SUBMANIFOLDS OF CODIMENSION m-n

 $\mathbf{B}\mathbf{y}$

R. S. MISHRA

(Received January 7, 1974)

Summary. In this paper, I have studied the submanifolds of codimension m-n in an almost complex and an almost contact manifold and also a differentiable manifold with f-structure of rank r.

Chapter I. Invariant submanifolds

1. Introduction. Let V_m be m-dimensional differentiable manifold. Let there be defined in V_m a vector valued linear function F satisfying

$$(1.1) F^3 + F = 0,$$

where

(1.2) a)
$$F^{p}=F^{p-1}F$$
, b) $F^{0}=I$ (identity).

Let the rank ((F)) be r everywhere. Then r is even and V_m is called a differentiable manifold with f-structure.

We can always introduce a metric G in V_m . Let G satisfy

(1.3)
$$G(F(\lambda), F(\mu)) = -G(F^2(\lambda), \mu).$$

We are justified in taking (1.3) as it is because replacing λ by $F^2(\lambda)$ in (1.3) and using (1.1), we get the same equation. Thus there is no inconsistency or contradiction. V_m is, then, called a metric differentiable manifold with f-structure of rank r.

Let us put

(1.4) a)
$$L \stackrel{\text{def}}{=} -F^2$$
, b) $M \stackrel{\text{def}}{=} F^2 + I$

Then

(1.5) a)
$$L^2=L$$
, b) $M^2=M$, c) $L(M)=M(L)=0$, d) $L(F)=F(L)=F$, e) $M(F)=F(M)=0$.

We will consider the following three particular cases:

Case 1. rank (F)=m

In this case m is even and (1.4) a, b and (1.1) yield

(1.6) a)
$$L=I$$
 b) $M=F^2+I=0$

 V_m is called an almost complex manifold. If we introduce the metric G in V_m as in (1.3) assumes the form

(1.7)
$$G(F(\lambda), F(\mu)) = G(\lambda, \mu),$$

 V_m is then called an almost Hermite manifold and the structure (F, G) is called an almost Hermite structure.

Case 2. rank
$$(F)=m-1$$

In this case m is odd and (1.1) and (1.3) yield

(1.8) a
$$M(\lambda) = F^2(\lambda) + \lambda = A(\lambda)T$$
,

where A is a 1-form and T is a vector field. V_m is called an almost contact manifold with the almost contact structure (F, T, A). From (1.8)a, we easily deduce

(1.8) b
$$A(T)=1$$
, c) $A(F)=0$, d) $F(T)=0$

If we introduce the metric G in V_m as in (1.3), then (1.3) assumes the form

(1.9)
$$G(F(\lambda), F(\mu)) = G(\lambda, \mu) - A(\lambda)A(\mu).$$

 V_m is called an almost contact metric manifold or an almost Grayan manifold and the structure (F, T, A, G) is called an almost contact metric structure.

Case 3. rank (F) = r < m-1 (constant everywhere)

In this case r is even and (1.1) and (1.3) yield

(1.10) a
$$M(\lambda) = F^2(\lambda) + \lambda = A^{\alpha}(\lambda) T_{\alpha}, \quad r+1 \leq \alpha \leq m$$

where A^{α} is 1-form and T_{α} is a vector field. V_m is called a differentiable manifold with f-structure of rank r. From (1.10)a, we may easily deduce

(1.10) b
$$A^{\alpha}(T_{\beta})=\delta^{\alpha}_{\beta}$$
, c) $A^{\alpha}(F)=0$, d) $F(T_{\alpha})=0$.

If we introduce the metric G in V_m as in (1.3), then (1.3) assumes the form

(1.11) a
$$G(F(\lambda), F(\mu)) = G(\lambda, \mu) - M(\lambda, \mu),$$

where

(1.11) b
$${}'M(\lambda, \mu) \stackrel{\text{def}}{=} G(M(\lambda), \mu) = G(\lambda, M(\mu))$$
.

 V_m is called differentiable Riemannian manifold with f-structure of rank r.

In the following D will be taken as the Riemannian connexion:

(1.12) a)
$$\bar{D}_{\lambda}\mu = \bar{D}_{\mu}\lambda + [\lambda, \mu], \quad \text{b)} \quad \lambda(G(\mu, \nu)) = G(\bar{D}_{\lambda}\mu, \nu) + G(\mu, \bar{D}_{\lambda}\nu)$$

If in an almost Hermite manifold V_{m}

(1.13)
$$(\bar{D}_{\lambda}F)(\mu)=0$$
.

 V_m is called a Kahler manifold.

