THE PLANCHEREL FORMULA FOR COMPLEX
SEMISIMPLE LIE GROUPS

BY
HARISH-CHANDRA

1. Introduction. Let G be a connected semisimple Lie group and = an
irreducible unitary representation of G on a Hilbert space. Let C;°(G) denote
the class of all (complex-valued) functions on G which vanish outside a com-
pact set and which are indefinitely differentiable everywhere. Then we have
seen in [8] that for any fE C?(G) the operator

[ rm@ia

(dx is the Haar measure on G) has a trace which we shall denote by T.(f).
The mapping T'»: f—T.(f) is then a distribution which depends only on the
equivalence class of 7. Hence if € is the set of all equivalence classes of ir-
reducible unitary representations of G, we have a distribution T, defined for
each w€ €. Our object is to find a (positive) measure dw on € such that

)y = f ¢ Teldo (f € C7E)

at least in case G is a complex group. Let f’ be the function(!) x—conj (f(x~1))
(*€G) and let F=f"+f where *+ denotes group convolution. Then

P = [ 1G9y = [ conj GoNImy

and therefore [|f(x)|2dx=F(1) = [eT.(f’ * f)dw. But

2

(r € w)

1.7+ = | [ famwias

where || -|| denotes the Hilbert-Schmidt norm. Hence

[ 15 s = [ Wty

where N (f) =|| ff(;ac)1r(ac)dx||2 for any mEw. This formula may be regarded
as the analogue of the Plancherel formula for abelian groups or of the Peter-

Weyl completeness relation for compact groups (see Gelfand and Naimark
[3, p. 198)).

Received by the editors May 11, 1953.
(*) For any complex number ¢ we denote the conjugate of ¢ by conj c.
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Although the final formula of this paper is applicable only when G is
complex, the complex structure of G plays no essential role in the earlier
stages of the computation. Hence, in the hope that the present method could
perhaps be extended to arbitrary semisimple Lie groups, we shall avoid mak-
ing the assumption about the complexity of G until it becomes absolutely
necessary.

2. Some preliminary results. Let go be the Lie algebra of G over the field
R of real numbers. We define f,, by,, and no as in [6, §2]. Let K, 4, N be the
analytic subgroups of G corresponding to f, by, and n, respectively. Then
K is closed and it contains the center Z of G. Let £{ = [fo, fo] be the derived
algebra and ¢, the center of f,, We denote by K’ and D the analytic sub-
groups of K corresponding to f{ and ¢, respectively. K’ is semisimple and
compact and D, being the connected component of the centralizer of K’ in
K, is closed. Put G¥*=G/DNZ and let x—x* denote the natural mapping of
G on G*. Then K* is compact. We shall say that a representation w of G on
a Banach space is permissible if w(2) is a scalar multiple of the unit operator
for all z&ZNMD.

Let © be the set of all equivalence classes of finite-dimensional simple
representations of K.

LeEMMA 1. Let 7w be a representation of G on a Hilbert space 9. For any
DEQ let Do denote the subspace consisting of all those elements in O which
transform under w(K) according to D. Suppose the following two conditions are
Sfulfilled.

(i) m 1s permissible.

(ii) There exists an integer N such that dim 9o = Nd(D)? for all DEQ.
(Here d(D) 1is the degree of any representation in D.)

Then if fEC;(G) the operator [f(x)mw(x)dx fulfills the conditions of Lemma 1

of [8].

The proof is exactly the same as that given in §5 of [8]. We can therefore
conclude from Lemma 1 of [8] that [f(x)w(x)dx has a trace. We denote this
trace by T.(f) and prove exactly as in §5 of [8] that the mapping T'»: f—T.(f)
(fE€C(G)) is a distribution which depends only on the equivalence class of
m. We shall call T» the character of =.

LEMMA 2. Let w be a permissible unitary representation of G on a Hilbert
space . Suppose dim Hp< © for every DEQ. Then O can be written as a
sum(?) of a countable number of mutually orthogonal closed subspaces each of
which is invariant and irreducible under w(G).

