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1. Introduction. Let G be a connected semisimple Lie group and ir an

irreducible unitary representation of G on a Hubert space. Let C"(G) denote

the class of all (complex-valued) functions on G which vanish outside a com-

pact set and which are indefinitely differentiable everywhere. Then we have

seen in [8 ] that for any fE C" (G) the operator

/
f(x)-w(x)dx

(dx is the Haar measure on G) has a trace which we shall denote by Tr(f).

The mapping TT: f—>TT(f) is then a distribution which depends only on the

equivalence class of it. Hence if £ is the set of all equivalence classes of ir-

reducible unitary representations of G, we have a distribution P„ defined for

each wGÊ. Our object is to find a (positive) measure du on £ such that

/(1) =feTu<J)du u^c"(g))

at least in case G is a complex group. Let/' be the function^) x—»conj (/(x-1))

(xEG) and let F=f *f where   *  denotes group convolution. Then

F(x) = j f'(y)f(y-1x)dy = f conj (f(y))f(yx)dy

and therefore f\f(x) \ 2dx = F(\) -ftTm(f * f)du. But

T,(f'*f) = II ff(xMx)dx\
Il J

where I •    denotes the Hilbert-Schmidt norm. Hence

(if E w)

J \f(x)\2dx= f£NM)do)

where Na(f) — \\ff(x)Tr(x)dx\\2 for any 7rGw. This formula may be regarded

as the analogue of the Plancherel formula for abelian groups or of the Peter-

Weyl completeness relation for compact groups (see Gelfand and Naimark

[3, p. 198]).
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(') For any complex number c we denote the conjugate of c by conj c.
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Although the final formula of this paper is applicable only when G is

complex, the complex structure of G plays no essential role in the earlier

stages of the computation. Hence, in the hope that the present method could

perhaps be extended to arbitrary semisimple Lie groups, we shall avoid mak-

ing the assumption about the complexity of G until it becomes absolutely

necessary.

2. Some preliminary results. Let g0 be the Lie algebra of G over the field

R of real numbers. We define fo, f)t>„, and rt0 as in [6, §2]. Let K, A+, N be the

analytic subgroups of G corresponding to f0, f)t>0, and n0 respectively. Then

K is closed and it contains the center Z of G. Let fo = [fo, fo] be the derived

algebra and c0 the center of f0- We denote by K' and D the analytic sub-

groups of K corresponding to f0' and c0 respectively. X' is semisimple and

compact and D, being the connected component of the centralizer of X' in

X, is closed. Put G*=G/DC~\Z and let x—>x* denote the natural mapping of

G on G*. Then X* is compact. We shall say that a representation it of G on

a Banach space is permissible if 7r(z) is a scalar multiple of the unit operator

for all zEZC\D.

Let il be the set of all equivalence classes of finite-dimensional simple

representations of X.

Lemma 1. Lei it be a representation of G on a Hilbert space §. For any

35 G Œ let §© denote the subspace consisting of all those elements in § which

transform under w(X) according to 35. Suppose the following two conditions are

fulfilled.
(i) -it is permissible.

(ii) There exists an integer N such that dim §£>:£ A¿(35)2 for all 35 G Œ.

(Here <i(35) is the degree of any representation in 35.)

Then if fEC™(G) the operator Jf(x)ir(x)dx fulfills the conditions of Lemma 1

of [8].

The proof is exactly the same as that given in §5 of [8]. We can therefore

conclude from Lemma 1 of [8] that Jf(x)ir(x)dx has a trace. We denote this

trace by T*(f) and prove exactly as in §5 of [8] that the mapping P*:/—>PT(/)

(fEC"(G)) is a distribution which depends only on the equivalence class of

it. We shall call TT the character of it.

Lemma 2. Let it be a permissible unitary representation of G on a Hilbert

space ¡Q. Suppose dim §d< °° for every 35 GŒ. Then § can be written as a

sum(2) of a countable number of mutually orthogonal closed subspaces each of

which is invariant and irreducible under ir(G).

By going over to the simply connected covering group of G it follows that

(2) The sum here is understood in the sense of Hilbert space theory. It denotes the closure

of the algebraic sum.
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for any homomorphism £ of Z into the field C of complex numbers we can

find a homomorphism 77 of K into C such that 77(2) = ?(z) for zET)C\Z (see §9

of [6]). Therefore in particular we can choose 77 such that ■k(z)=t\(z)-k(\)

(zED(~\Z). Then r}(u~l)iv(u) (uEK) depends only on u* and if we denote it

by ir*(u*) the mapping tt*: w*—>tt*(m*) is a representation of K* on §.

Let ß* be the set of all equivalence classes of finite-dimensional simple rep-

resentations of K*. We denote by §J, (35 G ß*) the subspace of those ele-

ments in § which transform under ir*(K*) according to 35. Then it is clear

that dim §|)< °o. Since K* is a compact Lie group, ß* is a countable set.

Hence we can arrange its elements in a sequence 3),- (i^ 1). We shall now de-

fine a sequence of closed subspaces $>¡ (j^O) with the following properties:

(i)  §y is invariant under ir(G).

(¡i) $o Eii sk
(iii) §y+0§j and the orthogonal complement of §,- in §J+i is the sum of

a finite number of mutually orthogonal closed spaces each of which is in-

variant and irreducible under tr(G).

We proceed by induction on j. Put §0 = {0}. Now suppose £>y has been

defined. Let V,- be the orthogonal complement of ¿py in §. Since w is unitary,

Vj is invariant under 7r(G). Let Vj,-z=Vji\^ (35Gß*). It is clear that

$»-Vi.»+$/^$» (35Gß*). If Fy,Sí+1={0} we put $/+i = & and all the
three conditions are verified. Now suppose Vi'j>f+l^ {O). Then

0 < dim V/,a>y+1 á dim §Sy+1 < °°.

We shall now define a sequence of mutually orthogonal closed subspaces Wr

(r±±0) which are invariant and irreducible under ir(G). Put PFo={Oj and

suppose Wi (Omitir) have already been defined. Let Ur be the orthogonal

complement of Wy+ ■ • • +Wr in V,-. If c7rPi§Jí+1= {0} put H^r+i = {0}.

So now let us suppose dim (c7rP\§Jlj.+1)>0. Let S be the collection of all

closed subspaces U of Ur which are invariant under 7r(G) and such that

Ur\&®}+1¿¿{0}. Choose UE2 such that 5 = dim UC\^j+l has the least

possible value and define Wr+i to be the smallest subspace in 2 which con-

tains Ur\$$>J+v We claim Wr+i is irreducible. For let Wr+i=W'+W" where

W, W" are two mutually orthogonal closed subspaces of Wr+i which are

both invariant under ?r(G). Since dim T^r+i^§J,i+I^5>0, at least one of

the spaces W'C\&%j+l, W"í~\^¡+1 is not zero. Suppose WT\&®j+l9¿ {o}.

Then W'E2 and in view of the definition of s, siSdim WT\^*^j+1. But

W'EWr+iEU and therefore

s á dim (W C\ §sd.+1) g. dim (Wr+i r\ $»,+l) ^ dim (£/ H &%j+l) = s.

Hence WT\$e/+1=» Wr+ifMç&j+l= fiH^« and so it follows from the defi-

nition of Wr+i that Wr+iEW. This proves that W =Wr+i and so Wr+i is

irreducible.
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Notice that l^r+i={o} if and only if £/rn§|/+1= {o} and Wr+i^ {o}

implies TFr+ir\§|,i+1^ {o}. Since

dim (Ur H §*d>+1) > dim (Ur+i C\ §©y+1)

unless î//ïJPsd,-+1 = {o} and since dim |>|,i+i< °°, it follows that W,= {o}

for r sufficiently large. Let r be the least integer ^ 0 such that Wr+i = {0}.

Then Urr\®&j+1={o} and therefore Vi&i+1CWi + ■ ■ ■ +Wr. Now put

!Qi+i = $$j+Wi+ • ■ ■ +Wr. Then all the three conditions are fulfilled and

the induction is therefore complete.

After this preparation we now come to the proof of the lemma. Let

§y+i = §y+ ¿JiSrS«,- W® where Wf are closed subspaces which are invariant

and irreducible under tt(G) and which are orthogonal to §,- and to each

other. Then it is obvious that

©W = £    E   w^r0 (i è 0).
tiiij lSrâsj

Let £>' be the closure of 12i>o ¡Qj+i in §. Then |j'D Z®G"* €>î) = E®en &*>•
Since Escgn &%> 1S dense m © (see Theorem 4 of [6, Part III, §9]) it follows

that § = §'. Therefore § is the closure of 12ao ¿CiS'S'j W?5 and the lemma

is proved.

Lemma 3. Let tti, it2 be two unitary representations of G both satisfying the

conditions of Lemma 1. Then if they have the same character they are equivalent.

Let §,- be the representation space and TT. the character of 7r¿ (i=í, 2).

Suppose P»j = PX2=P (say). Then if fEC™(G) and

F(x) = J conj (f(y))f(yx)dy,

it is clear that FEC™(G) and

II C 2     II f
7(7) =     | f(x)iri(x)dx      =     I f(x)r2(x)dx

II */ || */

Hence P^O unless 7r¿(x)=0 (¿ = 1, 2) for all xEG. But since ir¿(l) is the

unit operator on §,-, this is possible only if £>i = §2= {o}. Since the lemma is

true in this trivial case, we may assume that P^0. Choose/G G" (G) such

that T(f)^0. For any zEZ putfz(x) =f(z~lx) (xEG). Then

Tr(f.) = TM - W)T.tf) - Uz)T(f) (i = 1,2)

where 7r¿(z) = £¿(z)7t¿(1). Since P(/)?¿0 it follows that £i(z) =£2(z). Hence we

can find a homomorphism 77 of 7C into C such that n(z) =£i(z) =^2(z) if

zEZC\D. Now define as above a representation 7r* of X* by putting x*(w*)

= 77(m-1)7Tj(m) (uEX) and let §*j> denote the subspace of those elements in
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§,• which transform under tt*(X*) according to 35 (35GŒ*, *«"1, 2). Again

we arrange the elements of Í2* in a sequence 35y (js£l). In view of Lemma 2,

ÍQi can be written as a sum(2) of mutually orthogonal subspaces Wi,kr¿ {o}

each of which is invariant and irreducible under 7r¿. Here k runs over some

subset Ni of integers (i=l, 2). We shall now define a 1-1 mapping a of Ni

onto Ni such that the representations of G induced on Wi,k and Wi.am under

tti and 7T2 respectively are equivalent. This would prove the lemma.

For any j let A¿(35y) denote the subset of A¿ consisting of those kENi

for which Wi^&l^.^ {o}. Since z2jïh (Wi^CM^^.) is dense in Wi<k
(Theorem 4 of [6, '§9]) it follows that Um Ni('£>j)=Ni. Put Mitj

= Uigráy A¿(35r) (i^l) and let Mi:o denote the empty set. We shall now

define a 1-1 mapping a of Ai onto N2 with the following properties:

(i) a(Ai(35,-))=A2(35y) (jfcl).
(ii) The representations induced on Wx,k and Wi,aik) (kENi) under wi

and 7T2 respectively are equivalent.

We proceed by induction on/ Suppose a has been defined as a 1-1 map-

ping Mi,r~i onto Mi.r~i (r^l) satisfying the above two requirements for

j^r — i and &G-M~i,r_i. We shall now extend it on Mi,r. We may clearly

assume that at least one of the above two sets Ni(£)r), A2(£)r) is not empty

since otherwise Mi.r = Mi,r-i (¿ = 1,2) and no extension is needed. Let Pi,k and

P,,® denote the orthogonal projections of §,• on Wi,k and §*<j, respectively

(35GO*, *=1, 2). Put

4>i.k(x) = sp (P,-,svP¿,iir<(*)£¿,sD,),

4>i(x) = sp (Ei,®rTTi(x)Ei,s,r) (k E Ni,    x EG).

Then

4>i =     Z-i     4>i.k (i = 1, 2).
kE.Ni(®,)

We claim <pi=<pi. For otherwise <p = cpi— <£2?¿0 and we can find a function

fEC"(G) such that J<p(x)f(x)dx9é0. Then as we have seen in the proof of

Theorem 6 of [8], there exists a function /' G C™ (G) such that

P¿,sr> I f(x)in(x)dx =  I /'(*)xí(*)¿*.