If in an almost Hermite manifold V_m

$$(1.14)$$
 $(ar{D}_{\lambda}F)(\mu)+(ar{D}_{\mu}F)(\lambda)=0$,

 V_m is called an almost Tachibana manifold.

If in an almost Hermite manifold V_m ,

(1.15) a
$$(\bar{D}'_{\lambda}F)(\mu,\nu)+(\bar{D}'_{\mu}F)(\nu,\lambda)+(\bar{D}'_{\nu}F)(\lambda,\mu)=0$$

where

(1.15) b
$${}'F(\lambda,\mu) \stackrel{\text{def}}{=} G(F(\lambda),\mu) = -{}'F(\mu,\lambda)$$
,

 V_m is called an almost Kahler manifold.

If in an almost Hermite manifold V_m

(1.15) c
$$(\bar{D}_{\lambda}F)(\mu)+(\bar{D}_{F(\lambda)}F)(F(\mu))=0$$
 ,

 V_m is called an almost 0-manifold.

Let N be Nijenhuis tensor in V_m :

(1.16)
$$N(\lambda, \mu) \stackrel{\text{def}}{=} [F(\lambda), F(\mu)] + F^2([\lambda, \mu]) - F([F(\lambda), \mu]) - F([\lambda, F(\mu)]).$$

If in an almost contact manifold V_m

(1.17) a
$$N(\lambda, \mu) + dA(\lambda, \mu)T = 0$$
,

 V_m is called an almost normal contact manifold.

If in an almost Grayan manifold V_m

(1.17) b
$$2'F = dA$$
,

 V_m is called an almost Sasakian manifold.

If in an almost Sasakian manifold T is a Killing vector

(1.17) c
$${}'F(\lambda,\mu) = (\bar{D}_{\lambda}A)(\mu) = -(\bar{D}_{\mu}A)(\lambda)$$

 V_m is called a Sasakian manifold.

Let V_n be a sub-manifold of V_m with the immersion

$$b: V_{\bullet} \rightarrow V_{\bullet}$$
.

such that $X \in V_n \Longrightarrow BX \in V_m$.

Agreement (1.1). In the above and in what follows $\lambda, \mu, \nu, \cdots$ will be taken as arbitrary vector fields in V_m and X, Y, Z, \cdots will be taken as arbitrary vector fields in V_n

Let g be the induced metric in V_n . Then

$$(1.18) g(X, Y) = G(BX, BY) \circ b$$

Let C be a set of unit normal vectors to V_n . Then

$$(1.19) a G(C_x, C_y) \circ b = \delta_{xy}$$

(1.19) b
$$G(C_x, BX) \circ b = 0$$
.

2. Submanifolds

Theorem (2.1). Let F be a vector valued linear function on V_m . Let us put

$$(2.1) a F(BX) = B\bar{X} + p^x(X)C_x,$$

where

(2.1) b
$$\bar{X} \stackrel{\text{def}}{=} f(X)$$
.

f being a vector valued linear function on V_n

$$(2.2) a F(C_x) = -BP_x + r_x^y C_y.$$

Then

(2.2) b
$$F^{2}(BX) = B\{\bar{X} - p_{x}(X)P_{x}\} + \{p^{y}(\bar{X}) + p^{z}(X)r_{z}\}C_{y}$$

(2.2) c
$$F^{3}(BX) = B\{\overline{\bar{X}} - p^{x}(\bar{X})P_{x} - p^{x}(X)\bar{P}_{x} - r^{y}_{x}p^{x}(X)P_{y}\} + \{p^{y}(\overline{\bar{X}}) + p_{z}(\bar{X})r^{y}_{z} + p^{x}(X)r^{x}_{x}r^{y}_{z} - p^{x}(X)p^{y}(P_{x})\}C_{y}\}$$

(2.2) d
$$F^2(C_x) = -B\{\bar{P}_x + r_x^y P_y\} + \{r_x^z r_y^y - p^y(P_x)\}C_y$$
,

(2.2) e
$$F^{s}(C_{x}) = -B\{\overline{\bar{P}}_{x} + r_{x}^{y} \overline{P}_{y} - p^{y}(P_{x})P_{y} + r_{x}^{y} r_{y}^{z} P_{s}\} - \{p^{y}(\overline{P}_{x}) + r_{x}^{z} p^{y}(P_{s}) + p^{s}(P_{x})r_{x}^{y} - r_{x}^{z} r_{x}^{t} r_{t}^{y}\} C_{y}$$

(2.2) f
$$'M(BX, BY) \circ b = 'm(X, Y) - p^{x}(X)g(P_{x}, Y)$$

(2.2) a
$$g(\bar{X}, \bar{Y}) = g(X, Y) - m(X, Y) + p^{x}(X)g(P_{x}, Y) - p^{x}(X)p^{x}(Y)$$

(2.3) b
$$G(F(BX), BY) \circ b = g(\bar{X}, Y)$$
,

$$(2.3) c G(F(BX), C_x) \circ b = p_x(X) ,$$

(2.3) d
$$G(F(BX), F(C_x)) \circ b = -g(\bar{X}, P_x) + p^y(X)r_x^y$$
,

$$(2.3) e \qquad G(F(C_x), BY) \circ b = -g(P_x, Y) ,$$

$$(2.3) f \qquad G(F(C_x), C_y)) \circ b = r_x^y,$$

(2.3)
$$g G(F(C_x), F(C_y)) \circ b = g(P_x, P_y) + r_x^z r_y^z$$
.

