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Summary. In this paper, I have studied the submanifolds of codimension

m—m in an almost complex and an almost contact manifold and also a differentia-
ble manifold with f-structure of rank 7.

Chapter I. Invariant submanifolds

1. Introduction. Let V, be m-dimensional differentiable manifold. Let there
be defined in V, a vector valued linear function F' satisfying

1.1) Fi4+F=0,
where
1.2) a) Fr=Fr1iF b) F°=I (identity).

Let the rank ((F)) be r everywhere. Then 7 is even and V, is called a differ-
entiable manifold with f-structure.
We can always introduce a metric G in V,,. Let G satisfy

(1.3) G(FQ), F(p))=—G(F*Q), p) .
We are justified in taking [(1.3) as it is because replacing 1 by F*(2) in and

using [1.I], we get the same equation. Thus there is no inconsistency or con-
tradiction. V., is, then, called a metric differentiable manifold with f-structure
of rank r.

Let us put
(1.4) a) LE—F*, b) MEFe+I
Then
(1.5) a) L:=L, b) M:=M, c¢) L(M)=ML)=0, d) L(F)=F(L)=F,

e) M(F)=F(M)=0.

We will consider the following three particular cases:
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Case 1. rank (F)=m
In this case m is even and a, b and yield

(1.6) a) L=I b) M=F*+1=0

Va is called an almost complex manifold. If we introduce the metric G in V,, as
in assumes the form

(1.7) G(FQ), F(p)=GQ, p) ,

V. is then called an almost Hermite manifold and the structure (F,G) is called
an almost Hermite structure.

Case 2. rank (F)=m—1
In this case m is odd and [1.1) and [(1.3) yield

(1.8) a MQ)=F*)+2=ANT,

where A is a 1-form and T is a vector field. V, is called an almost contact
manifold with the almost contact structure (¥, T, A). From (1.8)a, we easily
deduce

1.8) b A(T)=1, ¢) AF)=0, d) F(T)=0

If we introduce the metric G in V,, as in [1.8), then [1.3) assumes the form
(1.9) GFQ), F()=G(2, )—AQ) A(p) .

Va. is called an almost contact metric manifold or an almost Grayan manifold and
the structure (F', T, A, G) is called an almost contact metric structure.

Case 8. rank (F)=r<m—1 (constant everywhere)
In this case r is even and [(1.1) and [1.3) yield

(1.10) a MQA)=F*A)+i=A4* )T, , r+1<a<m,

where A* is 1-form and T, is a vector field. V, is called a differentiable manifold
with f-structure of rank ». From (1.10)a, we may easily deduce

(1.10) b A*(Tp)=0%, ¢) A*(F)=0, d) F(T,)=0.
If we introduce the metric G in V,, as in [1.8), then assumes the form

1.11) a G(FQ), F()=GQ, )—'MQ, p) ,
where
1.11) b 'MQ, )ZG(M), )=GQ, M(g)) .

V. is called differentiable Riemannian manifold with f-structure of rank r.
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In the following D will be taken as the Riemannian connexion:
(1.12) a) Dip=Dua+12, ¢, b) G, ))=G(Dap, v)+Glet, D)
If in an almost Hermite manifold V,
(1.13) (D, F)(p)=0 .
V. is called a Kahler manifold.
If in an almost Hermite manifold V.,
(1.14) (D:F)(p)+(DuF)(D)=0 ,

V.. i8 called an almost Tachibana manifold.
If in an almost Hermite manifold V,,

(1.15) a (D{F) (e, v)+ (D4 F) v, )+ (DLF)Q, =0
where
(1.15) b 'FQ, 0= GEFEQR), py=—"F(g, ) ,

V. 18 called an almost Kahler rhanifold.
If in an almost Hermite manifold V,

(1.15) ¢ (DiF ) () + (D F)F(1))=0 ,

V. is called an almost 0-manifold.
Let N be Nijenhuis tensor in V,:

(1.16) NQ@, W =FQ), F@)l+F((4, () —F(FQ), p)—F (2, F()) .

If in an almost contact manifold V,
1.17) a NG, +dAQR, ) T=0,

V. is called an almost normal contact manifold.
If in an almost Grayan manifold V,,

117 b 2'F=dA ,

V., is called an almost Sasakian manifold.
If in an almost Sasakian manifold T is a Killing vector

117 e "F(2, )=(DA)(e1)=—(DuA)2)

V. is called a Sasakian manifold.
Let V, be a sub-manifold of V, with the immersion

b: VoV,

93
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such that Xe V,— BXe V,.

