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IN a previous memoir,! the author obtained various expressions for Ellip-
soidal Wave-functions. During the course of that work, it appeared that
the methods adopted there would give useful results in the case of Ellip-
soidal Harmonics also. Owing to other work, the publication of these results
has been very much delayed.

In this paper asymptotic expressions for large orders of the functions
and the characteristic constants are obtained.

The fundamental form of LLamé equation adopted in this paper is
A?E[dE® —{n (n + 1) R2sn2é +AYE =0 (1)
using Jacobian elliptic functions. # is an integer and A is one of the
characteristic constants that will lead on solution to an Ellipsoidal
Harmonic.

It has bzen shown by Whittaker? that the Ellipsoidal Harmonics satisfy

elegant integral equations.
K + 2/K’

B, ()=ir /| P, (monécnn)E, @) dy (2)
K — 2K’

2K 1
B, (5= / P, (3 dn € ann)E, () dn (3)

K
2K
E, (§)=X / P, (ksnésnm) B, (1) dn. (4)

— 2K
The limits of integration for (2) have been changed to suit the conditions
of the problem.

X + 2/K” ik
ixn  f P, (757 en € on 77) E, (7) dn
K —2/K’

1 See The Ind. Jour. Phys., 1934, 9, 45.
2 Proc. Lond. Math. Soc.,1915, 14, (2), 260, and also Whittaker and Watson, Modern

Analysis, 564.
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can be written as
K + 7K’ iE ’ . L
477 f P, (737’ cn & cn ”7) b (n) dn where
K .
4 (n) =B, (20K’ + 2K — 1) + Eyu (n) + (=) B, (ZK — 1)
+ (=) Baln — %K)

i (n) is a polynomial in ¢n 7 and hence in the range of imtegration, 1t 1s
continuous, bounded function with limited total fluctuation. According as

ikJR en Eenmis > or < 1

7 ' . .
P, (%, cn & on 7;) is asymptotically equivalent to

exp (n» + %) { cosh—? }'5— cné cn 1;}

R? 1
- 2mn {—mcnzfcnzn—l}‘*
v

5 cos {(n + 1) arc cos %&cn Eenm — w/i}

2 i
(1 + = cn? € cn? 77)4

or —
nir

if n 1s large.
These forms show that the method of steepest descents could profitably
be applied to obtain the dominant terms for the asymptotic expressions for

E, (£§). Writing the first expression as

exp (# + 1) cosh™! cn &- exp— (n + %) {cosh—1 cn & — cosh—1 %chn Ecn ”’l}

2 1

& 2mn {-—— %—é on® £ cn? g — 1}Z
it is seen that the main contribution to the integral is obtained in the
neighbourhood of the point n = K 4 i{K’. From the meéthod of stationary

phase, it is seen that if even the second form of P, (’g en £ cn ’?) is used

the main contribution is from the same point 7 = K + iK’. Hence it is
sufficient to consider the asymptotic value for P,, when 7% is nearly K 4 7K',
In the present investigation it may be assumed that ¢né >> 1. Then

471 :
To-exp (n + ) coshton £

K+ exp — (n + 1) {cosh‘l en & — cosh™? g cn £ cn 77}
o . -- zjb(»q) dyn. (5)
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To obtain the dominant term, it is sufficient if 7 is replaced by K + K’

. . k -1 .
in the expression i (7) {—-— 77 cn? Ecn? y — l} * as it is bounded and has

limited total fluctuation in the range of integration and the argument of the
exponential term is expanded in terms of K +¢K’ — % and terms higher
than the square are neglected.

Putting n =K 4+ K’ —i0it tollows that

i En (E) ~

L3

V S {en & + V(en? é— L +1 4 (K4 1K) (cn? € — 1)_

K’ 2
o cn €
X‘S/EXP ——%(%—I—%) '\/(C’nfzf'*l).da
9 (R-HK)
n Aen &
As E,, (£) is a polynomial in ¢n ¢ it follows that

{on € + ¥(em? &€ — 1)}*+1 (6)

,En (‘f) ~

y fn & o Wlom & —1yd
NVoen €

When the Ellipsoidal Harmonic is a polynomial in dn ¢ it follows from (3)

En (f) -~

- %{En (K + iK') + (—)*E, (K — iK’)

7z i
2 (0 + B Ry LY (2 | ®
Corresponding to (4)
__A._ K)} {k % f + ‘\/(kz sn? & — 1)}” +%.