By going over to the simply connected covering group of G it follows that

(3 The sum here is understood in the sense of Hilbert space theory. It denotes the closure
of the algebraic sum.
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for any homomorphism £ of Z into the field C of complex numbers we can
find a homomorphism 7 of K into C such that 7(2) =£(z) for 2EDNZ (see §9
of [6]). Therefore in particular we can choose 7 such that m(z) =n(z)7(1)
(z&€DN\Z). Then n(uY)w(u) (uEK) depends only on »* and if we denote it
by w*(u*) the mapping 7*: u*—w*(u*) is a representation of K* on 9.
Let Q* be the set of all equivalence classes of finite-dimensional simple rep-
resentations of K*. We denote by $F (DEQ*) the subspace of those ele-
ments in § which transform under 7*(K*) according to 9. Then it is clear °
that dim $%X < ». Since K* is a compact Lie group, @* is a countable set.
Hence we can arrange its elements in a sequence D; (¢=1). We shall now de-
fine a sequence of closed subspaces $; (=0) with the following properties:

(i) 9;is invariant under 7(G).

(i) §,D Xy She

(iii) 9j+1DP; and the orthogonal complement of §; in H;,; is the sum of
a finite number of mutually orthogonal closed spaces each of which is in-
variant and irreducible under 7(G).

We proceed by induction on j. Put §,= {O} Now suppose §; has been
defined. Let V; be the orthogonal complement of §; in $. Since 7 is unitary,
V; is invariant under 7(G). Let V;o=V;N\9H (DEQ*). It is clear that
$%="T;0+H5NO% (DEQ*). If V,0,,={0} we put $;1.=9; and all the
three conditions are verified. Now suppose V;o,,,7 {0}. Then

0 < dim V;o,,, < dim $b,,, < .

We shall now define a sequence of mutually orthogonal closed subspaces W,
(r=0) which are invariant and irreducible under #(G). Put W,= {O} and
suppose W; (0=:2=r) have already been defined. Let U, be the orthogonal
complement of Wi+ - - - +W, in V;. If U.N®%,,,={0} put W= {0}.
So now let us suppose dim (U,N\p,,,)>0. Let = be the collection of all
closed subspaces U of U, which are invariant under #(G) and such that
UND%, .. {0}. Choose UEZT such that s=dim UNH%,,, has the least
possible value and define W,,; to be the smallest subspace in £ which con-
tains UN9P,,,. We claim W,y is irreducible. For let W,y =W+ W’ where
W', W' are two mutually orthogonal closed subspaces of W,,; which are
both invariant under w(G). Since dim W,.1/N\Op,,,2s>0, at least one of
the spaces W'N©%,,,, W’'NH%,,, is not zero. Suppose W'NHH,,,# {0}.
Then W'EZ and in view of the definition of s, s<dim WNPg,,,. But
W' CW,1CU and therefore

s < dim (W' N $o,,) < dim (W, N Ho,,,) < dim (U N $v,,,) = s.

Hence WN$3; ;1= Wi\ 9D, .= UNH3,., and so it follows from the defi-
nition of W,;, that W, ;CW’. This proves that W =W, and so W, is
irreducible.
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Notice that W, = {0} if and only if U,N$%,,,={0} and W, {0}
implies W,.,N\$%,,, {0}. Since

dim (U, N §5;,,) > dim (Urs1 N $3;..)

unless U,N9%,,,={0} and since dim $%,,,< «, it follows that W,= {0}
for 7 sufficiently large. Let 7 be the least integer =0 such that W, ={0}.
. Then U,ﬂ@$i+l= {0} and therefore V;o,,,CWi+ --- +W, Now put
Oin=9;+Wi+ . - - +W,. Then all the three conditions are fulfilled and
the induction is therefore complete.

After this preparation we now come to the proof of the lemma. Let
Oin=9;+ Zlgfé,,. W where W are closed subspaces which are invariant
and irreducible under 7(G) and which are orthogonal to $; and to each
other. Then it is obvious that

Sm=2 X W (2 0).
0SiS7 1SrSs;
Let &' be the closure of Y0 i1 in §. Then §' D de o D5 = Z:Deg .
Since Zs[)en o is dense in § (see Theorem 4 of [6, Part III, §9]) it follows
that §=9’. Therefore § is the closure of D ;z0 D 1sr<s; WY and the lemma
is proved.