Hence

rn(/0 - T,2(f) = ff(x)4>(x)dx * 0

which contradicts our hypothesis that Tr¡ = PX;¡. Therefore

¿^ 4>l,k   = ¿^ 02,fc-
*G Wl CDr) fcE 2V2 (S)r)
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Since Wi¡kr\§lvr7¿{0) (¿G^¿(35r)) it follows that4>i,k(\)^0 for ¿GiV¿(35,).
Now suppose ^GA7'i(35r)nikfi,r_i so that a(k) has already been defined. Then

by induction hypothesis, the representations induced on Wiik and W2iC1(k)

are equivalent and therefore <pi,k=<j>i,a(k)- Since (^.¿(l) j¿0, <£2,a(&)(l) ̂ 0 and

therefore W2,a(k)r\&* ^^ {o\. Hence a(k) EN2(&r)r\M2,r-i. Conversely sup-

pose lEN2(£>0^M2,r-i. Since a is a 1-1 mapping of ili"i,r-i onto Af2,r-i there

is exactly one &G-Mi,r-i such that l = a(k). Moreover the representations in-

duced on Wi,k and W2,aik) = W2,t are equivalent. Therefore since W2j

^^2*,®r^{0}, it follows that Wi,kr\$lvr?£{0}. Hence ¿GiVi(35r)nAf1,r_1.

This proves that a maps iVi(35r)rWi,r_i onto Ar2(35r)fW2,,._i. Let N{ (3)r) be

the complement of N,(35r)P\Af,-,,■_! in NiC&O («"l, 2). Then it is clear from

what we have said that

2\i     4>i,k =      2_      4>i.k-

Let xpi, ■ ■ ■ , \j/s be all the distinct functions among <piik (^GArj(35r), i = l, 2).

We know that none of these are zero and therefore from Theorem 1 of [8]

it follows that each \pt (l^t^s) appears the same number of times in the

two sums on either side of the above equation. This means that we can find a

1-1 mapping k—>a(k) of iVj(35r) onto A^2(35r) such that <pi,k = <pi,«ou^O. In view

of Theorem 1 of [8] and Theorem 8 of [6, §11 ], we can conclude that the

representations induced on Wi,t and W2¡a(k) (kEN{ (35r)) are equivalent.

Thus a is now defined on Mr and satisfies all the requirements. Therefore our

induction is complete and the theorem follows.

Notice that if ¿GiV¿(35) (35 Gß*), the representations induced on Wi¡k

and Wij cannot be equivalent unless /G-Af,(35). Hence if cr is any unitary

irreducible representation of G, there are only a finite number of values of k

such that the representation induced on Witk is equivalent to cr. Let w¿(u)

(i=l, 2) be this number. Then the above proof shows that Wi(<r) =n2(cr). In

particular if iri=ir2 = ir (say), this number, which we now denote by n(cr), is

independent of the particular decomposition of § into mutually orthogonal

invariant irreducible subspaces. If « is the equivalence class of a, we call

n(a) the multiplicity of co in 7r. It is clear from Lemma 1 that for any /

GC(G),

TAD =   Z n(oS)Ta(f)
„eg

where Pu is the character and n(w) the multiplicity of « in ir and the series is

absolutely convergent. We may therefore write

TT =   Y,n(o))Ta.
»EC

Let T be a distribution on G. We shall say that T is a character of G if

there exists a representation 7r satisfying the conditions of Lemma 1 such that
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P is the character of tt. T is said to be unitary or irreducible if it may be chosen

to be unitary or irreducible.

3. Computation of some characters. We know that the mapping (u, h, n)

-^uhn (uEX, hEA+, nEN) is a homeomorphism of XXA+XN onto G.

Since ZEX, A+ and N are mapped isomorphically under the mapping x—»x*

of G on G*=G/DC\Z. Therefore we may identify A+N with its image under

this mapping. Then (u*, h, n)—*u*hn (u*EX*, hEA+, nEN) isa topological

mapping of X*XA+XN onto G. For any xEG put

x*u* = u*h(x, u*)n

where u*EX*, h(x, u*)EA+, and nEN. Then u * and h(x, u*) are continu-

ous functions of (x, u*) on GXX*. Since A+ is simply connected, the mapping

77—>exp H (77Gf)p„) maps í)Vo topologically onto A+. We denote its inverse by

Ä—>log h (hEA+). Put i7(x, u*) =log h(x, u*). Finally let y(x, u*) denote the

unique element in X such that

u~lxu E y(x, u*)A+N (x EG,u*E K*).

Here u is any element in X lying(3) above u*.

Normalise the Haar measure du* on X* so that the total measure of X*

is 1. Let 7] be a homomorphism of X into C and A a (complex-valued) linear

function on f)Po. We regard the space ¡Q=L2(X*) of all square-integrable

functions on X* as a Hilbert space in the usual way and define a representa-

tion it of G on § as follows. If fE¡Q and xEG,

*•(*)/(«*) = v(y(x-\ u*)) exp { - (A + 2P)(H(x-\ u*)) }/(«*-*)        (m* G K*).

Here ir(x)f(u*) denotes the value of the function ir(x)f at u* and p has the

same meaning as in [6, §12]. It is easy to verify (see [6, §12]) that it is in

fact a representation.

Let nto, f)t0, and f)0 be the subalgebras of g0 as defined in [6, §2] and let

Mo, A°_, and A0 be the corresponding analytic subgroups of G. Then A0 is

a maximal connected abelian subgroup of G and therefore it is closed. Let

M and A^ respectively be the centralizers of A+ and A0 in X. Then they

are both closed subgroups of X. Since m0 and f)t0 respectively are the cen-

tralizers of f)Po and f)o in f0 (see Lemma 4, §2 of [6]), Af0 and A°_ are the com-

ponents of identity of M and A^ respectively. Put A =A+A— We shall see

later that A is exactly the centralizer of A° in G.

Lemma 4. Let m be an element in M. Then mNm~l = N.

Let g be the complexification of g0 and f), f)„, f)t, m the subalgebras of g

spanned by f)0l ^oi f)t()l trio respectively over C. We define positive roots of g

(3) Let V be the space of all cosets xB {xEG) with respect to a closed subgroup B of G

Then we say that x lies above v (xEG, vE V) if x lies in the coset v.
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(with respect to f)) and divide them into two disjoint classes P+ and P_ as

described in [6, §2]. For every root a select an element Xa^0 in g such that

[H, Xa]=a(H)Xa (HEi)). Then if n= 2Z«ep+ CXa and n~= T.a&P+ CX^a
we have g = f)„ + m+n-f-n_. Let x—»Ad (x) denote the adjoint representation

of G on g. Then if mEM, Ad (m)H = H and therefore [H, Ad(m)Xa]

= a(H)Ad (m)Xa for all i?Gf)s and a EP+- Since [f)),,m]= {o} it follows from

the above decomposition of g that Ad (m)XaEn (aEP+)- Hence Ad (m)n = n

and therefore mNm~l = N.

Let M* denote the image of M in K*. Then M* is the centralizer of A+

in K*, and therefore it is closed and hence compact. Let Mx be any subgroup

of M containing MoZ. Let M* and M0* denote the images of Mi and M0 re-

spectively in K*. Then Mo* is the connected component of M* and therefore

M*/Mo* is both compact and discrete and hence finite. From this it follows

that M* is compact. We normalise the Haar measure dm* on M* so as to

make the total measure of M* equal to 1.

Let t denote the right regular representation of K* on § so that r(v*)f(u*)

=f(u*v*) (u*, v*EK*, /G§). Then it follows easily from Lemma 4 that

r(m*) commutes with tt(x) if xGG and m*EM*. Put

T —  I f(x)ir(x)dx,        S =   I    g(m*)r(m*)dm*
•I J m\

where/GC"(G) and g is a continuous function on M*. Now if vEK,

T(v)<b(u*) = ,(tr»)^(»*-»«*) (<b E$,u*E K*).

Therefore it follows from the Peter-Weyl Theorem for K* that no irreducible

representation of K occurs more often in the reduction of ir(K) than its de-

gree. Hence Lemma 1 is applicable. Since 51 is a bounded operator it follows

(see Lemma 1 of [8]) that TS is of the trace class. We propose to compute

Sp (TS).
Let 0 be a continuous function on K*. For a fixed m* in M* put <p'

= r(m*)(p. Then

T<b'(u*) =   I f(x)w(x)<b'(u*)dx =  i f(ux-l)ir(ux-x)(b'(u*)dx

where u is some element in K lying above u*. Let dv, dh, dn denote the Haar

measures on K, A+, and N respectively. We normalise dv in such a way that

for any continuous function \(/ on K which vanishes outside a compact set,

T 4f(v)dv =  I    yf/*(v*)dv*
J K J K*

where \p*(v*)= ZtEdoz ip(vy)  (vEK).  Moreover we assume that dx, dh,

and dn are so normalised that
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dx = exp {2p(log h) }dvdhdn (x = vhn; v E X, h E A+, n E N)

(see Lemma 35 of [6, §12]). Then

T<b'(u*) =   ff(u(vhn)-l)r,(u-lv)4>'(v*) exp {A(log h)}dvdhdn

=   | f(u(hn)~1v~í)r¡(w1v)<¡>(v*m*) exp {A(log h)}dvdhdn.

Now since A+is abelian and N is nilpotent, they are both unimodular. Hence

I  f(u(hn)~lv~l)dhdn =   I f(unhv~l)dhdn.

But nh = h(h~lnh) and for a fixed Ä, d(h~lnh)=exp { — 2p(log /¿)}áw as fol-

lows easily from Lemma 5 of [6, §2]. Therefore

I f(u(hn)^v~l)dhdn =   f f(uhnv_1) exp {2p(log h)}dkdn

TS<j>(u*) =   I f(uhnv~1)r¡(w~lv)(p(v*m*)g(m*) exp {(A + 2p)(log h)}dvdhdndm*.

and

Put

î'(m, î)) =   I /(M/mu-1)7?(w-1ii) exp {(A + 2p)(log h)}dhdn (u, v E X).

Since / vanishes outside a compact set it is clear that for a fixed v, F(u, v)

vanishes outside a compact set on X. Since F(u, vy) = F(uy~1, v) (yEZ) it

follows that the sum Et^zod F(u> ^ ^s defined and depends only

on (u*, v*). Put

F(u*, v*) =     12    F(u, vy).
yGzC\D

Then it is seen without difficulty that P* is an indefinitely differentiable

function on X*XX* and

TS<t>(u*) =  [ F*(u*, v*)<b(v*m*)g(m*)dv*dm*

=  I F*(u*, v*m*~1)(p(v*)g(m*)dv*dm*

=   I   $(m*, v*)<p(v*)dv*
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where

$(w*, v*) =  I   F*(u*, v*m*~1)g(m*)dm*.
J M*

Thus TS is represented here as an integral operator with the kernel 4>. It is

clear that«!? is also indefinitely difierentiable on X*XX*. In order to compute

Sp TS we make use of the following lemma.

Lemma 5. Let\(u*, v*) be an indefinitely differentiate function on X*XX*

and let L be the bounded linear operator on L2(X*) defined by

Lcb(u*) =   f X(w*, v*)<p(v*)dv* (<b E Li(R*)).

Then if(*) L is of the trace class

sp L =  I    \(u*, u*)du*.
J K*

As above let £2* denote the set of all equivalence classes of simple finite-

dimensional representations of X*. For every 35GŒ* choose a unitary

matrix representation o-® in 35. Let ¿(35) denote the degree and of¡, 1 &i,j

rjSd(35), the matrix coefficients of cr53. Then the functions d(35)1/2cr®, i&ij

^¿(35) (35GŒ*), form a complete orthonormal set in L2(X*). Hence if L

is of the trace class,

sp L =   12 ¿(35) (o-ij, Lo-ij)
rDEsi*

=   12 ¿(35) f   xs)(m*-iî'*)X(m*, v*)du*dv*
re£a* J k*

where x© is the character of the class 35 and (\p, cp) denotes the usual scalar

product in L2(X*) ty, <pEL2(X*)). Put

Xo(i>*) =   f X(7<*, u*v*)du*.

Then \o(v*) is an idefinitely differentiable function on X* and

sp 7 =   12 ¿(O)  f xb(v*)\o(.v*)dv*.
set!-      J

Let § be the Banach space of continuous functions <p on X* with the norm

(4) It is not difficult to show by the method of §5 of [8] that L is in fact of the trace class.

However we do not need this fact here.
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\<t>\ =supx* |<p(z>*)|. For u*EK* let l(u*) denote the bounded linear operator

on §> given by

l(u*)4>(v*) = 4>(u*-h*) (<j> E £, v* EK*).

Then u*—>l(u*) is a representation of K* on §. Since Xo is of class C°° it is

differentiable under / (see [6, §9]). Therefore if we use the arguments of the

proof of Lemma 3 of [8] we see that the series EsE"* d('&)x®(v*~1)l(v*)'kodv*

converges absolutely in £> to Xo. Hence

E d(D) f Xv(v*)\o(v*u*)dv*
SFil* JSDÊQ*

converges uniformly to Xo(m*) on K*. Putting u* = l* we get

sp L = Xo(l*) =  I X(«*, u*)du*.

If we apply the above lemma to the operator TS we get

sp TS =   I   $(«*, u*)du* =   I F*(u*, u*m*~y)g(m*)du*dm*.

Now Mi is the complete inverse image of M* in K. Therefore it is closed.