%k’ {En (K) +( '— )” Eﬂ (—" '\/m (9)

The arguments ¢cn § +tsn é;dn é +ken £ and 2 sn ¢ 47 dn € are doubly
periodic functions of £. It follows that if equation (1) has asymptotic
expansions of Horn and Jeffreys type in the form § &*+¢ the
choice has to be limited by the condition that €% is a doubly periodic

function.
Let the following expansion be assumed :
E (§) =¢ P8 {1 + f1/(n+3) + fol(n+ 3)* +
A=a,(n+3§?+a.(n+3) +a +arf(n+14) +
where i, ¢, f1, fo - + - are functions of § only, a_,, a_,, ap - - - are constants
and independent of #. Substituting the above in equation (1) and equating
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coefficients of powers of (# + %) it is seen that
% — (R2sn* & +a,) =0
. zqsll!‘l
=+ — G =
9{) ¢ 1
207 + 4" —ag — L A2t €) =0
20°fs + Y fuff A+ 2 1" — (a0 — fREsnE ) —ay =0

----------------------------

............................

where dashes denote differentiation with respect to ¢ ;

or
+ [a-yd&f A (@ A2 sn® £)
_ const e
(61_2 + R? sn? €)%
Jr{ 'é)“”0+-s1’b2§}

If €% has to be a doubly-periodic function there are only three types
of possible values for ¢’, namely, + 2Asn £; X sk en é;E idn £ Lorre<p0ndmg
to the following values of a_,: 0, — &? and — 1 respectively.

When ¢’ = x & sn £ the value of i is

dn & — cn ENt a-1/24.
A sn é k' sn £
Hence to a first approximation
_ rlnf——kcn f)"’f% dn & — cn ENe-1124
En(f)—vsng[ ( klsng

(dn & — k cn §) n=% fdn § — cn & —a-uzie:]
sn &

where A and B are constants. As du f — R2cn?é = k2 and dn?é — cnPé =
k’2sn2¢ it follows that the function E, (£) would be doubly-periodic and
symmetrical about the usual points if and only if A = £+ B and a_,/2% is
I + 1 where ! is an integer. And

o (21 +1) £ (@ +17 4+ l)cnfdnf}

Y1 { o st £

1 e S
+ z{“o~%(1 + &%) (l2+l+%)} 1og‘z”‘k§m§m$xo
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the constant of integration may be omitted as it will finally multiply the
whole function by a constant. If f,. and f,_ are the two values of f; corres-
ponding to £ & sn ¢ + ¢’ then to a second approximation

B, (6) = A entdd oy (1 4+ Jit )

n + %

+ B (18, (1 . nfj;

But this function is not symmetrical or anti-symmetrical about ¢ =X
with the condition A = + B unless the logarithmic terms disappear. Hence

G =1 (1 +R) (2 +1+3).

Similarly at all stages of working it will he nécessary to equate the coeffi-
cients of logarithmic terms to zero.

A statement of the values of the first three functions and the cor-
responding constants are given helow :—

a_, ¢’ e”+h ¢
— +(z+3)
0 + kst (d%f k,kcn 6) (z+ %
— k2 + ken € ' (dn & + 1tk sn §)E(n+ 1)
— 1 + idn £ (en é +1sn =+
@-1 ‘ P
1 dn & — cn ENE 0+ D
1 i
2k (1 +3) A sn € R'sn & )

21k (I + %)

dn & + R sn £ \*+ (/+31)
«/cnf( cn & )

ok (I + )

(cn &+ iR sn f)i (Z+ 1)
N odn ¢ dn &
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ay

S

R A (P4 )

B2, —1 (1 + 1) (B — %

PR+ DO+ A

)

— @2+ xS+ I+ 1)onédn €
4% sn® £

— Q2 +DEF @I+ Dsnédn €
: 41k cn® £

— Q2+ DRI+ R2snécen €

4; dn® &

As usual, this last method of obtaining the asymptotic expansion is less

cumbersome than the earlier adopted in this paper.

There are three distinct asymptotic expansions for the value of the
characteristic constant as in the case of the Ellipsoidal Wave-functions.
The first and the third lead to real values of A while the second expression
gives a complex value of A. The exact significance of these complex values

is not known.

The constants of the asymiptotic expansions may easily be obtained by
comparing them with the expressions obtained earlier by the method of

steepest descents in (7), (8) and (9).
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