Agreement [(1.1). In the above and in what follows 2, p,v,--- will be taken
as arbitrary vector fields in V,, and X,Y,Z,.-- will be taken as arbitrary

vector fields in V,
Let g be the induced metric in V,. Then

(1.18) 9(X, Y)=G(BX, BY )b
Let C be a set of unit normal vectors to V,. Then
(1.19) a G(C;, Cy)ob=0,,y
(1.19) b G(C., BX)ob=0.

2. Submanifolds

Theorem (2.1). Let F be a vector valued linear function on V,.

put

@2.1) a F(BX)=BX+p*X)C,,
where

2.1) b | XEAX) .

S being a vector valued linear function on V,

22 a F(C,)=—BP,+1C, .

Then

2.2) b F*(BX)=B{X—p.(X)P}+{p"X)+p(X)r3)C,

22) c F*(BX)=B{X—p*(X)P,— p*X)P.—r1p"(X)P,)

H{PU(X)+ (X)) 7Y+ p(X) it — p*(X) p¥(P,)}C,

2.2) d FC))=—B{P,+ 14 P}+{riri—p'(P.)}C, ,

2.2) e F*(C,)=—B{P,+ 1% P,— p"(P,)P,+r4r;P)
—{p"(Po)+rp"(P)+ p(P)ri—ririri}C,

2.2 f 'M(BX, BY)ob="m(X, Y)—p*(X)g(P,, Y)

2.2) a 9X, V)=9(X, V)—'m(X, Y)+p(X)g(P,, Y)—p(X)p*(Y)

(2.3) b G(F(BX), BY)b=9¢(X, Y),

2.3) c G(F(BX), C.)eb=p:(X) ,

Let us
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(2.3) d G(F(BX), F(C.))ob=—g(X, P.)+p"(X)r% ,
2.3) e G(F(C,), BY)ob=—g(P,, Y) ,

2.3) f G(F(C), Cy))eb=rt ,

23) g G(F(C.), F(C)ob=g(P;, P)+1%rs .

Proof. Premultiplying (2.1)a by F' and using (2.1) and (2.2) we obtain (2.2)b.
We similarly obtain (2.2)c, d, e.
From (1.11)b and (1.10)a, we have

2.3) h 'M(BX, BY)=G(M(BX), BY)=G(F*BX), BY)+G(BX, BY) .
Using (2.2)a, (1.18) and (1.19) in this equation, we get (2.2)f. Substituting (2.1)a,
and (2.2)c in
G(F(BX), F(BY))=G(BX, BY)—'M(BX, BY),
we have (2.3)a. (2.3)b-g are the consequences of (2.1) and (2.2).

Theorem (2.2). Let D be the Riemannian connexion in Vi, and D be the
wnduced connexion

(2.4) a D3xBY=BD;Y+'h.(X,Y)C.,
2.4 b D;xC,=—Bh(X)+a4(X)Cy ,
such that

@24 c gh(X), Y)="h, (X, Y),

(2.4) d at+ai=0.

Then

(2.5) (DsxF)(BY)=B(Dxf)(Y)—p*(Y)Bh(X)+'h (X, Y)BP,
+{'h (X, V) +(DepH(Y)+ 0" (V)i (X)—'MX, Y)r;}Ce
(2.6) (DsxF)(C.)=Bh,(X)+a%(X)BP,— BDP,— 1% Bhy(X)
+Hp*(h (X)) —at(X)ri+ X (%) +rhai(X)—"h(X, P,)C,
We have, using (2.1)a, (2.4)a, b and (2.2)
(DBIF )(B Y) = -ﬁan (B Y)’“F (D-BXB Y)
=Dp{BY+p*(Y)C.}— F{BD:Y+'h(X, Y)C,}
=BD; Y+'h (X, Y)C,+(Dep*NY)C,+ 2" (YH{— Bh(X)+a%t(X)Cy}
—BD;Y—"h(X, Y{—BP,+7%C,}.

This is the equation (2.5). The equation (2.6) follows similarly.