LEMMA 3. Let 1, m, be two unitary representations of G both satisfying the
conditions of Lemma 1. Then if they have the same character they are equivalent.

Let 9. be the representation space and T, the character of m; (i=1, 2).
Suppose T'y,=T,,=T (say). Then if f€C,’(G) and

P(3) = [ conj GONIa)d,

it is clear that FEC,;’(G) and

2

T(F) = ” f f(x)m(x)dx

2 = ”ff(x)m(x)dx

Hence T'#0 unless m;(x)=0 (¢=1, 2) for all x&G. But since 7;(1) is the
unit operator on §;, this is possible only if $;:=9,={0}. Since the lemma is
true in this trivial case, we may assume that T'>0. Choose fEC,’(G) such
that T'(f) #0. For any 2&Z put f,(x) =f(z"x) (x&EG). Then

T+(fo) = Txf2) = &) Tx(f) = &(G)T() (1=1,2)

where 7;(2) =£:(2)m:(1). Since T(f)#0 it follows that £ (z) =£:(z). Hence we
can find a homomorphism 7 of K into C such that %(2) =§1(z) =£(2) if
2EZND. Now define as above a representation ¥ of K* by putting 7*(u*)
=n(u)m(u) (wEK) and let H}'p denote the subspace of those elements in



1954] THE PLANCHEREL FORMULA FOR SEMISIMPLE LIE GROUPS 489

O: which transform under 7#(K*) according to D (DEQ*, i=1, 2). Again
we arrange the elements of Q* in a sequence D; (j=1). In view of Lemma 2,
i can be written as a sum(?) of mutually orthogonal subspaces W ;> {0}
each of which is invariant and irreducible under ;. Here k runs over some
subset IV; of integers (=1, 2). We shall now define a 1-1 mapping a of N,
onto N, such that the representations of G induced on Wi, and W, a4y under
w1 and 7, respectively are equivalent. This would prove the lemma.

For any j let Ny(9,) denote the subset of N; consisting of those kEN;
for which W, N\©fp,={0}. Since D1 (WirNOlp,) is dense in Wi
(Theorem 4 of [6, §9]) it follows that U;»; Ni(D;)=N. Put M,;
=Uic,<; Ni(D,) (j21) and let M;,, denote the empty set. We shall now
define a 1-1 mapping « of N; onto N, with the following properties:

(i) a(N1(D;)) =Nx(D;) (j21).

(ii) The representations induced on W; and Wi eay (REN;) under m
and w, respectively are equivalent.

We proceed by induction on j. Suppose « has been defined as a 1-1 map-
ping M1 onto M,,, (r=1) satisfying the above two requirements for
j=r—1 and k& M;,,. We shall now extend it on M,;,. We may clearly
assume that at least one of the above two sets N1(D,), No(D,) is not empty
since otherwise M, ,=M; . (1=1, 2) and no extension is needed. Let P, ;and
E;p denote the orthogonal projections of ©; on W, and $/p respectively
(De0*, 1=1, 2). Put

¢i1x(x) = sp (Ei o, Piwxri(x)E:i2,),

¢i(x) = sp (Eiomi(2)E:,) (kEN:, =z€G).
Then
di= D i (i=1,2).
FE N (@)

We claim ¢;=¢,. For otherwise ¢ =¢; —¢:50 and we can find a function
fECS(G) such that [¢(x)f(x)dx><0. Then as we have seen in the proof of
Theorem 6 of [8], there exists a function f'EC.°(G) such that