We normalise the Haar measure dm on Mi in such a way that for any con-

tinuous function a on Mx which vanishes outside a compact set,

/a(m)dm =   I    a*(m*)dn
M, J MÏ

where a*(m*)= E-yEznß <x(my)  (mEMx). Then if we recall the definition

of F* we find that

I F*(u*, u*m*~1)g(m*)dm*

=   I F(u, um~l)g(m*)dm

=   I f(uhnmu~l)r¡(mrl)g(m*) exp {(A + 2p)(log h)\dhdndm

where u is any element in K lying above w*. Now hnm = mh(m~lnm) and for

fixed wj, d(m~lnm) =dn. Hence

$(m*, m*) =   | f((mhn)u*)-n(m~l)g(m*) exp {(A + 2p)(log h)\dhdndm

(where xu* = mxm-1) and therefore
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sp TS =  I f((mhn)u')-n(mrl)g(m*) exp {(A + 2p)(log h)}du*dhdndm.

Now let miEMi. Then

(mimmr1hn)u" = (mhn')u""t (m E Mi, h E A+, n E N)

where «' = mï1nmiEN. From this it follows that

sp TS = sp TS'

where5'=/mÎ g'(m*)r(m*)dm* and g'(m*) =g((mimmï')*) (mEMi). Hence it

is clear that

sp TS =  j /((w/m)"*)'?^-1)?*^*) exp [(A + 2p)(log h)}du*dhdndm

where £*(j»*) = JMig(m*m*m*~1)dm*.

Now let a be an irreducible unitary matrix representation of Mí of de-

gree d and let <tí¡, 1 ̂ i,j^d, denote its matrix coefficients. Put

En = d I     o-ij(m*-1)T(m*)dm*', 1 ^ », j = ¿,
J My

and Ei = Eu (l^i^d). Then P¿ are mutually orthogonal projections which

commute with w(x) (xEG). Hence if ¡Q=Li(X*), §< = £<§, l^i^d, are

closed subspaces which are invariant under ir(G). Let ir i be the representa-

tion of G induced on §,- under it. Then it is clear that the operator

Jf(x)iTi(x)dx is of the trace class and

SP (  Í f(x)Ti(x)dx\ = sp TEi.

But

d f   <rn(mtm*m?-l)dm? = £*(m*) (w* G Mí)

where ¿* is the character of <r. Hence

sp(  f f(x)iTi(x)dxJ =  f/((w/m^'Mw-1)^™*-1)

• exp {(A + 2p) (log Ä)} du*dhdndm.

Let <r' be the representation of A7Í contragredient to <r. Define a representa-

tion cr" of Mi as follows:

u"(m) = v(m~l)a'(m*) (m E Mx).

Let 5 be the equivalence class and £ä the character of a". Then
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Um) = v(m-l)e(m*-1) (m E Mi).

Hence(6)

SP (   Í  f(x)in(x)dx\ = TA,i(f)

where

Ta,s(J) =   I f((mhn)u')%s(m) exp {(A + 2p)(log h)]du*dhdndm.

Let o)Mi be the set of all equivalence classes of finite-dimensional simple

representations of Mi. Then we have proved the following theorem.

Theorem 1. Let A be a linear function on f)^ and 5 a class in wm¡. Let £j

denote the character of 5. Let Pa.j denote the distribution given by

TaAD =  \    h(m)dm f f((mhn)"') exp {(A + 2p)(log h))du*dhdn
J M1 J

(/GG"(G)). Then Pa,« is a character of G.

The above formula shows that Pa,a is not only a distribution but actually

a measure (see [10]). Therefore it may be regarded as a continuous linear

functional on the space CC(G) of all continuous functions on G which vanish

outside a compact set. Moreover we know (see [6, §12]) that if A+p takes

pure imaginary values on f)Po and 177(x) | =1 (xEG), ir (and therefore it«) is a

unitary representation of G. Hence PA,« is a unitary character if A+p is pure

imaginary on i)Vo and 5 is a unitary class (i.e. the class of a unitary representa-

tion of Mi). For any 35Gß let (35:5) denote the number of times 5 occurs in

the reduction of 35 with respect to Mi. Then we know (see A. Weil [12, p. 83]

and [6, §12]) that 35 occurs exactly (35:5) times in the reduction of ir{ with

respect to K.

We shall now derive another expression for the character Pa,s when

Mi = MoZ. Since ZEK, every element hEA°Z can be written uniquely as

h = h+h„ where h+EA+ and h„EA°_Z. Let A0* be the image of A°_ in K*.
Then .41.* is a maximal abelian subgroup of the compact Lie group M0*.

Hence every element in M0* is conjugate (with respect to Mo*) to some ele-

ment in A0*. Therefore it follows from known theory (see Weyl [13]) that if

the Haar measure ¿A_ on A°_Z is suitably normalised

/y(m)dm =  \     y(hJ)A4h_)2dh-

(6) Since EjiEi = E¡ and Eí,Ej = E¡ and En commutes with t(x), it is clear that tt; and tj

are equivalent under the mapping <l/^>En4< (i^G©») of í>< onto $,-.
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for any continuous class function y on M0Z which vanishes outside a com-

pact set. Here

A_(Ä_) =      II   (ea(-H)n - e-"«1"2)
oGP-

where H is any element in f)r0 such that hi) exp HEZ. If we put

y(m) = %i(m)  I f((mhn)u') exp {(A + 2p)(log h)}du*dhdn

we get the following result.

Lemma 6. It is possible to normalize the Haar measures dh- and dh+ on

A°_Z and A+ in such a way that

2V,(/j-  f    i,(A_)A-(*-)2<**- f /((*-*+»)"•)

•exp {(A + 2p)(log h+)}du*dh+dn

for every linear function A ow f)So, 5Gwm„z and fEC™(G).

4. Transformation of certain integrals. We keep to the notation of §2.

Let X—»ad X (AGgo) denote the adjoint representation of g0. We say that

an element A G go is singular if the characteristic polynomial of ad X in the

indeterminate X is divisible by XI+1 (/ = dim f)0). The coefficient of X! is clearly

a polynomial function(6) F(X) on g0 which is not identically zero. Since X

is singular if and only if F(X) =0, it follows that the set of singular elements

is closed and nowhere dense in the Euclidean space go. We call an element

regular if it is not singular. Let x—>Ad (x) (xEG) denote the adjoint repre-

sentation of G on g0. It is clear that Ad (x)X (xEG) is regular if and only if X

is regular.

Lemma 7. Let H be a regular element in f)o- Suppose x is an element in G

such that Ad (x)77Gf)o- Then xEA'_A+ where A'_ is the normalizer of A" in X.

Since 77 is regular, f)0 is the centralizer of 77 in g0. Hence Ad (x)f)0 is the

centralizer of Ad (x)77. But since Ad (x)77Gf)o, f)o is contained in this cen-

tralizer and therefore fjoCAd (x)f)0. Since f)0 and Ad (x)f)0 have the same

dimension, f)0 = Ad (x)f)0- Let x = uhn' (uEX, hEA+, n'EN). Since hn'=nh

where « = hn'h~lEN we get

Ad («_1)f)o = Ad (nh)í)o = Ad (»)fj0 C f)o + n0.

On the other hand Ad (w_1)f)t>oOo and p0n(f)0+lto) = f)p0 where p0 is defined

(6) Let F be a vector space over R or C. A complex-valued function/ on V is called a poly-

nomial function if it can be written as a polynomial (with complex coefficients) in linear func-

tions on V.
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as in [6, §2]. Similarly Ad (M-1)f)r0Cfo and fo^(f)o+n0) = f)t0. Therefore

Ad (*-*)$*, E &,„,        Ad (*-»)&, E K

Hence Ad (M_1)f)oCf)o and so uEA'_. Therefore in order to prove our asser-

tion we have only to show that n = 1. This follows from the lemma below.

Lemma 8. Let II be a regular element in f)o- Then w—»Ad (n)H (nEN) is a

1-1 mapping of N onto the set of all elements of the form H+Z (ZGtto).

Define Xa and n as in the proof of Lemma 4. Then no = ttr5g0; since N is

nilpotent every nEN can be written in the form « = exp X (XGn0). There-

fore Ad (n)H—H = exp (ad X)H—iPGn0 since [rio, f)o]Cn0. This proves that

Ad (n)H = H+Z where ZErio. Now suppose Ad (n)H = H. Then exp (ad X)H

— H = 0 and this implies that X = 0. For otherwise suppose X¿¿0. Then

X = E«Ei'+ a«Xa (aaEC) and not all aa are zero. Let ß be the lowest root

in P+ such that a^O. Then

exp (ad X)H -H = (ad X)H = - aßß(H)Xß mod E CXa.

Since if is regular, ß(H)^0 and therefore it follows from the linear inde-

pendence of Xa (aEP+) over C that exp (ad X)H—H¿¿0 in contradiction

with our hypothesis. Now if Ad (ni)H = Ad (n2)H (nu n2EN), Ad (n^nOII

= H and therefore n^xni = \ so that n\ = n2.

Finally we claim that every element of the form H+Z (ZGito) can be

written as Ad (n)H for some nEN. For otherwise choose Z such that such

a representation is impossible. Then clearly Z^O. Let

Z = aaXa + E aßXß (aa, 0(3 G C)
ß>a

where a is a root in P+ and a^O. We choose Z in such a way that a has the

highest possible value. Since if is regular the mapping X —*[H, X] (XGtio) is

a nonsingular linear mapping of tlo into itself. Hence there exists a FGno

such that [H, Y]=Z. Put wi = exp Y. Then it is clear that

Ad (nO(H +Z) - H = [Y, H]+Z mod E CXß
ß>*

= 0 mod E CXß.
ß>a

Hence Ad (nO (H+Z) =H+Z' where Z'Gn0Pi( Ei>« CX3). In view of our

choice of Z it follows that H+Z' — Ad (n2)H for some n2EN. Therefore

ii+Z = Ad («)ii where n = nï1n2. Since this contradicts our hypothesis the

assertion is proved.

Corollary. A =A+A- is exactly the centralizer of A°=A+A°_ in G.

Let x be an element of G which commutes with all elements in A0. Then
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it follows from Lemma 7 that x = uh where uEAL and hEA+. Since x com-

mutes with A" the same is true of u. Hence u lies in the centralizer yl_ of A0

mK.
Since g0 is a vector space over R of finite dimension we can regard it as an

analytic manifold(7) and identify in the usual way the tangent space at each

point AGgo with g0 itself. Then if / is a function on g0 which is difierentiable

at A,

F/W =  \-rf(X + tY)\ (FGgo).
Kdt ) i=.o

Similar remarks hold also for any linear subspace of g0 which may also be

regarded as an analytic manifold.

Consider the subgroup AaZ in G. It is clear that Ad (.4°) is a maximal

connected abelian subgroup of Ad (G) and therefore it is closed. Hence A°Z

is closed in G. Let £ denote the factor space G/A°Z consisting of all cosets of

the form xA°Z (xEG). We regard £ as an analytic manifold in the usual

way (see [l ]) and denote by x—>* the natural mapping of G on £. Then

for any fixed 77Gf)o, Ad (x)77 depends only on *. We put *77 = Ad (x)77

(xGG). It is evident that the mapping <p: (x, 77)—>*77 (xG£, TZGflo) is an

analytic mapping of £xf)o into g0. We consider the differential^) of <p. Let

Xi, • ■ • , Xr be a base for g0 mod f)o and let (dir)x denote the differential of

the natural mapping of G on £ at x. Then (dir)xXi, 1 rSjgr, forms a base for

the tangent space of £ at x (see [l, p. 110]). Hence if we regard the tangent

space of £xf)o at (*, 77) as the direct sum of the tangent spaces of £ and f)0

it is easily seen that

d<po(dTr)xXi = - Ad (*) [77, Xi], 1 g i á r,

dcbHo = Ad (x)770 (Ho G f)o).

Let D be the linear mapping of g0 into itself defined by DX{= — [77, Xi],

i^i^r, and 7>77o = 770 (770Gf)o). Then D defines a linear mapping D in the

factor space go/f)o which is the same as that induced by — adi7. Since G is

semisimple det Ad (x) = 1. Hence

| det Ad (x)D | = | det D | = | det D \ = Ü I a(H) I2
a>0

where a runs over all positive roots. This shows that if 77 is regular det Ad (x)7>

5¿0 and therefore ckp is regular(7) at (*, 77). Let f)i be the set of all regular

elements in f)0. Then <p defines a continuous open mapping of £xf)i into go.

The image of £xf)i in g0 is obviously the set gi of all regular elements in g0

which are conjugate (under G) to some element in f)0- Since f)i is open in f)0,

gi is open in g0.

(') We shall follow the terminology of Chevalley [l] in the rest of this paper.
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Define A'_ as in Lemma 7 and put A' =A'_A+. Since Ad (A'_) is the

normalizer of Ad (A0) in Ad (K), it is closed and therefore compact. Since

f)f0 is the normalizer of f)o in fo it follows that A°_ is the connected component

of AL and therefore A'/A°Z^A'_/A°_ZC*Ad (AL)/Ad (A°_) is finite. We
denote by W the finite group A'/A°Z. For any xG£ and 5G W we define

xs as follows. Choose xEG and aEA' lying above x and s respectively. Then

the coset xa^4°Z depends only on x and 5 and we define xs to be this coset.