96 R.S. MISHRA

Let us assume now that the tangent space of the submanifold V,, of codimen-
sion m—n in V, is invariant under the action of F at every point. We ecall
such a manifold an invariant sub-manifold. '

Theorem (2.3). Let the submanifold V, of an m-dimensional manifold V,,
be invariant. Then

2.7) a F(BX)=BX,

@7 b F(C,)=—BP,+r.C,,

(2.8) a F*BX)=BX

2.8) b F¥BX)=BX

2.8 ¢ F*C,)=—BP,—r*BP,+rir:C,,

2.8 d F%(C,)=—BP,—r.\BP,—rir:BP,+r.ririC, ,
2.8) e 'M(BX, BY)ob="m(X, Y) ,

(2.9) a 9(X, V)=9(X, V) ~'m(X, Y),
(2.9) b G(F(BX), BY)ob=g(X, Y),

(2.9) ¢ G(F(BX), C,)ob=0,

(2.9) d G(F(BX), F(C.)b=—g(X, P,) ,
2.9 e G(F(C,), BY)eb=—g(P,, Y) ,

@9 f G(F(C,), C))ob=r%, ,

2.9) g G(F(C,), F(C))ob=g(P., P)+rir;,

2100 a  (DsxF)BY)=B(D:f)(Y)+'h(X, Y)BP,
+{h (X, T)+(Drp?)(Y)+p"(Y)ai (X)—"hy(X, Y)r}C,

(2100 b (DpeF)(C,)=Bh(X)+a%(X)BP,—~BDyP,—.Bh,(X)
+H{X(ry)—at(X)ri+riay(X)—"h(X, P)C,

Proof. Putting p*=0 in (2.1)a, (2.2), (2.3), (2.5) and (2.6), we obtain (2.7)—
(2.10).
3. Almost Hermite enveloping manifold

Theorem (3.1). Let V, be almost Hermite. Then the invariant submanifold
V. is also almost Hermite.

Proof. Since V, is almost Hermite
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3.1) F2+1=0

3.2) a) M(BX)=0, b) 'M(BX, BY)=0.
Substituting from these equations in (2.8)a, we obtain

3.3) a X+X=0.

In consequence of (3.2) and (2.8)e, the equation (2.9)a assumes the form
8.3) b 9 X, V)=9(X,7).

The equations (3.3) prove the statement.

Theorem (3.2). Let V, be almost Hermite. Then for the almost Hermite
tnvariant submanifold V,

3.9 P,=0.
3.5) F(C,)=ryC,,
3.6) a (D52 F)(BY)=B(Drf)(Y)+{'h (X, T)—'hy(X, Y)r;}C. v
3.6) b (DszF)(C.)=Bh(X)—7%,Bhy(X)+{X(r)—al(X)ri+riay(X)}C,
Proof. For the almost Hermite enveloping manifold
G(F(BX), C,)+G(BX, F(C,)=0.
Substituting from (2.9)c and (2.2)a in this equation, we get
g(P,, X)=0.

Since this equation holds for arbitrary X, we have [3.4). Putting P,=0 in (2.7)b,
(2.5) and (2.6), we obtain and (8.6).

Corollary (3.1). The invariant almost Hermite submanifold V, of a Kahler
manifold V, is Kahler. For such a manifold

3.7 'ho(X, Y)="h(X, Y)r:
8.3) a ho(X)=1%hy(X) .
3.8) b X(rs)—at(X)ri+rtai(X)=0 .

Proof. and (3.8) follow from and (3.6).

Corollary (3.2). The invariant almost Hermite submanifold V, of an
almost Tachibana manifold is almost Tachibana. For such a manifold

3.9 'ho(X, V) +'ho(X, Y)=2'ho( X, Y75 .
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Proof. The proof is obvious.

Corollary (3.3). The invariant almost Hermite submanifold V, of an
almost Kahler manifold is almost Kahler.

Proof. The proof is obvious.

4. Almost Grayan enveloping manifold

Theorem (4.1). Let the enveloping manifold V, be almost Grayan with the
structure (F, T, G, A). Then m 18 odd and

4.1) T=Bt'+§°C,

4.2 a ABX)ob=g(t', X) ,

4.2) b X+ X=a(X)t

4.2 c g, X)t'+ p*(X)P,=a(X)t
“.2) d 9(t, X)=a(X)

(4.2) e g, X)g'=p"(X)+p(X)r% ,
4.2) f »(X)=9(P,, X) ,

4.2 g r+r:=0,

(4.2) h g, X)gt',Y)+p*(X)p*(Y)='m(X, Y),
4.2) i g X, V)=9(X, ) —'m(X,7Y),
(4.2) j 9(X, V)+9(X, Y)=0

4.2) k t'=p"P, ,

4.2) 1 pv(t)+p*ry,=0

4.2) m B*=A(C,)°b

(4.2) n a(P,)=1%p"

4.2) o 0uy—BB'=9(Py, Py)+ 137y

4.2) p 1=a(t)+p°p"

4.2) q g, X)+p*(X)p*=0,

4.2) r gt'; X)=g(X, P)—p"(X)rs,

Proof. From we have
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ABX)=G(T, BX)=G(Bt’, BX)
This equation yields (4.2)a. We have
F*BX)=—BX+ABX)T.