Proof. Premultiplying (2.1)a by F and using (2.1) and (2.2) we obtain (2.2)b. We similarly obtain (2.2)c, d, e.

From (1.11)b and (1.10)a, we have

(2.3) h
$$'M(BX, BY) = G(M(BX), BY) = G(F^2(BX), BY) + G(BX, BY)$$
.

Using (2.2)a, (1.18) and (1.19) in this equation, we get (2.2)f. Substituting (2.1)a, (1.18) and (2.2)c in

$$G(F(BX), F(BY)) = G(BX, BY) - M(BX, BY)$$
,

we have (2.3)a. (2.3)b-g are the consequences of (2.1) and (2.2).

Theorem (2.2). Let D be the Riemannian connexion in V_m and D be the induced connexion

$$\bar{D}_{BX}BY=BD_{X}Y+'h_{x}(X,Y)C_{x},$$

(2.4) b
$$\bar{D}_{BX}C_x = -Bh_x(X) + \alpha_x^{\nu}(X)C_{\nu},$$

such that

(2.4) c
$$g(h_x(X), Y) = h_x(X, Y)$$
,

$$(2.4) d \qquad \alpha_x^y + \alpha_y^x = 0.$$

Then

(2.5)
$$(\bar{D}_{BX}F)(BY) = B(D_Xf)(Y) - p^x(Y)Bh_x(X) + {}'h_x(X, Y)BP_x + {}'h_x(X, \bar{Y}) + (D_Xp^x)(Y) + p^y(Y)\alpha_y^x(X) - {}'h(X, Y)\gamma_y^x \}C_x$$

(2.6)
$$(\bar{D}_{BX}F)(C_x) = B\overline{h_x(X)} + \alpha_x^{\nu}(X)BP_{\nu} - BD_xP_x - \gamma_x^{\nu}Bh_{\nu}(X) + \{p^s(h_x(X)) - \alpha_x^{\nu}(X)\gamma_y^z + X(\gamma_x^z) + \gamma_x^{\nu}\alpha_y^{\nu}(X) - h_z(X, P_x)C_x \}$$

We have, using (2.1)a, (2.4)a, b and (2.2)

$$\begin{split} (\bar{D}_{Bx}F)(BY) = & \bar{D}_{Bx}F(BY) - F(\bar{D}_{Bx}BY) \\ = & \bar{D}_{Bx}\{B\,\bar{Y} + p^x(Y)C_x\} - F\{BD_xY + 'h_x(X,\,Y)C_x\} \\ = & BD_x\,\bar{Y} + 'h_x(X,\,\bar{Y})C_x + (D_xp^x)(Y)C_x + p^x(Y)\{-Bh_x(X) + \alpha_x^y(X)C_y\} \\ & - & B\overline{D_x}\bar{Y} - 'h_x(X,\,Y)\{-BP_x + r_x^yC_y\}. \end{split}$$

This is the equation (2.5). The equation (2.6) follows similarly.

Let us assume now that the tangent space of the submanifold V_n of codimension m-n in V_m is invariant under the action of F at every point. We call such a manifold an invariant sub-manifold.

Theorem (2.3). Let the submanifold V_n of an m-dimensional manifold V_m be invariant. Then

$$(2.7) a F(BX) = B\bar{X},$$

(2.7) b
$$F(C_x) = -BP_x + r_x^{\nu}C_{\nu}$$
,

$$(2.8) a F^2(BX) = B\bar{\bar{X}}$$

(2.8) b
$$F^{\mathfrak{s}}(BX) = B\overline{\overline{X}}$$

(2.8) c
$$F^{2}(C_{x}) = -B\bar{P}_{x} - r_{x}^{y}BP_{y} + r_{x}^{y}r_{y}^{z}C_{z}$$
,