It is clear that xs^x unless s = l. Since WE&, sH (sEW, HEf)o) is defined

and lies in f)0. Now suppose xiiïi = x2Z¡T2 (xi, x2G£; Hi, HiEfyi). Then if x<

liesinGabovex¿(¿=l, 2), Ad (xi).rTi = Ad (x2)ii2and therefore, from Lemma 7,

xï1x2EA' and ZZi = Ad (xï1x2)H2. Hence there exists an sEW such that

x2 = xis and H2 = s~1Hi. Moreover x^Xi unless 5 = 1. Therefore if w is the

order of the group W, there are exactly w distinct points in £xf)i which

have the same image in gt.

Since ^4°Z is abelian, it is unimodular and therefore (see Weil [ll, p. 42])

there exists a measure dx (which is unique apart from a constant factor) on

£ such that it is invariant under the translations induced on £ by G. Let

n = dim g0 and let (Hi, ■ ■ ■ , HO be a base for f)0 so that r =w — I (in the nota-

tion used above). As before let Xu ■ ■ ■ , A% be a base for g0 mod f)0. Let w be

a left invariant differential form of degree « on G such that w(Xi, ■ • ■ , Xr,

Hi, ■ • ■ , Hi) = 1. Then if ¿> is the differential form of degree r on £ correspond-

ing to the (suitably normalized) invariant measure we have(8)

û((dv),Yi, ■ ■ ■ , (dir)xYr) - <a(Ylt • • • , Yr, Hlt ■ ■ ■ , HO

for any Yx, ■ ■ ■ , FrGgo- Let dX denote the Euclidean measure on g0 and 77

the corresponding differential form of degree n on g0. We may assume that

7i(Xi, ■ ■ ■ , Xr, Hi, ■ ■ • , Hi) = 1. Consider the image of 77 under the dual(7)

5<7> of the mapping dcj>. Then (ocpri)x,H is the form defined at (x, H) on £xf)o

by the rule

(04»i)t,n((d*),Xi, ■■■ , (dT)xXr, Hi,--- ,St)

= VxH(d<j>o(dx)xXi, ■ ■ ■ , d<j>o(dTr) XXT, (d<p)Hi, • ■ ■ ,  (d<¡>)H,)

= ± ni«(ff)i2
a>0

as we saw above. Let £ be the differential form on f)0 corresponding to the

Euclidean measure dH. We assume that £(Hi> • " ' > Ht) = l. Then

(«*ij)*ir((áx) JTi, ■ • • , (dir)xXr, Hi,--- , Hi)

=  ±  ni "(H) \2¿((dir)xXi, ■ ■■ , (dir)xX0H(Hi, ■■■ , HO.

(8) We give here once in some detail the computation of the measure on gi in terms of the

measure on £ and Iji. All subsequent computations of a similar sort will be sketched only very

briefly.
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This proves that

(8*17)*.*= ± nu#)i2f
a>0

where f is the differential form on £xf)o corresponding to the product meas-

ure dxdH. Therefore taking into account the fact that every point in gt

has exactly w distinct pre-images in £xf)i, we can conclude that

Kl f f(X)dX =   f        III <*(H) Yf(xH)dxdH
J 81 * £x&i «>o

for any measurable function / on gi, whenever at least one of the two sides

of this equation remains finite on replacing/ by |/|.

Now let G* —G/Z and let x—>x* denote the natural mapping of G on G*.

Since ZCX, A+ and N are mapped isomorphically and so we may identify

them with their images under this mapping. Then G*=A*4+A. Now an

= ana-1-a (aEA+, nEN). Hence G* =X*NA+ and X*NC\A+ = {1}. There-

fore G*/A+ is homeomorphic to X*N under the mapping w*«—>u*nA +

(usfEXjf, nEN). If we identify G*/A+ with A*A under this mapping it is

easy to verify that du*dn is the invariant measure on G*/^4+. (Here ¿w* and

dn are the Haar measures on A* and N respectively.) Now £ = G/A°Z

= G*/A% where A% = A+Al* and A°__* is the analytic subgroup of A* cor-

responding to f)t0. Let ¿x*, dh, and dh* be the Haar measures on G*, A + , and

4% respectively. Then ¿x* =du*dndh (x* =u*nh) if dn is suitably normalized.

We shall assume that fdh* = 1. Let dx be the invariant measure on £. Then

if dx is suitably normalized, dx*=dxdh*dh in the sense of [ll, p. 42]. Let

F(x) be a continuous function on £ which vanishes outside a compact set.

Then there exists (see [ll, p. 43]) a continuous function Fi on G* vanishing

outside a compact set such that

F(x*) =   I  Fi(x*hh#)dh*dh

where x*^>x*   is the natural mapping of G*  on   £ = G*/4*.  Put

Fi(x*) =  f Fi(x*h*)dh*.

Then

But

I 7,2(**)¿x* =  I F(x)dx.

I  Ft(x*)dx# =   i  F2(ulfnh)duSfdndh =  I  F(u*n)du*dn
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since

Therefore

I  F2(u*nh)dh =   I  Fi(u*nhh*)dhdh* = F(u*n).

I  F(x)dx =   I  F(u*n)du*dn

and from this the same relation follows for any measurable function F on £

provided either one of the two sides of the above equation remains finite on

replacing F by \ F\. Therefore in particular

/f(xll)dx =   I      /(Ad (u*n)H)du*dn
£ J K.N

where x*—»Ad (x*) is the adjoint representation of G*. Hence

w f f(X)dX =  f   du* f      /(Ad (u*n)H)dndH.

We have seen (Lemma 8) that the mapping (n, .if)—»Ad (w)-ff is a 1-1 map-

ping of NXfyi onto f)i+tio which is obviously analytic. Now

lim — [Ad (n exp tX)H - Ad (n)H] = - Ad (n) [H, X]    (X E n0),
i->0    ¿

1    r
lim — [Ad (n)(H + tH0) - Ad (n)H] = Ad (n)H0 (H0 E f)o).
i-<0     t

Hence if D is the linear mapping of f)o+tto into itself given by DX = — (adH)X

(XGito) and DH0 = H0 (-ffoGW it follows that

I det (Ad (n)D) | = | det D \ =  Jl   \ a(H) \
aEP+

as the determinant of the restriction of Ad (n) on f)o+ito is obviously 1. Since

ÄGfh, II«EP+ la(^)| ^0 and our mapping is regular at (n, H). Therefore

in view of Lemma 8, it defines a topological mapping of fyiXN onto f)i+îto

and ¡NxhfiM (u*n)H)dndH =/&1+n0ILep+ | ot(H) |-»/(Ad (u*)(H + Z))dHdZ
where dZ is the suitably normalised Euclidean measure on n0. Therefore

w f  f(X)dX

= r    n i«(^)i n i«wi2^^f /(m («*)(#+£))<*«*.
Ji>l+n0   oEP+ aGP- JR.
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Thus we have proved the following result.

Lemma 9. It is possible to normalise the Euclidean measures dX, dH, and dZ

on go, f)o, and rto respectively in such a way that for any measurable function f(X)

on gi,

X,f(X)dX

=   f n   I «(#) I    IT   I <*(#) \2dHdZ f   /(Ad (m*)(77 + Z))d«*
''gi+no   «Eft «£?- J K.

provided at least one of these two integrals remains finite on replacing f by \f\.

We shall call an element xEG singular if the characteristic polynomial of

Ad (x) in the indeterminate X is divisible by (1—X)'+1 (Z = dim f)0). If x is

not singular we say it is regular. Let 77Gf)o. Then & = exp 77 is singular if

and only if or(77) =2irm( —1)1/2 for some root a and some integer m. Let nEN.

Then it is easily seen that Ad (h), Ad (hn) have the same characteristic

polynomials. Hence hn is singular if and only if h is singular.

Lemma 10. Let 77 be an element in f)o such that h = exp 77 is regular. Then

X—>h~1 exp (77+A) (AGito) is a 1-1 analytic mapping of tto onto N which is

everywhere regular.

We denote by (1 — e_x)/X the power series ¿2m^o ( — \.)m\m/(m + V)\

which is convergent for all values of X. If B is a matrix or an endomorphism

of a finite-dimensional (real or complex) vector space we put

1 - e-B       __ Bm

Z(-D'
B m&o (w+1)!

In the proof of the above lemma we shall make use of the following known

result (see Chevalley [l, p. 157]). If FGgo and/ is a function on G differ-

entiable at y = exp Y, then

where

/(exp (F + tZ))\        - (Z'f)(y) (Z E Bo)
/   i=0

/l - e-*dr\
V = (-)z.

\    ad Y    )

Now let <p(X) =hrx exp (77+X) (AGn0). Then

1 - exp {- ad (H + X)}
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Clearly rto is invariant under ad (H+X). Let D denote the restriction of

ad (H+X) on no. We extend D on n by linearity. Then the matrix of D with

respect to the base Xa (aEP+) is in triangular form and therefore it is clear

that

/l - e~D\       TT     1 - e-"iH)
det(-)=  II-¿¿0

\     D     )     „Gp+ a(H)

since h is regular. This proves that <p is everywhere regular.

We claim moreover that h"1 exp (H+X)¿¿1 (XErio) unless X = 0.

For suppose X^O. Then X = aaXa+ Eft>« aßXß where aEP+, aa, aßEC,

and aa5^0. Hence for any üiGílo,

Ad (exp (H + X))Hi = exp (ad (H + X))Hi

m Hi — aaa(Hi)Xa mod E CXß.
ß>a

Therefore if a(H0^0, Ad (exp (H+X))Hi^Hi. This proves that exp (H+X)

Now suppose <p(Xi) =<p(X2) (Xu X2Gn0). Then exp (H+Xi)

— exp (H+X2). Since H is regular in f)0, it follows from Lemma 8 that

H+Xi = Ad (m)H (niEN, i = l, 2). Hence if »r1«»«« and Ad(n)H = H+X
(XGtio), we get exp (H+X) =h. Therefore in view of the above result A^ = 0

and so from Lemma 8, n = 1. This proves that «i = «2 and Xi = X2. Therefore

<j> is univalent.

Let V=<p(no). Since <j> is everywhere regular, V is an open subset of N.

In order to prove the lemma it only remains to show that V = N. Let nEN.

Since N is nilpotent, w = exp X for some A^Gtto. Consider the one-parameter

group exp tX (tER). Let P be the subset of R consisting of all t such that

exp tXE V. Since V is open, P is an open set containing zero. Let Po be the

connected component of zero in P. Put Z(t) =<p_l(exp tX) (tETa). Since <p

defines an analytic isomorphism of n0 with V, t—*Z(t) is an analytic mapping

of Po into n0. Moreover exp (H+Z(t)) =exp H exp tX (tET0). From this it

follows immediately that

l-exp(-ad(H+Z(0))   ... _ _

ad (H + Z(t))

where Z(/)=lime,o (1/«) (Z(t + e)-Z(t)) (eER). Hence

(1 - exp (-ad (H +Z(t)))Z(t) - ad (H + Z(t))X.

Let 6 be the automorphism of g0 such that 0(Fi+F2) = Yi— F2 (FiGfo,

F2G»o). Then (see [6, §2])

Q(Y) = - sp (ad (0(F)) ad F) (F G go)

is a positive definite quadratic form on g0. Put | Y\2 = Q(Y) and let D(t) de-
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note the restriction of 1—Ad ((exp 77 exp tX)~l) on no. Then det D(t)

= IT«EP+ (l~«_a(H))?i0. Hence D(t) is nonsingular and

¿(t) = D(t)'1 ad (77 + Z(t))X.

For any endomorphism 4 of n0 let ||.4¡|2 denote the sum of the squares of

the matrix coefficients of A relative to any base of n0 which is orthonormal

with respect to the quadratic form Q. Then it is clear that

| ¿(t) | :S \\D(t)-l\\ | ad (77 + Z(t))X \

and

| ad (77 + Z(t))X | ^ | [77, A] | + | [Z(t), X] \ ^ p + q \ Z(t) |

where p and q are some positive numbers independent of t. Now it is evident

that7)(¿), and therefore D(t)~l, depends continuously on t. Hence ||Z?(<)_1|| is

bounded on every bounded subset of R. Therefore given any positive num-

ber to, there exists a constant M such that ¡IP^-^^M if \t\ r£/0- Now

suppose tETo and \t\ rá/o- Then, if we denote the corresponding bilinear form

also by Q,

- - I Z(t) |2 = Q(Z(t), Z(t)) tk \ Z(t) | | Z(t) |.
L    at

Hence, if / ?* 0,

-\Z(t)\ g|Z(<)| ÚM(p + q\Z(t)\).
dt

From this it follows by integration that

1 + — \Z(t) | ^ cM^'l
P

provided \t\ ^to and ¿GPo- This proves that | Z(t) \ remains bounded so long

as / remains bounded in P0.

