27d)
Proof: We have
(DyF) (Y)+F(DyY) = D,Y. (2.28)

Interchaning X and ¥ in (2.28) and adding the resulting etuation obtained
in {2.28), we have

(DF) (Y)+(DyF) (X)+DxY+DyX = Dy¥ +DyX.
Substituting from (1.3b), we get
DxY+DyX == DxY+DyY.
Barring throughout the above equation and using (1.1a), we obtain (2.27a).
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Other relations follow from (2.27a) by barring different vectors or
throughout the equation and using (l.1a).

Theorem 2.7—The necessary and sufficient condition that ‘N(X, Y, Z) is
completely skew-symmetric in X, ¥, Z in an almost Tachibana manifold is

D3Y +D;X = a®(D3Y+D5X). (2.29)

Proof : We know (Duggal 1971) that a necessary and sufficient condition
for 'N(X, Y, Z) to be completely skew-symmetric in an H-structure is

(DxF) (Y)-+(DyF) (X) = (DxF) (Y)+(DyF) (X)

or

(DxF) (Y )+(DyF) (X) = a*((DxF) (Y)+(DyF) (X)).

But when the manifold is an almost Tachibana, substituting from (1.3a), we

have

(DxF) (Y) + (DyF( (X) =0
or

DY —D3Y+ Dy X —DyX =0
or

b}7+ D3X = a®(DxY+D3X)
which is the required result.

REFERENCES

Duggal, K. L. (1971). On differentiable structures defined by algebraic equation I.
Nijenhuis tensor, Tensor, N. S., 22, 238-42.

Eliopoulas, H, A. (1965). On the general theory of differentiable manifolds with almost
tangent structure. Canad. Math. Bull., 8, 721-48.

Legrand, G. (1956). Sur Les Varietis a structure de Presque Product complexe,
C. R. Acad. Sci, Paris, 242, 335-37.

Mishra, R. S. (1967). -On almost Hermite spaces II, Nijenhuis tensor, Indian J. Math.
9, 161-68.

Yano, K. (1965), Differential Geometry on Complex and Almost Complex Spaces.
Pergamon Press. New York.