(2.8) d
$$F^{8}(C_{x}) = -B\bar{P}_{x} - r_{x}^{y}B\bar{P}_{y} - r_{x}^{y}r_{z}^{z}BP_{z} + r_{x}^{z}r_{z}^{t}r_{z}^{y}C_{y}$$
,

$$(2.8) e \qquad 'M(BX, BY) \circ b = 'm(X, Y) ,$$

(2.9) a
$$g(\bar{X}, \bar{Y}) = g(X, Y) - m(X, Y)$$
,

(2.9) b
$$G(F(BX), BY) \circ b = g(\bar{X}, Y)$$
,

$$(2.9) c G(F(BX), C_x) \circ b = 0,$$

(2.9) d
$$G(F(BX), F(C_x)) \circ b = -g(\bar{X}, P_x)$$
,

(2.9) e
$$G(F(C_x), BY) \circ b = -g(P_x, Y)$$
,

$$(2.9) f G(F(C_x), C_y) \circ b = r_x^y,$$

(2.9) g
$$G(F(C_x), F(C_y)) \circ b = g(P_x, P_y) + r_x^z r_y^z$$
,

$$(2.10) \ \mathbf{a} \qquad (\bar{D}_{BX}F)(BY) = B(D_Xf)(Y) + {}'h_x(X, Y)BP_x \\ + \{{}'h_x(X, \bar{Y}) + (D_Xp^x)(Y) + p^y(Y)\alpha_y^x(X) - {}'h_y(X, Y)r_y^x\}C_x$$

(2.10) b
$$(\bar{D}_{BX}F)(C_x) = B\overline{h_x(X)} + \alpha_x^{\nu}(X)BP_{\nu} - BD_xP_x - \gamma_x^{\nu}Bh_{\nu}(X) + \{X(r_x^z) - \alpha_x^{\nu}(X)r_x^z + r_x^{\nu}\alpha_x^z(X) - h_x(X, P_x)\}C_x$$

Proof. Putting $p^x=0$ in (2.1)a, (2.2), (2.3), (2.5) and (2.6), we obtain (2.7)—(2.10).

3. Almost Hermite enveloping manifold

Theorem (3.1). Let V_m be almost Hermite. Then the invariant submanifold V_n is also almost Hermite.

Proof. Since V_m is almost Hermite

(3.1)
$$F^2 + I = 0$$

(3.2) a)
$$M(BX)=0$$
, b) $M(BX,BY)=0$.

Substituting from these equations in (2.8)a, we obtain

(3.3) a
$$\bar{\bar{X}} + X = 0$$
.

In consequence of (3.2) and (2.8)e, the equation (2.9)a assumes the form

(3.3) b
$$g(\bar{X}, \bar{Y}) = g(X, Y)$$
.

The equations (3.3) prove the statement.

Theorem (3.2). Let V_m be almost Hermite. Then for the almost Hermite invariant submanifold V_n

$$(3.4) P_{r}=0.$$

$$(3.5) F(C_x) = r_x^y C_y ,$$

(3.6) a
$$(\bar{D}_{BX}F)(BY) = B(D_Xf)(Y) + \{'h_x(X, \bar{Y}) - 'h_y(X, Y)r_y^x\}C_x$$

(3.6) b
$$(\bar{D}_{BX}F)(C_x) = B\overline{h_x(X)} - r_x^y Bh_y(X) + \{X(r_x^s) - \alpha_x^y(X)r_y^s + r_x^y \alpha_y^s(X)\}C_s$$

Proof. For the almost Hermite enveloping manifold

$$G(F(BX), C_x) + G(BX, F(C_x)) = 0$$
.

Substituting from (2.9)c and (2.2)a in this equation, we get

$$g(P_x, X)=0$$
.

Since this equation holds for arbitrary X, we have (3.4). Putting $P_x=0$ in (2.7)b, (2.5) and (2.6), we obtain (3.5) and (3.6).

Corollary (3.1). The invariant almost Hermite submanifold V_n of a Kahler manifold V_m is Kahler. For such a manifold

(3.7)
$$h_x(X, \bar{Y}) = h(X, Y)r_y^x$$

$$(3.3) a \overline{h_x(X)} = r_x^{\nu} h_{\nu}(X) .$$

(3.8) b
$$X(r_x^s) - \alpha_x^v(X)r_y^s + r_x^v\alpha_y^s(X) = 0.$$

Proof. (3.7) and (3.8) follow from (3.5) and (3.6).

Corollary (3.2). The invariant almost Hermite submanifold V_n of an almost Tachibana manifold is almost Tachibana. For such a manifold

(3.9)
$$h_x(X, \bar{Y}) + h_x(\bar{X}, Y) = 2h_x(X, Y)r_y^x$$
.

Proof. The proof is obvious.

Corollary (3.3). The invariant almost Hermite submanifold V_n of an almost Kahler manifold is almost Kahler.

Proof. The proof is obvious.