We shall now show that P0 is closed in R. Let tk be a sequence in P0

which converges to tER. Then tk remains bounded and therefore | Z(tk) \

also remains bounded. Since every bounded closed subset of no is compact,

we can choose a subsequence tki such that Z(tki) converges to a limit Z in rto.

Then

4>(Z) = lim <b(Z(tki)) = lim exp lkX — exp tX.
i—»oo ¿—.oo

This proves that tET. But P0, being a component of P, is closed in P.

Therefore tETo. Hence Po is both open and closed in R. Since R is connected

and OGPo, Ta = R. Therefore «=exp XEV. This proves that V=N.
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Corollary. Let h be a regular element in A °. Then the mapping n—^h~lnhn~'x

(nEN) is a topological mapping of N onto itself.

Choose 77Gf)o such that h = exp 77. Then nhn~x = exp (Ad (n)H)

= exp (77+A(«)) where A(«)=Ad («)77-77Gn0. But if FGn0,

lim — {X(n exp tY) - X(n)} = - Ad (n) [77, Y].
!->0     t

Therefore if D is the restriction of ad77 on rto,

| det Ad (n)D | = | detP | =   II   | «(#) I ̂  0

since 77 is regular. Therefore the mapping «—>A(«) is everywhere regular.

Hence it is a topological mapping of N onto n0 from Lemma 8. The corollary

now follows immediately from Lemma 10.

We shall also prove the following lemma which will be useful later.

Lemma 11. There exists a neighbourhood U of zero in f)0 such that the ex-

ponential mapping is univalent and regular on U+Xlo and exp H is regular in G

for every 77^0 in U.

It is obvious that there exists a neighbourhood U of zero in f)0 such that

exp 77 is regular for all 77^0 in U and the mapping 77—>exp 77 is univalent

on U. Now we know (see Chevalley [l, p. 157]) that the exponential mapping

is regular at a point AGgo if and only if det ((1—exp ( — adA))/adA) 5^0.

But if HEU and AGn0, det ((1-exp (-ad(77+A)))/ad(77+A))

= det ((l-e-""0/adi0 = LL>o ((l-e~-^)/a(H))Y[a>o («««"-l)/a(iï)*0.
Hence the exponential mapping is regular on cV+Tto-Now suppose exp (i7i+Ai)

= exp (772+A2) (77i, TT2Gc/; Xlt A2Gn0). Let A¿ = exp TT¿ (*=1, 2). Then it

is clear that h2 E hiN and therefore 7zf 1h2 E NC\A ° = {1}. Since the exponential

mapping is univalent on U it follows that 77i=772. Put 77 = 77i = 772. Then if

77 = 0, exp Ai = exp A2. Since the exponential mapping is well known to be

univalent on no, AX = A2. On the other hand suppose 77^0. Then exp 77 is

regular and therefore from Lemma 10, Ai = A2. This proves the lemma.

Corollary. The exponential mapping maps U+xio topologically into G.

Moreover if U is compact, exp (¿7+no) is closed in G.

The first assertion is obvious from Lemma 11. Moreover it follows from

Lemma 10 that exp (U+rio) = (exp U)N. Therefore if U is compact, exp U is

also compact and therefore (exp U)N is closed.

Let Gi be the set of all regular elements of G which are conjugate to some

element in A°Z. Let Ax be the set of all regular elements in 4°. Define the

factor space £ = G/4°Z as before. For any *G£ and hEA°Z define hx = xhx~l

where x is any element of the coset x. Then <p: (x, h)^>hx is a continuous map-

ping of £x4°Z into G and <p(£x4xZ) =Gi. We shall prove that <p is regular
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on £x^4iZ. Since ^4iZ is obviously open in A°Z, it would follow that Gi is

open in G. Let Xi, - - - , Xr be a base for g0 mod f)0 and let 7r denote the nat-

ural mapping of G on £. Then if xEx we know that (dw)xXi, l^i^r, is a

base for the tangent space of £ at x. Now if XEQo and iíGílo,

x exp tX h(x exp ¿X)-1 = xAx-1 exp t Ad (xhrl)X exp ( —/ Ad (x)X),

and

Therefore

xh exp tH x_1 = xhx~x exp t Ad (x)H.

d<bo (d*)xXi = Ad (x)[Ad (h~l) - l]X,-,

d<pH = Ad (x)/P

Then if D is the endomorphism of g0 such that

DX, = (Ad (h-1) - \)Xu

DH = H

it is clear that

1 á * á r,

(S G f)o),

det Ad (x)P   =   det D | = TT(e-«w _ l)TT(e«w - 1)

where H is any element in f)0 such that A-1 exp HEZ. Put

A(A) = TT(ea(»)/2   —   g-«(ff)/2)

Then if fe is regular, |det (Ad (x)P| =A2(h)^0 and this shows that <p is

regular on &XAiZ. Now suppose x and k are two elements in G and .4iZ re-

spectively such that xhx~1EA°Z. The set of all points in g0 which are left

fixed by Ad (h) is exactly f)0. Hence the corresponding set of fixed points for

Ad (xhx-1) is Ad (x)f)0. But since xAx-1G^4°Z it follows that f)oCAd (x)f)0.
Therefore f)o = Ad (x)f)0 (because dim Ad (x)f)0 = dim b0) and xG^4' (Lemma

7). From this we deduce easily that the complete inverse image under <p of

any point in Gi consists of exactly w distinct points (w is the order of W

= A'/A(SZ). Therefore the method used in the proof of Lemma 9 permits us

to conclude that

J    f(x)dx =■   f   du* f f^nhn^YO^Wdndh
J (?1 J K, J NXAXZ

for any measurable function/on Gi for which at least one of the two integrals

above remains finite on replacing/ by |/|. Here dx, dn, dh are the suitably

normalised Haar measures on G, N, and ^4°Z respectively.
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Now consider the mapping \p:  (h, n)^>nhn~l of A°ZXN into A°ZN.

Then

nh exp tH w_1 = nhn"1 exp t Ad (n)H (H G í)o),

(n exp tX)h(n exp lX)~l

= nhn~l exp / Ad (nhrl)X exp (-¿Ad (w)Z)        (X G n0).

This shows that

(#)P = Ad (n)H (H E f)o).

(#)X = Ad (») [Ad (h-1) - l]X (X Gtto).

Hence

det (#) | = II   (e-aW - 1) =      g-p+(.H) T (gc(H)li  _   g-«(£0/2)

where p+ = 2_1 E«Ei'+a: and H is any element in f)0 such that A-1 exp HEZ.

Suppose H = H++H- where H+E$»0 and ü"_Gf)f0. Then p+(HJ) is purely

imaginary while p+(H+) is real and equal to p(H+). Hence

det (#) e-p(i/+) [    (ga(tf)/2  _   g-a(iT)/2)

Since ZC\A+ = {1}, iî+ is uniquely determined by h. Therefore if we put

A+W =      Il   (ea(H)/2 - e-«W2)
aEP +

A+ is a well-defined function on A°Z. Now if we take into account the fact

that the Haar measure on A°ZN is ds = dhdn (s = hn; hEA°Z, nEN) we find

from the corollary to Lemma 11 that

/f(nhn~l) exp { — p(log h+) }A+(h)dhdn =  I        f(hn)dhdn.
nxa¡z J A¡ZN

Here h+ denotes the unique element in A+ such that h~lh+EAlZ. Comparing

this with our earlier result we get

f  f(x)dx =   f   du* f      f((hn)"')e',(-logh+)A+(h)A(h)2dhdn.
J Oi J K, J AxZN

Let A be a linear function on f)io and let ôE&m0z (see §3 for notation). Put

yi(h) = {A+(A)}-i exp {(A + p)(log *+)}&(*-) (* G A O).

Here h+ and A_ are the unique elements in A+ and A°_Z respectively such

that h = h+h— Moreover let
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y(h) =  Z 7i(As)

and consider the mapping (x, h)—*hx of £X4XZ onto Gi. It is everywhere

open and continuous and the complete inverse image of hx under this map-

ping is the set (xs~x, h") (sEW). Therefore if we put

©a,s(â*) = 7(A) (SEE, hEAiZ)

we clearly get a continuous function on Gi. Then

L /(*)©a,s(x) | dx

=  (c        \f(¥)y(h)\A\h)dxdh

S w l    du* J \f((nhnrl)u')yi(h) | A2(h)dxdh
Jr.       J it Xa xz

= w I    du* I \ f((hn)u')yi(h) \ exp {p(log h+)}k+(h)àL(h)dndh
J K,       Ja xzn

= w I    du* f        |/((*»)-) exp {(A + 2p)(log *+)}&(*-) \ A-(h)dndh
Jr. J AtZN

where A_(Ä) =A(ä)/A+(ä) = | ]!«£/>_ (*«*>f*-tr'«*>l*}\, 77 being any ele-

ment in f)o such that h~1 exp HEZ. Now suppose/ is a continuous function

on G which vanishes outside a compact set. Then the right-hand side is

clearly finite. Hence/(x)@a,s(x) is integrable on Gi. Hence we may apply the

above argument to /(x)@a,j(x) instead of |/(x)®a,«(*)| and conclude from

Lemma 6 that

Lf(x)@AtS(x)dx = cTa.s(J)

since A_(h) = A-(hJ). Here c is a positive constant which is independent of

A, Ô, or/.

Let s be any element in W. Then there exists an element uEX such that

Ad (u)H = sII for all 77G£)o. Since Ad (u) leaves p0 and f0 invariant it follows

that Ad (M)hioCpo'^f)o= f)Do and Ad (u) f)r0 C f)f„. This shows that 5 leaves

f)f0 and f)p0 separately invariant. Hence if v is any linear function on h„0 (or

hf0 or f)o) we can define another such function sv by the rule sv(H) =v(s~lH).

Similarly if 8E^m„z we can define another class 5_1SGwa/0z by the condition

¡¡s~h(h) =£s(A°) (AG-4-Z). That such a class actually exists and is unique is

seen as follows. Since m0 is the centralizer of f)Po in f0, Ad (M)mo = rrto and

mM0w-1 = Mo. Let er be any representation of M0Z in 6. Define a new repre-

sentation a' by the rule
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a'(m) = a(umu~l) (m E MoZ).

Then a' is irreducible and if 5' is its classic (A) =£¡(uhu~l) = £s(A*) (hEA°_Z).

Since every element in Mo is conjugate (with respect to Mo) to some element

in A°_, every class in o>m0z is completely determined by the restriction of its

character on A°_Z. Hence s_15 is uniquely defined.

Notice that if a is a root, sa is also a root and sa is zero on f)Po if and only

if the same holds for a. From this it follows immediately that

A+(hs) = A+(h),       AJ>') = A_(Ä) (h G A°Z).

Therefore

@A|4(A) =  [A+(Ä)]-i E exp {s(A + p)(log *+)}&,(*_)
sElF

and we have the following theorem.

Theorem 2. There exists a positive real constant c with the following prop-

erty. If A is any linear function on f)Po and ô a class in o)m0z, then

Ti..s(f) = c I    f(x)%i.,t(x)dx
J Si

for any fECc(G). Here ©a,« is a continuous function on Gi defined uniquely by

the following two properties:

(i) ©a, i(yxy~l) = @a,s(x) (xEGuyEG),

(n) 0a..(A) =  K(*)h'E exp {5(A + p)(log A+)}U¿_).

Let A, = j(A+p)—p. Then the above theorem shows that Pa*,ss =Pa,s

(5Gwm„z). Conversely suppose Ai, A2 are two linear functions on f)0 and

Si, 52 two classes in wm0z such that Pa^s^ Pa2,s2. Then it follows from the

above theorem that ©a1,81 = @a2,j2 on Gi. Therefore

E exp {s(Ai + p)(log A+)}|,í,(A_) =  E exp {s(A2 + p)(log k+)}£sS„(k-)

for all regular AG^4°Z. But since both sides are continuous functions on ^4°Z

and the set of regular elements is dense in ^4°Z, they are equal everywhere.

Now the exponentials of distinct linear functions are well known to be

linearly independent (see for example [8, Lemma 41]). Hence it follows on

putting h-= 1 that As=A*0 for SoEW. Let Wo be the subgroup consisting of

all tEW such that A2=A2. Therefore if we compare coefficients of

exp {(A2+p)(log h+)} on the two sides we get

E Uii(*-) = E W*-) (*- e a°z).
(G»'o tG\v0

But every element in Mo is conjugate to some element in A°_ and therefore
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12   £¡«o«i(w) =   Z   £ifc(»0 (™ G MoZ).
t(=w0 ¡£f0

On the other hand it is well known that the characters corresponding to dis-

tinct irreducible classes are linearly independent. Hence 52 = fc05i for some

tEWo. Put s = tso- Then A2=A* and 52 = s5i. Thus we have the following

lemma.

Lemma 12. Let Ai, A2 be two linear functions on ï)o0 and Si, 52 two classes in

WAf0z. Then Tx1,s1 = Pa2,{2 */ and only if there exists an element sE W such that

A2=AJ and ôi = sSi.