B [ 1@m@dz = [ jm(an
Hence
T"’l(f/) - Trz(f,) = ff(x)cb(x)dx #= 0

which contradicts our hypothesis that T's,=T,,. Therefore

2 b= D, ok

rEN;®r) ¥E N2 (Dr)
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Since Wi N\ Do, # {0} (REN(D,)) it follows that ¢i.(1) =0 for EEN(Dy).
Now suppose & N, (D) M -1 so that a(k) has already been defined. Then
by induction hypothesis, the representations induced on Wi and Ws, awmy
are equivalent and therefore ¢ x =2 o«xy. Since ¢1,.(1) #0, 2 .4y(1) =0 and
therefore Wg,a<k)ﬂ©§‘,gr?£ {O } Hence a(k) E No(D,) M\ M,,._1. Conversely sup-
pose [EN(O,) M, ,_4. Since « is a 1-1 mapping of M, , ; onto M;,_, there
is exactly one & M, ,; such that /=«(k). Moreover the representations in-
duced on W, and W, aw =W, are equivalent. Therefore since W,
NSyp, = {0}, it follows that Wi \Ofp, = {0}. Hence S Ny(D)N My, 1.
This proves that o maps N:i(D,) N\ M;,,_1 onto No(D) N\ M,,1. Let NI (D,) be
the complement of N;(D,)NM; . in Ny(D,) (¢=1, 2). Then it is clear from
what we have said that

2 b= 2, o

KE N, (Dr) EE N, (Dr)
Letys, - - -, ¥, be all the distinct functions among ¢, (REN;(D,), 1=1, 2).
We know that none of these are zero and therefore from Theorem 1 of [8]
it follows that each ¢, (1 =¢t=<s) appears the same number of times in the
two sums on either side of the above equation. This means that we can find a
1-1 mapping k—a(k) of Ni(D,) onto N;(D,) such that ¢y r =2 «x) #0. In view
of Theorem 1 of [8] and Theorem 8 of [6, §11], we can conclude that the
representations induced on Wi, and W .w (REN{(D,)) are equivalent.
Thus « is now defined on M, and satisfies all the requirements. Therefore our
induction is complete and the theorem follows.

Notice that if REN(D) (DEQ*), the representations induced on W,
and W, cannot be equivalent unless /EN;(D). Hence if ¢ is any unitary
irreducible representation of G, there are only a finite number of values of k
such that the representation induced on W, is equivalent to o. Let %;(o)
(=1, 2) be this number. Then the above proof shows that #,(¢) =#n:(s). In
particular if my=m;=m (say), this number, which we now denote by (o), is
independent of the particular decomposition of § into mutually orthogonal
invariant irreducible subspaces. If w is the equivalence class of o, we call
n(s) the multiplicity of w in . It is clear from Lemma 1 that for any f
e (6),

T+(f) = 20 n@)Tu(f)

w

where T, is the character and n(w) the multiplicity of w in 7 and the series is
absolutely convergent. We may therefore write

T,= 2. n(w)T..
€E
Let T be a distribution on G. We shall say that T is a character of G if
there exists a representation 7 satisfying the conditions of Lemma 1 such that
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T is the character of 7. T is said to be unitary or irreducible if 7 may be chosen
to be unitary or irreducible.

3. Computation of some characters. We know that the mapping (u, k, n)
—uhn (WEK, h€A,, nEN) is a homeomorphism of K XA XN onto G.
Since ZCK, A, and N are mapped isomorphically under the mapping x—x*
of G on G*=G/DNZ. Therefore we may identify 4N with its image under
this mapping. Then (u*, k, n)—>u*hn (W*EK*, hEA,, nEN) is a topological
mapping of K* XA, XN onto G. For any x&G put

*u* = uth(x, u)n

where & K*, h(x, u*)EA,, and nEN. Then u;* and k(x, u*) are continu-
ous functions of (x, #*) on G X K*. Since 4 is simply connected, the mapping
H—exp H (HEYy,,) maps by, topologically onto 4. We denote its inverse by
h—log h (hEA,). Put H(x, u*) =log h(x, u*). Finally let y(x, #*) denote the
unique element in K such that

wlxu & v(x, w¥)AN (x € G, u* € K*).

Here u is any element in K lying(®) above u*.

Normalise the Haar measure du* on K* so that the total measure of K*
is 1. Let 7 be a homomorphism of K into C and A a (complex-valued) linear
function on by, We regard the space =L,(K*) of all square-integrable
functions on K* as a Hilbert space in the usual way and define a representa-
tion m of G on P as follows. If fEH and xEG,

a()f(w*) = n(y(x7, w¥)) exp {— (A + 20)(H(x, w¥) }f(uh)  (w* € K¥).