4. Almost Grayan enveloping manifold

Theorem (4.1). Let the enveloping manifold V_m be almost Grayan with the structure (F, T, G, A). Then m is odd and

(4.1)	$T = Bt' + \beta^x C_x$
(4.2) a	$A(BX)\circ b=g(t',X)$,
(4.2) b	$ar{ar{X}} + X = a(X)t$
(4.2) c	$g(t', X)t' + p^x(X)P_x \stackrel{\text{def}}{=} a(X)t$
(4.2) d	g(t, X) = a(X)
(4.2) e	$g(t',X)eta^y = p^y(X) + p^x(X)r_x^y$,
(4.2) f	$p^x(X)=g(P_x,X)$,
(4.2) g	$r_x^y + r_y^x = 0$,
(4.2) h	$g(t', X)g(t', Y) + p^{x}(X)p^{x}(Y) = m(X, Y)$,
(4.2) i	$g(\bar{X}, \bar{Y})=g(X, Y)-m(X, Y)$,
(4.2) j	$g(X, \bar{Y})+g(\bar{X}, Y)=0$
(4.2) k	$ar{t}'{=}eta^x P_x$,
(4.2) l	$p^y(t') + \beta^x r_x^y = 0$
(4.2) m	$eta^x = A(C_x) \circ b$
(4.2) n	$a(P_x) \!=\! r_x^y eta^y$
(4.2) o	$\delta_{xy} - eta^x eta^y = g(P_x,P_y) + r_x^z r_y^z$
(4.2) p	$1=a(t)+eta^xeta^y$
(4.2) q	$g(t,ar{X})\!+\!p^x\!(X)eta^x\!\!=\!0$,
(4.2) r	$g(t', X) = g(\bar{X}, P_x) - p^{y}(X)r_x^{y}$,

Proof. From (4.1) we have

$$A(BX)=G(T,BX)=G(Bt',BX)$$

This equation yields (4.2)a. We have

$$F^2(BX) = -BX + A(BX)T$$
.

Substituting from this equation, (4.1) and (4.2)a in (2.2)b, we obtain (4.2)b, c, d. The equation

$$G(F(BX), C_x)+G(BX, F(C_x))=0$$
,

yields (4.2)f in consequence of (2.1)a and (2.2)a. Similarly the equation

$$G(F(C_x), C_y) + G(C_x, F(C_y)) = 0$$

yields (4.2)g in consequence (2.2)a. Plugging in from

$$'M(BX, BY) = A(BX)A(BY)$$

and (4.2)a, f in (2.2)f, we obtain (4.2)h. The equation (4.2)i is a consequence of (2.3)a and (4.2)i. The equations (2.3)b and

$$G(F(BX), BY) + G(BX, F(BY)) = 0$$

yield (4.2)j. The equations (4.1) and (2.1)a yield

$$0 = F(T) = B\bar{t}' + p^x(t')C_x + \beta^x(-BP_x + r^y_xC_y)$$

This equation implies (4.2)k, l. Substituting from (4.1) and (4.2)a in

$$G(T, C_x) = A(C_x)$$

and

$$G(T, F(C_x)) = A(F(C_x)) = 0$$

we obtain (4.2)m, n. In consequence of (2.2)a and (4.2)m the equation

$$G(F(C_x), F(C_y)) = G(C_x, C_y) - A(C_x)A(C_y)$$

yields (4.2)o. Since

$$1 = A(T) = A(Bt') + \beta^x A(C_x)$$

we have (4.2)p. Substituting from (4.1) and (2.1)a in

$$G(T, F(BX))=0$$
,

we obtain (4.2)q.

Theorem (4.2). Let the submanifold V_n of the almost Grayan manifold V_m be invariant. Then

$$p^{x} = \beta^{x} = P_{x} = A(C_{x}) \circ b = 0$$

(4.4) a
$$F(BX)=B\bar{X}$$
,
(4.4) b $F(C_x)=r_x^\nu C_\nu$,
(4.4) c $T=Bt=Bt'$
(4.4) d $A(BX)\circ b=g(t,X)=a(X)$
(4.4) e $\bar{X}+X=a(X)t$,
(4.4) f $r_x^\nu+r_x^\nu=0$
(4.4) g $g(\bar{X},\bar{Y})-g(X,Y)=a(X)a(Y)$
(4.4) h $g(X,\bar{Y})+g(\bar{X},Y)=0$
(4.4) i $\bar{t}=0$
(4.4) j $a(t)=1$

Proof. (4.4) follow from (4.2) by putting p=0.

 $a(\bar{X})=0$.

Corollary (4.1). The invariant submanifold of an almost Grayan manifold is almost Grayan with the structure (f, a, t, g).