5. Plancherel formula for complex semisimple Lie groups. We shall now

assume that G is a complex semisimple group. We keep to the notation of

§2 of [6]. Since G is complex, there exists a linear mapping T of f0 on p0

such that [A, T(Y)]=T([X, Y]) and [T(X), T(Y)]=-[X, Y] (X, YEU).
We extend T to a linear mapping of go onto itself by defining r(T(A)) = — X

(AGfo). Let (-1)1'2 be a fixed square root of -lin C. Then if c = a + (-l)"2&

(a, bER) we put c *X = aX+bT(X) (AGgo). Under this multiplication go

becomes a Lie algebra over C. We shall denote this complex algebra by g*.

Similarly the algebra f)0 = í)r0 + í)p0» regarded as a (complex) subalgebra of g*,

will be denoted by f)*. Then f)* is a Cartan subalgebra of g*. Let A—»ad X

(AGg*) denote the adjoint representation of g* and let B(X, Y)

= sp (ad A ad Y) (X, FGg*). Given any linear function X on f)*, we denote

by TT\ the unique element in f)* such that X(TT)=P(TT, 77x) for all TTGf)*.

Let T7i, • • • , 77¡ be a base for f)^ over R. Then it is also a base for f)* over C.

We shall say that X is real if TTx = Ziá¿á¡ cJii (cíER), and furthermore that

X>0 if X^O and cj>0 where/ is the least index (1 újíkl) such that c¡^0. For

every root a of g* (with respect to f)*) we choose an element A^O in g*

such that [ir, Aa]=a(77) *Xa (77Gf)*)- We can do this in such a way that

7J(Aa, A_„) = l and Aa-A_«, (-1)1'2 * (Aa+A_a) are both in ï„ (The

corresponding statement on p. 814 of my earlier note (Proc. Nat. Acad.

Sei. U. S. A. vol. 37(1951) pp. 813-818) has wrong signs.) Since every

root a is real, TT«= Z<=i oâHi (alER). Let n*= Z«£Q C*Xa where Q is

the set of all roots or>0. Then n* is a nilpotent sugalgebra of g* to which

there corresponds an analytic subgroup N of G. We shall denote by n0 the

space n* regarded as a real vector-subspace of go-

Let g be the complexification of the real algebra g0. Let Ï, p, f), f)t, and f)p

respectively denote the subspaces of g spanned by f0, po, f)o, f)f0, and t)Po over

C. We denote by y the isomorphism between g* and f given by y(c * X) =cX

(cEC,XEU). Put

7+(a) = (x - (-\ymx))/2,

7_(A) = (A + (- l)i/2r(A))/2 (A G f)

and let f+=7+(f), f_ = 7_(f). (Here we have extended T on g by linearity.)
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Then f+ and ï_ are ideals in g and g is their direct sum. Moreover y+ and y-

are isomorphisms of f on Í+ and f_ respectively. Now b=7+(br)+7_(bf). Let

X, p be two linear functions on b*. Then we denote by (X, p) the linear function

v on b defined as follows:

v(y+(y(H))) = \(H),

v(y-(y(H))) - p(H) (H E f>*).

It is easy to verify that

V(H) = \(H) + p(H) if HE f)t„,

v(H) = \(H) - p(H) ii HE f)p„.

Put X+ = (X, 0) and X_ = (0, —X). Then if X is real (in the sense described

above) \+(H) =\(H) and X_(iPj=conj X(iî) for iJGflo. Therefore, in par-

ticular, for every root a (of g* with respect to b*) we get two linear functions

a+, a_ on b and if we put X+ =y+(y(Xa)), X~ =y_(y(Xa)), we have

[H, X+a] = a+(H)X+a, [H, X~] = a-(H)X~a (H E b).

Notice that a+^a_ since a+ vanishes on Y_(bi) while a_ vanishes on 7+(br)

and neither of them is zero. Hence for each root a of g* we get two distinct

roots a+ and a_ of g. Moreover if we take (Hi, ■ ■ ■ , Hi, ( — \)ll2T(H0, • • • »

( — 1)1I2T(H0) as an ordered base for bPo + ( — l)1/2br0 over R and define the sets

P, P+, and P_ of positive roots of g with respect to this base (see [6, §2]), we

find that if aEQ, a+ and a_ are both in P. In view of the isomorphisms 7+ and

7_ it is clear that every root of g is of the form +a± (aEQ). Hence every root

in P is the form a± for some aEQ- Moreover since a is complex-linear, it

cannot vanish on b)j0. Therefore the set P_ is empty and P = P+. Now let

Xa = X¿+T(X¿!') (X¿, Xa"Gïo). Then y(Xa) =X¿ +(-l)1'2Xa" and it is
easily verified that

X« = (Xa- (-l)v*P(Xa))/2,

X:= (Xa+(-iyi2T(Xa))/2.

Hence Xa = Xt+X~ and therefore n* =n0CgoA { E«EQ (CXt + CXZ)). Since

dimÄ no = 2 dimc n*, dim^ rto is equal to the number of roots in P+ = P. Hence

n0 = g»n{ 2Z^Q(CXt+cx-).
If / is a complex-valued differentiable function of two real variables x, y

and z = x + ( — l)1/2y we write

d        i /d d\ d        i /a i2â\

dz 2 \dx dy/ dz 2 \dx dy/

where the bar denotes complex conjugate. Put p = (l/2) E<*e<2 a and let K

and A+ be the analytic subgroups of G corresponding to f0 and bPo respec-
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tively. Then X is compact. Moreover Co={o} in the present case and

therefore D = {1}. Let du and dn denote the Haar measures on X and N

respectively. We assume fxdu = 1. The following theorem is the principal step

in the proof of the Plancherel formula for G (see Gelfand and Naimark [3,

p. 198]).

Theorem 3. Put IIa= z2iem ai * Hi (atEC) and

Da =   Z   «¿-' Da =   Z    a;— - («G0.
iSiSi       doi íéiSi       däi

Then if dn is suitably normalised we have

/(l) =   lim      II DaDa\exp [P(IIa) +pJÏÏ7j}   f      f(u(exp IIa)nu^)dudn\
Ha~*0     «£q ( J KXN >

for every fEC?(G).

The proof depends on the theory of Fourier transforms for functions on g0.

Let C" (g0) be the class of all complex-valued functions on g0 which are every-

where indefinitely differentiable and which vanish outside a compact set. Put

A =   12 at * Hi + 12 (z«,* X« + ¿~«* A_a)
iSiS; «Eg

where a,, za, z~ (1 á*á¿, ceEQ) are independent complex variables. For any

complex variable z = x + ( — l)1/2y (x, yGP) let dß(z) denote the Euclidean

measure dxdy on the corresponding complex plane. Let F be a function

in Ce-(go). Put

g(Y) = (2*)-» f exp {(-lymmX, Y))}F(X)dX

where « = (l/2)dimÄ g0, dX = His¿s¡ d¡x(ax) Hago dfx(za)d¡x(z~) and 9îc (cGC)

denotes the real part of c. Then if we assume, as we may, that P(77¿, T7y)

= 8ij, i^i, j^l (8ij is the usual Kronecker symbol), it follows from the

theory of Fourier transforms that /6o| g (A) | dX < » and

P(0) = (2t)-" f g(X)dX.
Bo

Now suppose F(Ad (u)X) = F(X) for all uEX and AGgo- We know that the

bilinear form B(X, Y) is invariant under the adjoint representation of G and

¿(Ad (x)X)=dX (xEG) since det Ad (x) = l. We can now transform the

integral Jtog(X)dX in another form. Let dH and dZ denote the Euclidean

measures on f)0 and no respectively. Then we have the following lemma.

Lemma 13. It is possible to normalise the measures dZ and dH in such a way
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that

f g(X)dX =  f II   I <*(H) \2g(Z + H)dZdH

for any measurable function g(X) on go such that g(Ad (u)X)—g(X) (uEK,

XGgo) and Ju\g(X)\dX< oo.

Let gi be the set of all regular elements in g0. Then we know (see Chevalley

[2]) that every XGgi is conjugate under G to some HEfyo- Since the set

of singular elements in g0 is of measure zero,

f g(X)dX =  f g(X)dX
*J an Ja.

and Lemma 9 is applicable. Now P_ is empty and it follows from our earlier

remarks that

II   I ß(H) I = II   I «(H) \2 (H E b„).
ß&p+ «e«

Moreover the set of singular elements in b0 is also of measure zero (with re-

spect to the Euclidean measure dH on b0). The above lemma is therefore an

immediate consequence of Lemma 9.

F and g being as above, consider the function P'= Hogg DaDaF. Its

Fourier transform g' is given by

g'(Y) = (2«-)- f exp {(-iy2mB(X, Y))}F'(X)dX     (Y E go).
*^8o

Let X= E5-1 a¿*-ff¿+E»GQ (za*Xa+z~ *X-a) and F= E<-i bi*H{
+ E«eö (Wa *Xa+w~ * X-a) where (a, z, z~, b, w, w~) are all independent

complex variables. Put F(X) = F(a, z, z~), g(Y)=g(b, w, w~), and g'(Y)

= g'(b, w, w~). Then

g'(b, w, w-) = (2t)-" f exp i(-l)lim( E aih + E (z.w~ + z~wa))\

■   H DaDaF(a, z, z~)dß(a)dß(z)dß(z~)
«Eg.

where

1

dp(a) = J]_dp(aO,       dp(z) = JJ_ dp(za),       dp(z~) =  H dp(za).
i=l aEQ aEQ

Hence by partial integration

g'(b, w, ur) =   II   I a(Hb) \2b(g, w, w~)
aEQ
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where 77&= Zí-i ¿< *77,-. Therefore

f U   \*(Ha)\*g(a,z,0)dß(a)d»(z)

=   I  g'(a, z, 0)dii(a)dß(z)

= (2x)-» f dix(a)dß(z) f exp  j(-l)1/23?( ¿ aJu + Z  2^)1

P'(6, w, w~)dp(b)dp(w)dp(w~)

= (2w)-»+* f P(0, w, O)dß(w)

from the theory of Fourier transforms. Here r is the complex dimension of

f)*+n* = f)o+tto. This shows that

F(0) = (2*)- f g(X)¿A
^ Bo

= c(2r)~" f II   I «(#<■) |2s(«> z> 0)dp(a)dfi(z) (from Lemma 13)
■J  «Eg

= c(2x)-"+r f F'(0, w, O)dß(w)

= c(2t)-*+' f    lim   {il DaDaF[IIa+   12 za * X a)\ dp(z)
J   na^o  Leo V        -gq //

where c is a positive real constant independent of F. Since F vanishes out-

side a compact set it follows easily that

f   lim   {il DaDaF(Ha +  Z «a * Xa )} dM(z)
J        Ha-^O      Lei} \ aG<3 //

=   lim   II   DaDa( (f(h,+ Z   z^A^áp^)}.
ffa-0  «GO W \ aë« / )

Thus we have the following result.

Lemma 14. There exists a positive real constant c with the following property:

For any TGC"(8o) such that F(Ad (u)X)=F(X) (uEX, AGgo),

7(0) =   lim  c II DaDa ÍF[Ha + Z za*Xa)dß(z).

Now we come to the proof of Theorem 3. Let/ be a function in C™(G).
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Put

fi(x) =  f f(uxu~l)du (xEG).
J K

Then /i is also in C*(G). Let Fi(X) =/i(exp X) (XGgo). Choose a compact

neighbourhood U of zero in b0 corresponding to Lemma 11. Let y be the

carrier of Pi (i.e. the smallest closed set outside which Pi is zero). Then

yi=yr\(U+nO is the complete inverse image in U+xio (under the ex-

ponential mapping) of the intersection of the carrier of /i with the closed

set exp (Z7+tto) (see corollary to Lemma 11). Hence 71 is compact. Then

£ = UMgx Ad (m)7i is also compact. Moreover the exponential mapping is

regular on 71 and therefore on E. Since E is compact, it is clear that there

exists a compact neighbourhood Vi of E in g0 such that the exponential map-

ping is everywhere regular on Vi. Put V=\Ju^.k Ad (u)Vi. Then V is still

compact and the exponential mapping is regular on V. Let V be an open

neighbourhood of V such that the exponential mapping is still regular on V.

We may assume that the closure of V is compact. Select a function <p E C" (go)

such that 0 = 1 on V and <f> = 0 outside V.

For any XGgo consider the endomorphism (l-radI)/adl of g0.

(Here X—»ad X is the adjoint representation of the real algebra go.) Since

the exponential mapping is regular on V, det ((1 —e_adX)/ad X)¿¿0 on V.

Therefore the function | det ((1 — e_adx)/ad X)\ 1/2 is indefinitely difieren tiable

on V. Put

F2(X) - Fi(X)<p(X) I det ((1 - e-*dX)/ad X) l1' (X E go).