Here w(x)f(u*) denotes the value of the function 7(x)f at «* and p has the
same meaning as in [6, §12]. It is easy to verify (see [6, §12]) that 7 is in
fact a representation.

Let m,, by, and o be the subalgebras of go as defined in [6, §2] and let
M,, A%, and A° be the corresponding analytic subgroups of G. Then A° is
a maximal connected abelian subgroup of G and therefore it is closed. Let
M and A_ respectively be the centralizers of A, and 4° in K. Then they
are both closed subgroups of K. Since m, and by, respectively are the cen-
tralizers of by, and by in ¥, (see Lemma 4, §2 of [6]), M, and 4° are the com-
ponents of identity of M and A_ respectively. Put 4 =4 ,4_. We shall see
later that 4 is exactly the centralizer of A° in G.

LEMMA 4. Let m be an element in M. Then mNm—'=N.

Let g be the complexification of go and ¥, by, b, m the subalgebras of g
spanned by o, by, br,, 1Mo respectively over C. We define positive roots of g

(3) Let V be the space of all cosets xB (x(G) with respect to a closed subgroup B of G
Then we say that x lies above v (&G, v& V) if x lies in the coset v.
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(with respect to §) and divide them into two disjoint classes Py and P_ as
described in [6, §2]. For every root a select an element X,>0 in g such that
[H, Xo]=a(H)Xo (HED). Then if n=3 .cp, CXqand 1= 3 ,cp, CX_,
we have g=hy+m-+n-+n—. Let x—Ad (x) denote the adjoint representation
of G on g. Then if mEM, Ad (m)H=H and therefore [H, Ad(m)X,]
=a(H) Ad (m)X . for all HE by and a € P, Since [y, m] = {0 } it follows from
the above decomposition of g that Ad (m)X.En («EP,). Hence Ad (m)n=n
and therefore mNm—1=N.

Let M* denote the image of M in K*. Then M* is the centralizer of 4,
in K*, and therefore it is closed and hence compact. Let M; be any subgroup
of M containing MoZ. Let M{* and M¢* denote the images of M; and M, re-
spectively in K*. Then M¢* is the connected component of M* and therefore
M*/M¢ is both compact and discrete and hence finite. From this it follows
that M:* is compact. We normalise the Haar measure dm* on M{* so as to
make the total measure of M:* equal to 1.

Let 7 denote the right regular representation of K* on § so that 7(v*)f(u*)
=f(u*v*) (u*, v*EK*, f€9). Then it follows easily from Lemma 4 that
7(m*) commutes with 7(x) if x€G and m*&€ M*. Put

T =ff(x)w(x)dx, S = .g(m*)r(m*)dm*
M,

where fEC;°(G) and g is a continuous function on M{*. Now if vEK,
m(v)(u*) = n(v)o(v*u*) (¢ € O, w* € K*).

Therefore it follows from the Peter-Weyl Theorem for K* that no irreducible
representation of K occurs more often in the reduction of w(K) than its de-
gree. Hence Lemma 1 is applicable. Since S is a bounded operator it follows
(see Lemma 1 of [8]) that TS is of the trace class. We propose to compute
Sp (TS).

Let ¢ be a continuous function on K*. For a fixed m* in M put ¢’
=71(m*)¢. Then

T¢'(u*) = f J@)7 (%) (w*)dx = f fux ) (ux")¢' (w*)dx
where u is some element in K lying above u*. Let dv, dk, dn denote the Haar

measures on K, 4., and N respectively. We normalise dv in such a way that
for any continuous function ¥ on K which vanishes outside a compact set,

) Y0 = 1] AL

where Y*(v*) = Zyepnz Y(ry) (wE€K). Moreover we assume that dx, dh,
and dn are so normalised that
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dx = exp {2p(log k) }dvdhdn (x = vhn;vE K, hE Ay, n € N)
(see Lemma 35 of [6, §12]). Then

T¢'(u*) = f S(u(vhn) V)n(w'v)¢' (v*) exp {A(log h)}dvdhdn

= f f(u(hn)~ ) n(u"10)p(v*m*) exp {A(log h)}dv)dhdn._
Now since A, is abelian and N is nilpotent, they are both unimodular. Hence
f f(u(hn) v~ 1)dhdn = f f(unhv=)dhdn.