Substituting from this equation, and (4.2)a in (2.2)b, we obtain (4.2)b, ¢, d.
The equation

G(F(BX), C,)+G(BX, F(C,))=0,
yields (4.2)f in consequence of (2.1)a and (2.2)a. Similarly the equation
G(F(C,), C,)+G(C., F(C,)=0
yields (4.2)g in consequence (2.2)a. Plugging in from
'M(BX, BY)=A(BX)A(BY)

and (4.2)a,f in (2.2)f, we obtain (4.2)h. The equation (4.2)i is a consequence of
(2.8)a and (4.2)i. The equations (2.3)b and '
G(F(BX), BY)+G(BX, F(BY))=0

yield (4.2)j. The equations and (2.1)a yield
0=F(T)=Bt’'+p*t')C,+B*(—BP,+7r%C,)
This equation implies (4.2)k,1. Substituting from and (4.2)a in

G( T! Cz) = A(Ca)
and :
G(T, F(C,))=AF(C,)=0

we obtain (4.2)m,n. In consequence of (2.2)a and (4.2)m the equation
G(F(C,), F(C))=G(C., C))—A(C,)A(C,)
yields (4.2)o. Since
1=A(T)=A(Bt')+p*A(C,)
we have (4.2)p. Substituting from and (2.1)a in
G(T, F(BX))=0,
we obtain (4.2)q.

Theorem (4.2). Let the submanifold V, of the almost Grayan mantfold
V. be invariant. Then

4.3) p*=B*=P,=A(C,)°b=0
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(4.4) a F(BX)=BX,

(4.4) b F(C,)=74C, ,

(4.4) c T=Bt=Bt’

4.4) d A(BX)ob=g(t, X)=a(X)
4.4) e X+X=a(X)t,

(4.4) £ L +ri=0

(4.4) g 9(X, ¥)—g(X, Y)=a(X)a(Y)
(4.4) h 9(X, )+9(X, V)=0
(4.4) i =0

(4.4) j at)=1

(4.4) k a(X)=0.

Proof. (4.4) follow from (4.2) by putting p=0.

Corollary (4.1). The invariant submanifold of an almost Grayan manifold
18 almost Grayan with the structure (f, a, t, g).

Proof. The equations (4.4)e, g prove the statement.

Theorem'(4.3). Let N and n be Nijenhuis tensors of the almost Grayan

manifold V., and the almost Grayan invariant submanifold V, respectively.
Then

(4.5) N(BX, BY)=Bn(X, Y) .
Proof. In consequence of (4.4)a
[F(BX), F(BY)l=[BX, BY]=BI[X, Y1,
F¥(BX, BY)=F*BIX, Y)=F(B[X, Y)=B[X, Y1,

F(F(BX), BY)=F(BX, Y))=F(B[X, K])=B[X, Y]
Hence
N(BX, BY)={F(BX), F(BY)]+F%[BX, BY])-F([F(BX), BY))
—F([BX, F(BY))])
=B[X, Y1+B[X, Y]-B[X, Y]-BI[X, Y]
=Bn(X,Y).
Corollary (4.2). We have
(4.6) (dA)Y(BX, BY)ob=(da)(X, Y) .
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Proof. (dA)(BX, BY)=BX(A(BY))—BY(A(BX))—A([BX, BY)).

Therefore

(dA)(BX, BY)ob=X(a(Y))—Y(a(X))—a(lX, Y])
=(da)(X,Y) .

Theorem (4.4). An invariant submanifold V, of a normal contact Rieman-
nian manifold V, 18 normal contact Riemannian.

‘Proof. Since V, is normal contact Riemannian
.7 ‘ NQ@, +@dA4)@x, HT=0,

which implies
N(BX, BY)+(dA)YBX, BY)T=0.

In consequence of [(4.5), and (4.4)c, we have
n(X, Y)+(da)(X, Y)t=0.
This equation proves the statement.