Since 4> is zero outside V it follows that P2GC"(go). Now let

F(X) =  f F2(Ad (u)X)du (X E go).
J K

HXEV,

F2(Ad (u)X) = F{ (Ad (u)X) = Fl (X)

where

I        /l — e_ad x\ I1'2
Fl (X) = Fi(X) det (-—— )      .

\     ad X    /|

Hence F(X) = F{ (X) if XG V. Now suppose XGt7+n0 but I$K Then

XEy and since 7= Ad (u)y (uEK), Ad (m)XG7 for any uEK. Hence

F(X) =  f  F2(Ad (u)X)du = 0 = F{(X).
J K

This proves that F=F{ on Z7+n0.
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Since P2GCc"(g0) the same holds for P. Moreover P(Ad (u)X)=F(X)

(uEK, XGgo)- Therefore from Lemma 14

F(0) = c lim    II DaDa f F[Ha+  E za*Xa)dp(z)

= c lim    II DaDa f  FI (Ha + Z)dZ
a—0     oËg »'no

where   dZ = dp(z)   (Z= E«EQ   za*Xa)  is   the   Euclidean   measure on rto-

But

Fl (H+Z) = Fi(H + Z) det

= Fi(H + Z) det

(1   _  g-ad (H+Z) \   11/2

ad(H + Z)   )\

/I   _   »-ad H\  11/2

V     ad H    ) I
(P G bo, Z G no)

and

det
\     ad 27    /      /JGP+

= {n
^Gf+

1 - «-"<*> 1 - ««*>

0(27)      flêî+      p\P)

gß(H)l2   —   g-ß{H)li\   2

Therefore

where

ß(H)

Fl(H+Z) =Fi(H+Z)A+(H)

1\    2

A+(H) = n
|3EP +

eß(H)l2   _   e-ß(H)li

ß(H)
(H G b0).

Now let HEU. Then the mapping </>: Z—»A-1 exp (H+Z) (A = exp 27) is a

topological and regular mapping of n0 onto N (see Lemmas 10 and 11) and

det (d(j>)z = det (rf)
where D is the restriction of ad (H+Z) on tto. Hence

| det (dc»z | = exp { -p(H) - pTP) }a+(27).

Therefore

A+(P)  f   Fi(H+Z)dZ = exp {p(P) +pW)}   f /i((«p P)«)<2*
■'no •/ ¿V
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where dn = dZ (n = exp Z) is the Haar measure on N. This proves that

f  F{ (77 +Z)dZ = exp {p(7T) + pjH)}  f /i((exp B)n)dn        (H E U)

and therefore

F(0) = c lim     J! DaDa {exp {p(77Q) + pjHa)}   f /i((exp ff .)»)<*»} .
Ba-X>     «£« V. J AT )

But

F(0) =Fi'(0) =/i(l) =/(l)

since OGF. Hence the theorem.

We shall now obtain the Plancherel formula from Theorem 3. In the

present case f)r0 = m0 (in the notation of §§3 and 4) and f)r0 is a maximal

abelian subalgebra of f0. Hence A0, is a maximal abelian subgroup of X and

it is its own centralizer in X (see A. Weil [12]). Now the adjoint representa-

tion can be regarded as a complex representation of G on g*. Let u be an

element in the centralizer of A+ in X. Then Ad (u) leaves every point in

f)(,0 fixed. But since Ad (w) is an endomorphism of g* over C, it leaves every

point in f)r0 also fixed. This proves that M = A°_ =.4_ = M0Z in the present

case. Let A'_ be the normalizer of A- and X. Then the above argument shows

that 41 is also the normalizer of A0=A+A°_ in X and therefore W=A'/A

= 4L/4_ in the notation of §4. Moreover for any sEW, the mapping

H—*sH (77Gf)o) is an endomorphism of f)* over C.

Since A- is a torus we can choose the base TTi, • • • , T7¿ of f)u0 over R in

such a way that exp Ha = \ if and only if ( —l)1/2a,/27r, l^i^l, are all

rational integers. For any hEA =A+A~ we denote by h+ and &_ the unique

elements in 4+ and 4_ respectively such that h = h+h— Let %+ be the set of

all linear functions v on f)* which take real values on i)ir Moreover let §_ be

the set of all linear functions X on f)* such that X(77,), l^i^l, are all rational

integers. For every XGÍ5- we can define a character £x of 4_ by the rule

£x(exp 77) =eUH) (77Gf)t0) and conversely every character of 4_ can be ob-

tained from some XGS- m this way. Put

f„x(Ä) = exp {(- l)i'Mlog &+)}&(*-) (" E$+,\E 8+ hEA)

and

S,,\(f) =  f f(uhnu-^^(h) exp {2p(log h+)}dudhdn      (fEC*(G))
JKXAXN

where dh is the Haar measure on A. It is easy to verify that if A = exp 77

(77Gf)o) then p(H)+p~(H) =2p(log *+) and

lim     II 7>Äk,x(exp 77a) = 11  I (-l^M^a) + X(77a) |2 = «*(*, X)     (say).
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Now g+ and $L are groups under ordinary addition of functions and it is

clear that they may be considered as character groups of A+ and A~ re-

spectively. Let dv denote the Haar measure on g+. Then it is the Euclidean

measure on the real vector space 5+. A simple application of the theory of

Fourier transforms to the abelian Lie group A now shows that

lim     H DaDalexp {p(Ha) + p(Ha)}   I f(u exp Hanu~l)dudn>
#«-*>    oGg K J )

=   2Z      f   m(v,\)S„,x(f)dv (fEC7(G))
xES-  J 3 +

provided dv is suitably normalised. Here the series on the right is absolutely

convergent since the function

g(h) = exp J2p(log A+)}   I f(u h-nw~x)dudn (A G A)

is everywhere indefinitely difierentiable on A and vanishes outside a compact

set and S,,\(f) is the Fourier transform of g. Now p'(27) = 2-1 Esgp ß(H)

= 2p(H) (27Gbpo)- Hence it follows from Theorem 1 that S,%\(f) = Th.,t(f)

where A(H)+2p(H) = (-\yl2v(H) (77Gt)„0) and 5 is the class of the one-

dimensional representation A—>£x(A) (AG^4_) of A~= M= Mi. Moreover since

A+p' takes pure imaginary values on b#0, S„,x is a unitary character of G.

Finally, in view of Lemma 12, 5„1,x1 = 5„2,x2 (vu v2E%+; Xi, X2Grj-) if and only

if v2 = svi, X2 = íXi for some sEW. Now we need the following theorem.

Theorem 4. Given any XG¡5- we can find a subset V\ of $+ of measure

zero such that the character 5„,x is irreducible for all v in $+ outside V\.

If we assume this theorem for a moment, we can derive the Plancherel

formula as follows. Let F=Uxg:p_. Since 5- is a countable set, V is still

a set of measure zero. Let V be the set of all vE%+ such that v = sv for some

s 7a 1 in IF. Then V is a closed nowhere dense subset of %+ and its measure is

zero. Let oV be a connected component of the complement of V in %+.

Then g+ is an open subset of %+ and it is known (see Weyl [13 ]) that for

every vE%+ which is not in V there exists a unique 5G IF such that spEï§+ •

Since S„,,\(f) =Sy,\(f) it is clear that

E      f   m(v, \)S,¿(f)dv =   E   a» f    «(». \)S,,x(f)dr        (f E C"(G))
xES-   ^3+ xES-    -2 3+

where g+ is the complement of V in 5+' and w is the order of W. Therefore we

get

f(l) =   2Z   ™ ( „ m(v, \)S,.x(f)dv (f E C7(G))
xES       •'8+
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from Theorem 3. Now the characters Sy,\ (vE%°+, XG5-) are all distinct and

they are unitary and irreducible. Hence if £ is the set of all equivalence-

classes of irreducible unitary irreducible representations of G, we get a 1-1

mapping of g+ X%- into £ if we assign to each (v, X) the unique class w(v, X)

in £ corresponding to the character Sr.\. We may therefore identify 5+ X%-

with its image under this mapping and thus regard g+ X¡5- as a subset of £.

Let ¿p be the discrete measure on g_ which assigns to every point in ^^ the

mass w. Then we can define a (positive) measure ¿w on £ as follows. Let F

be a subset of £. We say that F is measurable if Fo = Fr\(x§°+ X8-) is measur-

able in g+ XS- and in case this is so we put

/¿w =   I     dvdß.
F " F0

Then it is clear that

/(I) = fe T.<f)du (f E C."(G))

where P„ is the character of the class co. Let

g(x) = J  conj (f(y))f(yx)dy.

Then g is also in C" (G) and therefore applying the above formula to g we get

«(1) = f I /(*) \*dx = Jg Aw(/)¿co (/ G er (G))

where Nu(f) is defined as in §1. This gives the Plancherel formula for functions

of class C"(G). Since such functions are dense in the Hubert space 7.2(G) of

all square-integrable functions on G, the corresponding formula for functions

in L2(G) follows in the usual way by completion.

Now it remains to prove Theorem 4(9). We shall say that a function XG5-

is dominant if sXïïX for all sEW (with respect to the lexicographic ordering

defined in the beginning of §5). Let 5- be the set of all dominant functions

in g— Let %* be the space of linear functions on f)*. Then $+ and 5- may be

regarded as subsets of %*. Let £2 be the set of all equivalence classes of finite-

dimensional simple representations of X. A linear function nEiS* is called a

weight of a class 35Gß if there exists a vector \p^0 in the representation

space of any representation trG35such that <r(exp H)\p = e"(-H)\p (TTGf)r0). We

(9) (Added ¡n proof.) A result considerably stronger than Theorem 4 has recently been

obtained by F. Bruhat for the classical groups. Since it is possible to give a direct proof of his

fundamental lemma (C.R. Acad. Sei. Paris vol. 238 (1954) p. 437) for all connected semisimple

Lie groups, his results hold also for the exceptional groups.
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say that p is the highest (or lowest) weight of 35 if p+ar (or ß — a) is not a

weight of 35 for any ctEQ- It is known that every weight lies in $:_ and every

highest weight in %°_ (see for example [5, Part I]). Moreover there is a 1-1

correspondence A«-»35a between %°_ and ß such that A is the highest weight of

35a [5, Part I]. For any pErS- let 5„ denote the equivalence class of the one-

dimensional representation h-^-^Qi) (hEAJ). Then we denote by (A:p)

(AGS-) the number of times SM occurs in the reduction of 35a with respect to

4_. It is known that (A:A) = 1 and (A:p) = (A:sp) for any sEW (see Weyl

[13]).
Put iç>=Li(X) and define §$ (35GŒ) to be the set of all elements in §

which transform according to 35 under the left regular representation of X

on £). As usual we normalise the Haar measures du and dh on X and A- in

such a way that /x¿m =fA_dh = 1. Let X be any function in %°_. Put

Px=  f   Uh)r(h)dh
J A-

where r is the right regular representation of X on S¿>- Then E\ is the orthogonal

projection of § on §x = Px€>. Since (X:X) =1, it follows from the Frobenius

reciprocity relation (see A. Weil [ll, p. 83]) that dim (§xn§®x) =¿(35x).

Therefore apart from a constant factor there is exactly one function f^O

in §xn^5Dx such that/(am) =£\(h)f(u) (uEX, hEAJ). For any pEî$* define
a representation 7t/ of G on § by the rule

«■; (*)*(«) = exp [- {((- l)!/2p + 2p)(H(x-\ «))} ]*(«,-i)

(uEX, <pE&, xGG) in the notation of §3. (We recall that X* = X in the

present case.) Let §„,x be the smallest closed subspace of § containing /

which is invariant under tt¿ (G). We denote by ir»,\ the representation of G

induced on §„,x. Since r(h) commutes with ir¿(x) (hEA-, xEG) it is clear

that g^.xCêx.

Lemma 15. 7r„,x is an irreducible unitary representation of G if vEî5+.

Moreover there exists a set V\ in %+ of measure zero such that if v lies in the

complement of V\ in %+, §„,x=§x.

Let v be a function in 3+ Then we have seen that tt'„, and therefore ir„,x,

is unitary. We shall now show that ir,,\ is irreducible. Suppose §„,x = §i = §2,

where §1, ^2 are two mutually orthogonal closed subspaces which are both

invariant under 7ry,x(G). Then /=/i+/2 (/¿Gí>¿, i = l, 2) and since f?¿0 we

may assume /i^O. Then it is clear that /iG£>i^$s>x an<^ therefore

dim (£>iA£>í>x) e¿(35x). But we have seen above that dim (¡QxC^&Ti))

= ¿(35x). Therefore ¡QiC\lQ<£>x = !Q\r\i£>$)X and hence /G£>i- But then it

follows from the definition of §„,x that ^»»,xC§i. Therefore §„,x is irre-

ducible.

In  order  to  prove  the  second  part  we  need  some  lemmas.   Put  §0
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= Ei>eg &&• Then every element in §0 is well-behaved (see Theorem 4 and

Lemma 30 of [ó]) under w¿ (pGS*)- Let 33 denote the universal enveloping

algebra of g. We shall also denote by 7rM' the representation of 33 induced on

§o (see [ó]). Let Ao be a function in %"_ such that £>x<^§:da & {o}- We denote

by (4>, \p) the scalar product of <j>, \[f in §.