Proof. The equations (4.4)e, g prove the statement.

Theorem (4.3). Let N and n be Nijenhuis tensors of the almost Grayan manifold V_m and the almost Grayan invariant submanifold V_n respectively. Then

$$(4.5) N(BX, BY) = Bn(X, Y).$$

Proof. In consequence of (4.4)a

$$[F(BX), F(BY)] = [B\bar{X}, B\bar{Y}] = B[\bar{X}, \bar{Y}],$$

$$F^{2}([BX, BY]) = F^{2}(B[X, Y]) = F(B[\overline{X}, Y]) = B[\overline{X}, Y],$$

$$F([F(BX), BY]) = F([B\bar{X}, Y]) = F(B[\bar{X}, Y]) = \overline{B[\bar{X}, Y]}$$

Hence

(4.4) k

$$N(BX, BY) = [F(BX), F(BY)] + F^{2}([BX, BY]) - F([F(BX), BY])$$

$$-F([BX, F(BY)])$$

$$= B[\bar{X}, \bar{Y}] + B[\bar{X}, \bar{Y}] - B[\bar{X}, \bar{Y}] - B[\bar{X}, \bar{Y}]$$

$$= Bn(X, Y).$$

Corollary (4.2). We have

$$(dA)(BX, BY) \circ b = (da)(X, Y) .$$

Proof. (dA)(BX, BY) = BX(A(BY)) - BY(A(BX)) - A([BX, BY]).

Therefore

$$(dA)(BX, BY) \circ b = X(a(Y)) - Y(a(X)) - a([X, Y])$$
$$= (da)(X, Y).$$

Theorem (4.4). An invariant submanifold V_n of a normal contact Riemannian manifold V_m is normal contact Riemannian.

Proof. Since V_m is normal contact Riemannian

$$N(\lambda,\lambda)+(dA)(\lambda,\lambda)T=0,$$

which implies

$$N(BX, BY)+(dA)(BX, BY)T=0$$
.

In consequence of (4.5), (4.6) and (4.4)c, we have

$$n(X, Y) + (da)(X, Y)t = 0$$
.

This equation proves the statement.

Theorem (4.5). An invariant submanifold V_n of an almost Sasakian manifold is alost Sasakian.

Proof. Since V_m is almost Sasakian

$$2'F=dA$$
.

which in consequence of (4.5) implies

(4.8) a
$$2'F(BX, BY) \circ b = (dA)(BX, BY) \circ b = (da)(X, Y)$$
.

Also in consequence of (1.15)b, (4.4)a and (1.18),

(4.8) b
$${}'F(BX, BY) \circ b = G(F(BX), BY) \circ b = G(B\overline{X}, BY) \circ b$$

= $g(\overline{X}, Y) = {}'f(X, Y)$

From (4.8)a, b, we have

$$2'f=da$$

which proves the statement.

Theorem (4.6). An invariant submanifold V_n of a Sasakian maifold is Sasakian.

Proof. For the Sasakian manifold V_m

$$'F(\lambda,\lambda)=(D_2A)(\mu)$$
.

which implies

$$'F(BX, BY) \circ b = (\bar{D}_{Bx}A)(BY) \circ b$$

$$= BX(A(BY)) \circ b - A(\bar{D}_{Bx}BY) \circ b$$

$$= X(a(Y)) - A(BD_xY + h_x(X, Y)C_x) \circ b$$

$$= X(a(Y)) - a(D_xY)$$

$$= (D_xa)(Y).$$

But since

$$'F(BX, BY) \circ b = 'f(X, Y)$$
.

we have

$$'f(X, Y)=(D_xa)(Y)$$
.

This equation proves the statement.

5. Enveloping manifold with f-structure

Theorem (5.1). Let the enveloping manifold V_m be a differentiable manifold with f-structure. Then

(5.1) a
$$\bar{\bar{X}} + \bar{X} = p^x(\bar{X})P_x + p^x(X)\bar{P}_x + p^y(X)r_y^xP_x$$

(5.1) b
$$p^{y}(\bar{X}) + p^{x}(\bar{X})r_{x}^{y} - p^{x}(X)p^{y}(P_{z}) + p^{x}(X)r_{x}^{x}r_{z}^{y} = -p^{y}(X)$$

(5.1) c
$$'M(BX, BY) \circ b = 'm(X, Y) - p^{x}(X)p^{x}(Y)$$
,

(5.1) d
$$g(\bar{X}, \bar{Y}) = g(X, Y) - m(X, Y)$$
,

(5.1) e
$$g(\bar{X}, Y) + g(X, \bar{Y}) = 0$$
,

(5.1) f
$$p^x(X) = g(P_x, X)$$
,

$$(5.1) g r_x^y + r_y^z = 0.$$

Proof. We have

$$F^{8}(BX) = -F(BX)$$
.