But nh=h(hk~'nh) and for a fixed &, d(h~'nh) =exp { —2p(log k) }dn as fol-
lows easily from Lemma 5 of [6, §2]. Therefore

f f(u(hn)~ 'Y dhdn = f f(uhnv) exp {2p(log k) }dhdn
and
TS¢(u*) = f f(uhny=)n(u10)g(v*m*)g(m*) exp {(A + 2p)(log )} dvdhdndm*.
Put
F(u, v) = f f(uhnv")n(u1v) exp { (A + 2p)(log &)} dhdn (4, v € K).

Since f vanishes outside a compact set it is clear that for a fixed v, F(u, v)
vanishes outside a compact set on K. Since F(u, vy) =F(uy™!, v) (yEZ) it
follows that the sum Z.,e zap F(u, vy) is defined and depends only
on (u*, v*). Put

F(u*, v*) = > F(u, vy).
+&zND

Then it is seen without difficulty that F* is an indefinitely differentiable
function on K*XK* and

TS¢(u*) = f F*(u*, v*)p(v*m*)g(m*)dv*dm*
= f F*(u*, v*m*~1)¢(v*)g(m*)dv*dm*

= f B(u*, v*)¢(v*)dv*
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where
®(u*, v¥) = f F*(u*, v*m*~1) g(m*)dm*.
M
Thus TS is represented here as an integral operator with the kernel ®. It is

clear that ® is also indefinitely differentiable on K* X K*. In order to compute
Sp T'S we make use of the following lemma.

LEMMA 5. Let N(u*, v*) be an indefinitely differentiable function on K* X K*
and let L be the bounded linear operator on Lo(K*) defined by

Lo@) = [ N, 0o dor (6 € L(K").
Then if(*) L is of the trace class
spL = f Nu*, w*)du*.
K.

As above let Q* denote the set of all equivalence classes of simple finite-
dimensional representations of K*. For every D&EQ* choose a unitary
matrix representation ¢® in ®. Let d(D) denote the degree and o), 11,5
<d(D), the matrix coefficients of ¢®. Then the functions (D)%, 1=<4,j

<d(D) (DEN*), form a complete orthonormal set in L.(K*). Hence if L
is of the trace class,

® _ D
spL = 2, d(®)(osj, Loi)
DEQ*

= 2 d®D) f x> (W ¥\ (w*, v*)du*dv*
DEQ* K*

where xp is the character of the class © and (¥, ¢) denotes the usual scalar
product in Ly(K*) (¢, pEL(K*)). Put

Mo(v¥) = f Au*, u*v*)du*.
Then Ao(v*) is an idefinitely differentiable function on K* and
spL= >, d©) f xo(@*)No(v*)dv*.
dEQ*
Let © be the Banach space of continuous functions ¢ on K* with the norm

(4) It is not difficult to show by the method of §5 of [8] that L is in fact of the trace class.
However we do not need this fact here.
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|¢>| =supx* |¢o(v*) l . For u*€ K* let [(u*) denote the bounded linear operator
on § given by

H(u*)$p(v*) = $p(u*~1v*) (¢ € 9, v* €EK¥).

Then u*—I(u*) is a representation of K* on 9. Since A, is of class C* it is
differentiable under I (see [6, §9]). Therefore if we use the arguments of the
proof of Lemma 3 of [8] we see that the series degt d(D)xo@*VHI(v*)\odv*
converges absolutely in § to Ao. Hence

2 d©) | xo@ e u*)dv*

dEQ*
converges uniformly to Ao(#*) on K*. Putting #*=1* we get

sp L = N\(1*) = f)\(u*, u*)du*,
If we apply the above lemma to the operator T'S we get
sp TS = f d(u*, u*)du* = f F*(u*, w*m*~1) g(m*)du*dm*.

Now M, is the complete inverse image of M* in K. Therefore it is closed.

