ON A METHOD OF SOLVING LINEAR
DIFFERENTIAL EQUATIONS IN SERIES.

By S. I, MALURKAR,
Agra. .

Received December 1, 1936.

GIVEN a linear differential equation

fD)y +1Iy =0
where D = d[dx ; and I is a function of x only, it is a common method of
solution to substitute for y in the above equation a series of form 2 a,, u,, (x)
where the a’s are constants and #’s are linearly independent functions of x
only and obtain the values of the constant coefficients. There occur several
problems in applied mathematics where the above method is insufficient to
determine the mutual relation between the coefficients. Also the usually
known methods of solving the differential equations do not lead to solutions
which would be readily interpretable for the actual problems. As a parti-
cular example one may notice ‘

(D? —aty?y =1y
which type of equations occur in stability problems. As the method is

capable of application to other problems also, a brief account of the method
of solution that has been introduced would perhaps be of interest.*

Take the very simple example
Dy —p% =0
and assume, in theinterval — 7 < x<<m, a fourier series{ A,+ X A,, cos nx +
2 B, sin mx and substitute this in the differential equation and
equate the coefficients of cos nx and sin #x to zero. The only relation that
is obtained is Ay, =0 = A,, = B,, unless 7p i1s a real integer. This null
solution is obviously incorrect as it is well known that cosh px and sinh px
have wvalid fourier expansions in the interval. However in this particular
example, the solution could have been obtained otherwise.

Returning to the general problem let f (D) be a polynomial in D and let
it be assumed that the differential equation f(D)y = 0 can be completely

* See ¢.g. ‘“ On the Differential Equation of the Instability Problems.” S. L. Malurkar
and M. P. Srivastava. Proc.Ind. Acad. Sci., 1937, 5, 34. L
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solved in terms of known functions. With the knowledge of this solution
the complete solution of the equation
fD)y =1y | (1)
is attempted here.
Assume that in the interval — 7 <x <=
y=%A, +2 A, cos nx +2 B, sin nx
Substitute this value of y only on the right side of the equation in (1). Then
it can be written as
FDO)y ={3Ay +Z A, .cos nx +2 B, sin nx} I (2)
The solution of equation (2) is
¥y =Y + P (x)
where Y is the complementary solution involving the appropriate number
of arbitrary constants and P (x)-is a particular solution of the modified
differential equation (2). Let it be assumed that ¥ and P (x) can be dev-
eloped as fourier series. I.et P (x) be written as
1Cy +2C,cosnx +2D,sin nx_

The Cs and D’s are obviously functions of the A’s and B’s. Comparing the
fourier series for ¥ <4 P (x) with the original assumption for y, it easily
follows that

A.o""Co =

A=

:}‘,._.

A, —-C, = Y cos nx dx (3)

Fhe
1

1 T
B,—D,= 7 Y sin nx dx
-7

Hence the C’s and D’s and therefore the A’s and B’s are obtained as func-
tions of the arbitrary constants involved in Y. The function P (x) can be
expressed free from unknown constants apart from those involved in Y.
The arbhitrary constants can be evaluated by applying the boundary condi-
tions to the function ¥ + P (x). Then the values of the A’s and B’s are
determinable completely.

In this method it may be pointed out that the equation (1) is solved in
two stages. An assumption for y in a series form is made only for a portion
of the terms of the differential equation. Then the modified differential
equation is solved completely. The solution now obtained is compared or
equated to the original assumption.
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A simple example of the application of the method to a differential
equation whose solution can also be found out by other simpler methods is
given here. Take

dyldx® — a*y = Ny (4)
In the interval 0 <& < 7 it is sufficient to assume a fourier sine series in
the form ]
y =2 A, sin nx
Then the equation (4) is transformed to
Byldx? — a*y =2 A, sin nx (5)
and this modified equation is solved.
It is easy to show that the solution of (5) is
y =Bcosha (/2 —x) + Csinha (7/2 — %)
— 22X A, sin nx[(n? + a?)
The forms cosh a (w2 — x) and sinh a (#/2 — %) are better as the fourier
expansions of these need contain either only the odd or even multiples of