Substituting from (2.1)a and (2.2)c in this equation, we obtain (5.1)a, b. We have

$$'F(BX,BY)+'F(BY,BX)=0$$

Substituting from (2.1)a in this equation we obtain (5.1)e. Similarly we have

$$'F(BX, C_x) + 'F(C_x, BX) = 0$$
.

Substituting in this equation from (2.1)a and (2.2)a, we get (5.1)f (5.1)c, d are consequences of (5.1)f, (2.2)f and (2.3)a.

Since

$$'F(C_x, C_y) + 'F(C_y, C_x) = 0$$
,

we have (5.1)g.

Theorem (5.2). Let the submanifold V_n of the differentiable manifold V_m with f-structure be invariant. We then, have

(5.2) a
$$F(BX)=B\bar{X}$$

$$(5.2) b F(C_x) = r_x^y C_y,$$

(5.2) c
$$\overline{\bar{X}} + \overline{X} = 0$$
,

(5.2) d
$$'M(BX, BY) \circ b = 'm(X, Y)$$
,

(5.2) e
$$g(\bar{X}, \bar{Y}) = g(X, Y) - m(X, Y)$$

(5.2) f
$$g(X, \bar{Y}) + g(\bar{X}, Y) = 0$$

$$(5.2) g P_x=0,$$

(5.2) h
$$r_x^y r_y^z = 0$$
.

Proof. Putting $p^x=0$ in (5.1), we obtain (5.2).

Corollary (5.1). The invariant submanifold V_n of the differentiable Riemannian manifold V_m with f-structure is the differentiable Riemannian manifold with f-structure.

Proof. The statement follows (5.2)c, e.

Corollary (5.2). For the invariant Riemannian submanifold with f-structure of the Riemannian manifold V_m with f-structure, we have

(5.3) a
$$(\bar{D}_{BX}F)(BY) = B(D_Xf)(Y) + \{h_x(X, Y) + h_y(X, Y)r_x^y\}C_x$$
,

(5.3) b
$$(\bar{D}_{BX}F)(C_x) = B\bar{h}_x(\bar{X}) - r_x^y Bh_y(X) + \{-\alpha_x^y r_y^z + X(r_x^z) + r_x^y \alpha_y^z - r_x^y r_y^z\}C_x .$$

Proof. (5.3)a, b follow from (2.5) and (2.6) by putting $p^x=0$.

6. Almost Hermite manifold with non-invariant submanifold:

Theorem (6.1). Let V_m be an almost Hermite manifold. Then the necessary and sufficient conditions that the non-invariant submanifold V_n be almost Hermite are

(6.1) a
$$p^{x}(X)P_{x}=0$$

(6.1) b
$$p^{x}(X) + p^{x}(X)r_{x}^{y} = 0$$

(6.1) c
$$p^x(X) = g(P_x, X)$$
,

(6.1) d
$$r_x^y + r_y^z = 0$$
,

$$\delta_{xy} = g(P_x, P_y) + r_x^z r_y^z.$$

Proof. When V_m and V_n are both almost Hermite,

$$(6.2) a F^2(BX) = -BX$$

(6.2) b
$$\bar{\bar{X}} = -X$$

(6.2) c
$$'M='m=0$$

(6.2) d
$$G(F(BX), C_x) + G(BX, F(C_x)) = 0$$

(6.2) e
$$G(F(C_x), C_y) + G(C_x, F(C_y)) = 0$$

(6.2) f
$$G(F(C_x), F(C_y)) = G(C_x, C_y)$$
.

Substituting these values in (2.2)b, (2.3)c, e, f, g we obtain (6.1).

Corollary (6.1). Let the non-invariant submanifold of a Kahler manifold be Kahler. Then

(6.3) a
$$h_x(X, Y)P_x = p^x(Y)h_x(X)$$
,

(6.3) b
$$h_x(X, \bar{Y}) + (D_x p^x)(Y) + p^y(Y)\alpha_y^x(X) - h_y(X, Y)r_y^x = 0$$
,

(6.3) c
$$\overline{h_x(X)} + r_x^{\nu}(X)P_{\nu} - D_x P_x - r_x^{\nu} h_{\nu}(X) = 0$$

(6.3) d
$$X(r_x^2) - \alpha_x^y(X)r_y^2 + r_x^y\alpha_y^2(X) - h_x(X, P_x) + p^2(h_x(X)) - r_x^yr_y^2 = 0$$
.

Proof. (6.3) follow from (2.5) and (2.6).