Theorem (4.5). An invariant submanifold V, of an almost Sasakian
manifold 18 alost Sasakian.

Proof. Since V, is almost Sasakian

2'F=dA ,
which in consequence of implies
4.8) a 2'F(BX, BY )eb=(dA)(BX, BY)eb=(da)(X, Y).
Also in consequence of (1.15)b, (4.4)a and [1.18),
4.8 b 'F(BX, BY)ob=G(F(BX), BY)eb=G(BX, BY )b

=9(X, V)="f(X, Y)

From (4.8)a, b, we have
2/ f=da
which proves the statement.

Theorem (4.6). An invariant submanifold V, of a Sasakian matfold is
Sasakian.

Proof. For the Sasakian manifold V,

'FQ, )=(DA)(g) »
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which implies
'F(BX, BY)ob=(DszA)(BY)eb
=BX(A(BY))ob— A(DszBY)ob
=X(a(Y))—A(BDY+'h.(X, Y)C,)ob
=X(a(Y))—a(DY)
=(Dra)(Y).
But since
'F(BX, BY)ob='f(X,7Y),
we have
"X, Y)=(Da)(Y) .

This equation proves the statement.

5. Enveloping manifold with F-structure

Theorem (5.1). Let the enveloping manifold V, be a differentiable manifold
with f-structure. Then

6.1) a X+ X=p*X)P.+p*(X)P.+p"(X)r; P,

1) b P"(X)+ Xy —p=(X)p(Po) + p=(X)riri=—p¥(X)
5.1) ¢ 'M(BX, BY)ob="m(X, Y)—p*(X)p*(Y),

(6.1) d g X, V)=9(X,Y)—'m(X,Y),

(5.1) e 9X, +g9(X, ¥)=0,

(6.1) £ p(X)=g(P., X) ,

.1 g rv+r;=0.

Proof. We have
F*BX)=—F(BX) .

Substituting from (2.1)a and (2.2)c in this equation, we obtain (5.1)a, b. We have
'F(BX, BY)+'F(BY, BX)=0 |

Substituting from (2.1)a in this equation we obtain (5.1)e. Similarly we have
'F(BX, C,)+'F(C,, BX)=0.

Substituting in this equation from (2.1)a and (2.2)a, we get (B.i)f (5.1)e,d are
consequences of (5.1)f, (2.2)f and (2.3)a.
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Since
’F(Cz, Cy)+,F(Cw C,,)’—:O ’
we have (b.1)g.

Theorem (5.2). Let the submanifold V, of the differentiable manifold V.,
with f-structure be invariant. We then, have

(5.2) a F(BX)=BX

(6.2) b F(C,)=r%C, ,

5.2) ¢ X+X=0,

(6.2) d 'M(BX, BY)ob='m(X, Y) ,
(6.2) e 9X, V)=g(X, Y)—'m(X, Y)
(5.2) f 9(X, V)+g9(X, Y)=0

(5.2) g P,=0,

(5.2) h rir;=0.

Proof. Putting p*=0 in (5.1), we obtain (5.2).

Corollary (5.1). The invariant submanifold V, of the differentiable
Riemannian mantfold V, with f-structure 18 the differentiable Riemannian
manifold with f-structure.

Proof. The statement follows (5.2)c, e.

Corollary (5.2). For the invariant Riemannian submanifold with f-struc-
ture of the Riemannian manifold V, with f-structure, we have

(6.3) a (DaxF)(BY)=B(Def (Y)+{'ho(X, Y)+'hy( X, Y)7)C,

(6.3) b (DsxF)(C.)=Bh(X)— 1% Bhy(X)+{—alr}
+X(rs)+rvai—riri}C, .

Proof. (5.3)a,b follow from (2.5) and (2.6) by putting p*=0.

6. Almost Hermite manifold with non-invariant submanifold :

Theorem (6.1). Let V, be an almost Hermite manifold. Then the neces-
sary and sufficient conditions that the non-invariant submanifold V, be almost
Hermite are

6.1) a »*(X)P,=0
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6.1) b p*(X)+p*(X)ry=0

6.1) c p*(X)=g(P,, X) ,

6.1)d ro+r;=0,

6.1) e O0y=9(Py, P)+rir .
Proof. When V, and V, are both almost Hermite,

6.2) a F¥BX)=—BX

6.2) b X=—X

6.2) c 'M="m=0

6.2) d G(F(BX), C.)+G(BX, F(C,))=0

6.2) e G(F(C,), C,))+G(C,, F(Cy)=0

6.2) £ G(F(C.), F(C))=G(C., Cy) .