Lemma 16. Let <¡>i, ■ ■ • , <pm be a base for ^x^^©a0- Suppose F,, 1 ̂ i^m,

are polynomial functions on 5* such that

m

Ew (*..*■;(*)/) = o
i=i

for all &G33 and pE%*. Then P» = 0, l^i^m.

Notice that

(*.-, «•„' (*)/) -  f conj (*<(«)) exp { - [(-l)1/2p + 2p](P(x"\ «)) ¡f(u^)du.
J K

Let Xi, • • • , X„ be a base for g0 over P. Put Xi = /iX1+ • • • +tnXn (tjER)

and |/| =maxj \tj\. Let p denote any ordered set (pi, • • • , pO of m non-

negative integers. Put f^tïHfr - ■ ■ %», p\ = pilp2\ ■ • ■ p„!, and

x(p) = - E xkilxk,2 ■ ■ ■ xki> e 33
si

where 5 = pi+p2+ • • • +pn, (ki, ■ • • , A,) is a sequence of indices in

which j occurs exactly p¡ times (1 rS/iS-w) and the sum is over all permuta-

tions (i,, • ■ • , i0 of (1, 2, • • • , s). Then X(p) taken together for all p form

a base for 33 (see [4]) and

(*., w¿ (exp X,)/) = E (*.-, tm' (X(i))/) 4
p pi

provided |i| is sufficiently small (see [6, Theorem 2]). Since <p,- and / are

analytic functions on K, it follows from the arguments given in the beginning

of §4 of [7] that for each p there exists a polynomial function fii3, on %* such

that

(<bi, *¿ (exp Xt)f) = E UM —
v P[-

provided \t\ is sufficiently small. Therefore by comparing coefficients

(fr, t/(X(p))f) = UM-

Since X(p) form a base for 33, it follows that for each fixed ÔG33 the mapping

P -* (4>i, *l (b)f) (p E %*)

is a polynomial function on g*.
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Now let A be any function in ^°_. Then A+XG5-- Let ^* denote the class

in ß which is contragredient to 35a- Then —A is the lowest weight of 35*. Choose

two representations cri, cr2 in 35a+x and 35Î respectively. We denote the cor-

responding representations of f0 (and therefore of f) also by the same sym-

bols. Let Ui, Ui be the representation space of ai, <r2 respectively. Define a

representation w of g on cViX U2 by the rule(10)

ir(y+(X) + 7-(F)) = cri(A) + a2(Y) (A, F G f).

Then it is clear that it is irreducible. Let G' be the simply-connected covering

group of G, Z' the kernel of the natural homomorphism of G' on G and X'

the complete inverse image of X in G'. Then X' is connected and Z'CX'

(see Mostow [9]). Now w defines a representation of G' which we shall also

denote by it. Note that A=7+(A)+7_(A) (AGf). Hence

ir(X)   =  cri(A) + cr2(A) (A G f).

From this it follows that ir(u') =o-i(u)y.Oi(u) (u1EX') where u is the image

of u' in X. In particular if u'EZ', u = i and therefore Z' is contained in the

kernel of it. Hence it may also be regarded as a representation of G.

Let x(A'; u) (uEX) denote the character of the class 35a> (A'Gg-)- Then

it is evident that

sp ir(u) = x(A + X; u) conj x(A; u) (u E X).

For any 35GŒ let (tt:35) denote the number of times 35 occurs in the reduc-

tion of it(X). Then it follows from the Schur orthogonality relations for the

characters that

(it:35a„) =  I   sp it(u) conj x(Ao! u)du
J K

=  I   x(A + X; u) conj {x(A0; «)x(A; u)}du.
J K

Now put

HH) =   II (ea(ff)/2 - e-«<">'2) (77 G f)f„)

and

A(exp 77) = | A(77) | (77 G &,).

Then we know from the theory of compact Lie groups (see Weyl [13]) that

(7t:35a„) = — f   x(A + X; h) conj {X(A; A)X(A0; h)}A*(h)dh
W  J A-

(10) The operations X and + have the same meaning as in [6].
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w =  I    A2(h)dh = order of
J A-

But it is well known (see Weyl [13]) that

x(A'; exp H) = JA(27) }-> E «M exp {i(A' + p)(H)}      (H E f)t„)
sGW

for any A'GS-. Here e(s) = ±1 and is determined by the rule

A(sH) - e(s)A(H) (sEW,HE b(o).

Therefore

X(A + X; exp H) conj |X(A; exp 27)x(A0; exp 27)}{a(P)}2

E   <s)e(s') exp {s(A + X + p)(27) - s'(A + p)(H)}
.s,s'E)F

É (A«:A,) exp {-A,-(H)} (77 G b(o)

where Ay, Oá/á^i are all the distinct weights of 2)a0.

Now for any function pGS* Put p(H0=hp(H0+ ■ ■ ■ +t¡p(H0 where

h, • ■ • , ti are independent indeterminates. Consider the polynomial S(p, t)

in (t) given by

S(p, t) = II       II      { (m + X + P)(Ht) - s(p + p)(Ht) - A,<27()}.
1=0 sEl^.S^al

Then S(p, t) =0 if and only if

s(p + p) - (p + p) = X - A,-

for some 5^1 in IF and some/. Since it is obviously possible to choose p in

such a way that none of these conditions is fulfilled, it follows that S(p, t) is

not identically zero in p.

Now suppose the assertion of the lemma is false. Then we may suppose

that Pi5¿0. Let FÍ denote the polynomial function on 5* such that F{ (p)

= Fi(p') where 2p+X= - [(-l)1/2p' + 2p]. Since Pi^O, it is evident that

Pi 9e0. Hence F{ (p)S(p, t) is not identically zero in p. Then the argument of

Lemma 32 of [5] is applicable and we can choose AG5- such that

F{(A)S(A, t)^0. Then

j(A + X + p) - s'(A + p) 9¿ A¡

for any/ unless s =s', in which case

s(A + X + p) - j(A + p) = *X.

(s, s' E W)
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Hence it follows from the orthogonality of the characters of A- that

(t:35a0)) = (A0:X).

Let U be the representation space of it. We may regard U as a finite-

dimensional Hilbert space and assume that ir(u) is unitary for uEX. Put

ir'(x) = (7r(x-1))* where the star denotes adjoint. Then tt' is also an irreducible

representation of G on U and tt'(u)=tt(u) (uEX). Since x(7+(A)+7_(F))

= <Ti(X)+<T2(Y), (X, YEÎ) it is clear that the weights(u) of x (with respect

to f)) are exactly the functions (pi, p2) where pi and p2 run independently

through all weights of ci and <r2 respectively. Moreover (pi, p2) is the highest

weight of it if and only if (pi+a, p2) and (pi, Pi — a) are not weights of x for

any otEQ- Hence pi must be the highest weight of en and p2 the lowest weight

of tr2. Therefore pi=A+X, p2= —A. Hence the highest weight of it is (A+X,

—A) and so it coincides with 2A+X on i)Po and X on ï)r0- Let i/'o^O be a vector

in U belonging to the highest weight. Then T(n)\p0=ipo, ir(h)\j/o = t-\(h)\po, and

tt (exp 77)^„ = exp {(2A+X)(TT) }^0 (nEN, hEA_, 77Gf)So). Let p be the
function in %* such that

(-Í)^H(H) + 2P(H) = - conj (2A(77) + X(77)) (77 G &,„).

For any <}>EU put

Ft(u) = (ir(u)\po, 4>)

where the bracket denotes scalar product in U. Then

F*>(X)4,(u) = (ir(u)\po, T'(x)<b) = ^(x^u)^, 4>) = tt¡.(x)F4,(u).

Moreover if F$ = 0, (x(w)^0, 4>) =0 for all uEX. But then if x = uhn (uEX,

hEA+,nEN),

(r(*)*o, <t>) = (x(«)*0, *) exp (- [(-1)»>V + 2p](log &)) = 0.

Since it is an irreducible representation, U is spanned by the transforms

^(x)^ of ypo and therefore <p = 0. Finally

F+(uh) = (ir(uh)to, <t>) = conj (&(A))F4(«) (* € 4_).

Therefore c/>—»TV is a 1-1 linear mapping of U into §x and F^-(X)^, = tti! (x)F$.

Now it is obvious that 35a+x occurs in the reduction of 35aX35x- Therefore

35x also occurs in the reduction of 35a+xX35J. Since tt'(u)=tt(u) (uEX), it

follows that there exists a vector <f>o?¿0 in U which transforms according to

35x under tt'(X) and which is such that x'(ft)^o = £x(A)#o (hEAJ). Then F¿0

is a nonzero function in §x^§dx anc^

<(h)F^ = hWFH (hEA.y

(n) The weights of x are defined as usual (see [5]). They are ordered by the lexicographic

ordering introduced by the base (Hh ■ ■ ■ , Hi, (-l)WT(Ä), • ■ ■ , (.-l)l"T(Hi)) for i)p

+(-l)1/2i>f0overtf.



1954]       THE PLANCHEREL FORMULA FOR SEMISIMPLE LIE GROUPS        527

Since apart from a constant factor, / is the only function in §x^§3)x satis-

fying this condition P*0 = c/ where cGC and cp^O. Then it is evident that the

representation ^.x on §„,x is equivalent to it' under the mapping <p—»P¿

(cpEU). Therefore

dim ($MlXn £SAo) = ¿(3)a„)(it:S)a„) = ¿(2)a„)(A0:X)

since it' coincides with ir on K. But we know from the Frobenius reciprocity

relation (A. Weil [ll, p. 83]) that

m = dim (§xH §;dAo) = ¿(5DAo)(A0:X).

Therefore

Since it' is irreducible and finite-dimensional the same holds for 7r,,,x. There-

fore we can choose ¿>G33 such that E™ i Fi(p)<pi = ir¿ (b)f. Then

m

«(&)/, T¿(b)f) = 2ZFi(ß)(<t>i, r¿(b)f) = 0
!=1

and therefore ir¿{b)f=0. Since (pi, 1 ̂ i^m, are linearly independent over C,

Fi(p) =F{ (A) =0. But this contradicts our choice of A and so Lemma 16 is

proved.

Now choose the base ((pi, • • • , <pm) so that it is orthonormal. For any

&G33 let Tji.b denote the polynomial function p—>(<£,-, ir¿ (b)f) on g*. Let Jo be

the ring of all polynomial functions on g* and let J be the quotient field of

Jo. Select elements bi, ■ ■ ■ , bq in 33 such that the matrix B — (ili.hOx&i&m.Uii&t

(with coefficients in J0) has the maximum possible rank (over J). We claim

this rank is m. For otherwise we can find FiEJo, 1 ̂ i^m, not all zero such

that

m

2ZFiVi,tj = 0, íújúq.
t'=i

But in view of the above lemma we can choose &G33 such that

m

E^i,!» ^ o.
t=l

Hence if we put bq+i — b, the matrix 0j<.»,-)ig»s»i>,is/g8+i has a larger rank

than B, which contradicts the definition of B. Hence B has rank m.

Therefore q^m and we may assume without loss of generality that P

= det (íji.OjOigi.ígm^O. Now put

m m

tfíM = E (<t>i, *i (bi)f)4i = E Vi.bjMaii (p E 5+).
i=l ¿=1
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Since P?¿0, the set F(A0, X) of all J'Grj+ such that F(v) =0 is clearly of meas-

ure zero. So if vEV(AQ, X), F(v)^0 and therefore 4>¡(v), lújúnt, span £>x

C^&x>K • It 1S obvious that 4>j(v) is the orthogonal component of 7r„' (b¡)f in

$33Ao and therefore it lies in §v,xn§s)A . Hence if vEV(Ao, X), ¡£>\(~Mq<£>Aq

= §,,xn£s,A0-

Now put Fx = UA„gsi F(A0, X) where F(A0, X) is defined to be the empty

set in case ¡Q\r\&$,A = {o}. Then Fx is a set of measure zero and if i>GFx,

êxf^§£)Ao = 'ip,,xP\&DAo for all AoGS-- Hence the orthogonal complement of

&v,\ in £>x is zero and therefore £>,,x = C>x. This completes the proof of Lemma

15.'
It is clear from the work §3 that 5,,x is the character of the representa-

tion of G induced on §x under ir¡ (i>E%+)- Therefore it follows that S„,x is

an irreducible character ii vE V\.

So far we have assumed that XG3-- Now let X be any element in g_.

Choose sEW such that Xi = íX is dominant. Then SV,\ = SS,^ for any vE^+-

We have seen above that there exists a set Fx, in $$+ of measure zero such

that if svEV\¡, Sy,\ = St„,\1 is an irreducible character. Put V\ = s~1V\r Then

Fx is also of measure zero and if vE V\, S,,\ is irreducible. Therefore Theorem

4 is now established.
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