Corollary (6.2). Let the non-invariant submanifold of an almost Tachibana manifold be almost Tachibana. Then

(6.4) a
$$2'h_x(X, Y)P_x = p^x(Y)h_x(X) + p^x(X)h_x(Y)$$

(6.4) b
$$'h_x(X, \bar{Y}) + 'h_x(\bar{X}, Y) + (D_x p^x)(Y) + (D_y p^x)(X) + p^y(Y)\alpha_y^x(X) + p^y(X)\alpha_y^x(Y) = 2'h_y(X, Y)r_y^x.$$

Proof. (6.4) follow from (2.5).

Theorem (6.2). Let the enveloping manifold V_m be almost Grayan with the structure (F, T, G, A). Then the non-invariant submanifold V_n is also almost Grayan with the structure (f, t, g, a) if t, a are given by (4.2)c, d.

Proof. The statement follows from (4.2)b, c, d, h, i.

Theorem (6.3). Let the enveloping manifold V_m be almost Grayan with the structure (F, T, G, A). Let the non-invariant submanifold V_n be such that

(6.5)
$$g(t', X)t' + p^{x}(X)P_{x} = 0.$$

Then V_n is almost Hermite.

Proof. In view of (4.2)c, d and (6.5), we have

$$a=0=t$$
.

Then (4.2)b, h, i assume the forms

$$(6.6) \bar{\bar{X}} + X = 0$$

$$(6.7) 'm=0$$

(6.8)
$$g(\bar{X}, \bar{Y}) = g(X, Y)$$
.

These equations prove the statement.

Theorem (6.4). Let the enveloping manifold V_m be a differentiable Riemannian manifold with f-structure. Let the submanifold V_m be non-invariant. Then

(6.9) a
$$\bar{X} + \bar{X} = p^x(\bar{X})P_x + p^x(X)\bar{P}_x + p^x(X)r_x^y P_y$$

(6.9) b
$$p^{y}(\bar{\bar{X}}) + p^{z}(\bar{X})r_{x}^{y} + p^{y}(X) + p^{z}(X)r_{x}^{z}r_{z}^{y} = p^{z}(X)p^{y}(P_{x})$$

(6.9) c
$$\bar{p} + P_x + r_x^y \bar{P}_y + r_x^y r_y^z P_z = p^y(P_x) P_y$$

(6.9) d
$$p^{y}\bar{P}_{x}+p^{z}(P_{x})r^{y}_{z}=r^{y}_{x}+r^{z}_{x}r^{t}_{z}r^{y}_{t}$$

(6.9) e
$$g(\bar{X}, Y) + g(X, \bar{Y}) = 0$$

(6.9) f
$$p^{x}(X) = g(P_{x}, X)$$
,

(6.9) g
$$'M(BX, C_x) \circ b = p^x(\bar{X}) + p^y(X)r_x^y$$

(6.9) h
$$'M(BX, BY) \circ b = 'm(X, Y) - p^{x}(X)p^{x}(Y)$$

(6.9) i
$$g(\bar{X}, \bar{Y}) = g(X, Y) - m(X, Y)$$
.

(6.9) j
$$r_x^y + r_y^x = 0$$

(6.9) k
$$'M(C_x, C_y) = \delta_{xy} - p^x(P_y) - r_x^z r_y^z$$

Proof. We have for V_m

$$F^{8}(BX) = -F(BX)$$
, $F^{8}(C_{x}) = -F(C_{x})$.

Substituting from these equations in (2.2)c, e and using (2.1)a and (2.2)a, we obtain (6.9)a-d. Using (2.3)b in

$$'F(BX,BY)+'F(BY,BX)=0$$
,

we get (6.9)e. Using (2.3)c, e in

$$'F(BX, C_x) + 'F(C_x, BX) = 0$$
,

we get (6.9)f. Similarly using (2.3)f in

$$'F(C_x, C_y) + 'F(C_y, C_x) = 0$$

we get (6.9)j. (6.9)g follows from (2.2)b. (6.9)h, i are obtained from (2.2)f and (2.3)a by the use of (6.9)f. Since

$$G(F(C_x), F(C_y)) = G(C_x, C_y) - M(C_x, C_y)$$
,

we have (6.9)k, by the use of (2.3)g.

Theorem (6.5). Let the enveloping manifold V_m be a differential Riemannian manifold with f-structure. The necessary and sufficient condition that the non-invariant submanifold V_n be also differentiable Riemannian manifold with f-structure is

(6.10)
$$p^{x}(\bar{X})P_{x}+p^{x}(X)\bar{P}_{x}+p^{x}(X)r^{y}_{x}P_{y}=0.$$

Proof. The statement follows from (6.9)a, i.

Department of Mathematics, Banaras Hindu University, Varanasi 221005.