Substituting these values in (2.2)b, (2.3)c, e, f, g we obtain (6.1).

Corollary (6.1). Let the non-invariant submanifold of a Kahler manifold
be Kahler. Then
(6.3) a. ’hg(Xy Y)P.n:pz(Y)ha(X) ’

6.3) b 'ho(X, ¥)+(Dxp?)(Y)+p¥(Y)ai (X)—"hy(X, Y)7; =0,

6.3) ¢ ho(X)+74(X)Py— D P,—r%h,(X)=0

6.3) d X(ry)—at(X)r;+riay(X)—"h(X, P,)+ p*(ho(X))—1%r;=0 .
Proof. (6.3) follow from (2.5) and (2.6).

Corollary (6.2). Let the non-invariant submanifold of an almost Tachibana
manifold be almost Tachibana. Then

6.4) a 2'h (X, Y)P,=p*(Y)ho(X)+p*(X)h.(Y)

(6.49) b 'ho( X, Y)+"ho(X, Y)+(Dep?)(Y) +(Drp?)(X)
+pY(Y)ai (X)+p"(X)a;i (Y)
=2'h (X, Y)r; .

Proof. (6.4) follow from (2.5).

(6.2). Let the enveloping manifold V, be almost Grayan with
the structure (F, T, G, A). Then the non-invariant submanifold V, is also
almost Grayan with the structure (f,t,g,a) ©f t, a are given by (4.2)c,d.
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Proof. The statement follows from (4.2)b,ec,d, h,i.

Theorem (6.3). Let the enveloping manifold V., be almost Grayan with
the structure (F, T, G, A). Let the non-invariant submanifold V, be such that

(6.5) gt’, X)t'+p*(X)P,=0.
Then V, i8 almost Hermite.

Proof. In view of (4.2)c,d and [6.5), we have

a=0=t .
Then (4.2)b, h,i assume the forms
(6.6) X+X=0
6.7) | 'm=0
(6.8) 9 X, V)=9(X,Y).

These equations prove the statement.

Theorem (6.4). Let the enveloping manifold V, be a differentiable Rieman-
nian manifold with f-structure. Let the submanifold V, be mon-invariant.
Then

6.9 a X+ X=p*X) P+ p*X)P.+p*X)rsP,
6.9) b P X) + p(X)rt+ pY(X) + p*(X)rirt=p*(X) p*(P,)
6.9) ¢ P+ P+ 7L P+ rir;P,=p¥P,)P,

6.9) d PP+ p(P)ri=rY+ririry

6.9) e 9(X, V)+g(X, Y)=0

6.9) £ »*(X)=g(P;, X) ,

6.9 g 'M(BX, C,)ob=p*(X)+ p*(X)r%,

6.9 h 'M(BX, BY)ob="m(X, Y)—p*(X)p*(Y)
6.9) i 9(X, V)=9(X, V)-'m(X, Y) .

6.9) i ri+ri=0

6.9) k 'M(C,, Cy)=0z—p*(P))—137y

Proof. We have for V,
FY(BX)=—F(BX), F¥C,)=—F(C.,).
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Substituting from these equations in (2.2)c, e and using (2.1)a and (2.2)a, we obtain
(6.9)a-d. Using (2.3)b in
'F(BX, BY)+'F(BY, BX)=0,
we get (6.9)e. Using (2.3)c, e in
'F(BX, C,)+'F(C,, BX)=0,
we get (6.9)f. Similarly using (2.8)f in
'F(C,, C)+'F(C,, C,)=0

we get (6.9)j. (6.9)g follows from (2.2)b. (6.9)h,i are obtained from (2.2)f and
(2.3)a by the use of (6.9)f. Since

G(F(Ca)) F(Cv))za(cz! Cv)_'M(Cm Cv) ’
we have (6.9)k, by the use of (2.3)g.

Theorem (6.5). Let the enveloping manifold V, be a differential Rieman-
nian manifold with f-structure. The necessary and sufficient condition that
the non-invariant submanifold V, be also differentiable Riemannian manifold
with f-structure is

(6.10) p*(X) P,+ p*(X)P,+ p*(X)rLP,=0 .
Proof. The statement follows from (6.9)a, i.
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