%. As in the interval 0 <zx <w

2 .
cosh a (n/2 — %) = ;:‘J’o n (1 — cos wwr) cosh an/2 sin nx/(n? 4 a?)
1

and
2 oo
sinh 4 (72 —x) = -2 n (1 + cos nn) sinh am /2 sin nx/(n® + a?)
1

it follows fro~m a comparison of the solution of the (5) with the assumed
series for y before the modification was made that

2B cosh an/2 ‘ 2C sinh aw/2
A, = w(n2+a2)/ (1 — cos nm) 4+ &)

(1 + cos nn)

— XA, [(n?+a?)
or
In

Bu = ZGET TN
Hence comparing with the expansions above it is seen that

__ B cosh an/2 ¢ sinh an/2
Y= “cosh b2 “sinh b2

where b2 = a2 + A? which would have been the solution had the differential
equation been solved in the form

(@%dx? — 0¥y =0 .
Take another example

{B cosh an/2 (1 — cos #m) + C sinh an[2 (1 + cos nm)}

cosh b(m[2 — x) + sinh b(m/2 — x)

dydxt + pty =0 (6)
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where p is not an integer and the solution which vanishes at ¥ = 0 and
x = is required. The equation might be split up into two portions as

dyldx® = — p2y
Assume that in the interval 0 <x <<= y has the expansion X A, sin nx.
The modified differential equation which has to be solved is

Ay ldx? = — p2 X A, sin nx
whose solution is obviously

L+Mx—-j>ZZA’2‘ sin nx

Cémparing this with the original assumption it follows that
2 (1 — cos nw) I, — 2M cos nr =7mn A, (1 — p?/n?)

Applying the boundary conditions to the form of the solution obtained after
integration it follows that

L-~O——M A,, and hencey =0

In any practicable method of solution of any differential equation in
series, term by term differentiation enters invariably and the justification of
the process can be made mostly after the solution has been obtained in some
series form. If the resulting series lead to Avdivergent types the process is
given up as not legitimate. In the present method, z.e., in the determination
of the particular solution of the modified differential equation term by term
integration is mostly involved. The necessary justification of convergence

of the solution obtained will be less than in the case of term by term differ-
entiation.

The method given above can be put slightly in a more general symbolic

form. If the differential equation f (D)y = 0 can-be split up into two terms
and the equatlon is capable of being written as

iy +f. D)y =0 (7)
where f; (D) and f, (D) are two polynomials in D and the order of the poly-
nomial f; is greater than that of the polynomial f, ; it may be assumed that

vy =% Ay + 2 (A, cos nx + B, sin ux)
and the differential equation may be solved in the modified form
[y = —fa(D){} Ay + = (A, cos nx + B, sin nx)} (8)
This equation may be solved as before with the knowledgc» of the solution of
fi M)y =0 in the form y =Y 4-P (x). Comparing the fourier coeffi-
cients of Y 4 P (x) with the A’s and B’s, -the mutual relations are obtained.

By applying the boundary conditions to ¥V + P {(x) as before the cémplete
solution is obtained. .
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Instead of assuming fourier type of series, it is often possible and some-
times preferable to assume expansions involving other functions which form
a complete orthogonal set, e.g., the Legendre functions, the normal Mathieu
functions or the many wave-functions that have come into prominence
in quantum mechanics. Of course in these cases f (D) need not be purely
a polynomial in D. The differential equation is broken up into two suitable
parts in one of which the series in terms of the orthogonal functions 1s
substituted. The modified differential equation is then completely solved
and this solution is compared with the original assumed expansion and the
coeflicients determined.

In suhsequent papers the author hopes to publish the utility of these
methods in solving actual problems in applied mathematics.