We normalise the Haar measure dm on M, in such a way that for any con-
tinuous function o on M, which vanishes outside a compact set,

f Mla(m)dm = f M:a*(m*) dm*

where a*(m*) = Z,ezﬂp a(my) (m&M,). Then if we recall the definition
of F* we find that

f F*(u*, w*m*=1)g(m*)dm*
= f F(u, um=)g(m*)dm

= f f(uhnmu)q(m=1)g(m*) exp {(A + 2p)(log k) } dhdndm

where % is any element in K lying above u*. Now hnm =mh(m—nm) and for
fixed m, d(m—'nm) =dn. Hence

2, 1) = [ J(mhn)*)n(n=)gm*) exp { (A + 29)1og 1) }ahdnim

(where x** =uxu~") and therefore



496 HARISH-CHANDRA [May

sp TS = f f((mhn)*)n(m—1)g(m*) exp { (A + 2p)(log k) }du*dhdndm.

Now let m;E M;. Then
(mymmy " hn)¥* = (mhn')*m mE M,hE A, nEN)
where n’ =m[ 'nmEN. From this it follows that
sp TS =sp TS’
where S’ = [} g'(m*)7(m*)dm* and g’ (m*) = g((mimm; ") *) (m E M,). Hence it
is clear that

sp TS = f f((mhn)“)n(m=)E*(m*) exp {(A + 2p)(log &) }du*dhdndm

where £¥(m*) = [uig(mFm*m*—)dms*.
Now let ¢ be an irreducible unitary matrix representation of M;* of de-
gree d and let 0,5, 1 £4, j =d, denote its matrix coefficients. Put

Eij = df a;i(m*“)r(m*)dm*, 1 § ’l:,j = d,
My

and E;=E;; (1=¢=d). Then E; are mutually orthogonal projections which
commute with 7(x) (x€G). Hence if §=L,(K*), $:=E;p, 1=51=d, are
closed subspaces which are invariant under 7(G). Let 7; be the representa-
tion of G induced on 9; under w. Then it is clear that the operator
Jf(x)mi(x)dx is of the trace class and

sp (ff(x)r.-(x)dx) = sp TE..
But

d ciimim*m*—V)dm¥ = £*(m*) (m* € M{¥)
My

where £* is the character of . Hence

sp ([ smaz) = [ iy mmetm
-exp {(A + 2p)(log k) } du*dhdndm.

Let ¢’ be the representation of M* contragredient to ¢. Define a representa-
tion ¢’’ of M, as follows:

a’’(m) = n(m=")a'(m*) (m € My).

Let & be the equivalence class and &; the character of ¢’’. Then
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Es(m) = n(m=)E*(m*-1) (m € My).
Hence(?)

sp (ff(x)m(x)dx) = Tas(f)

where

Tas(f) = f f((mhn)=)gs(m) exp { (A + 2p)(log k) } du*dhdndm.

Let wy, be the set of all equivalence classes of finite-dimensional simple
representations of M;. Then we have proved the following theorem.

THEOREM 1. Let A be a linear function on Yy, and & a class in wr,. Let &
denote the character of 8. Let T ; denote the distribution given by

Tas(f) = f £4(m)dm f f(mhn)=) exp {(A + 20)(log k) } du*dhdn

(fECS(G)). Then T s is a character of G.

The above formula shows that T ; is not only a distribution but actually
a measure (see [10]). Therefore it may be regarded as a continuous linear
functional on the space C,(G) of all continuous functions on G which vanish
outside a compact set. Moreover we know (see [6, §12]) that if A+p takes
pure imaginary values on by, and | 7(x)| =1 (*€G), 7 (and therefore 7,) is a
unitary representation of G. Hence Ta,; is a unitary character if A+p is pure
imaginary on by, and & is a unitary class (i.e. the class of a unitary representa-
tion of M;). For any DEQ let (D:8) denote the number of times & occurs in
the reduction of ® with respect to M;. Then we know (see A. Weil [12, p. 83]
and [6, §12]) that D occurs exactly (D:8) times in the reduction of 7; with
respect to K.

We shall now derive another expression for the character T4, when
My=MyZ. Since ZCK, every element h&A4°Z can be written uniquely as
h=hih_ where hy €A, and h_EA° Z. Let A®* be the image of A% in K*.
Then A% is a maximal abelian subgroup of the compact Lie group M.
Hence every element in M¢* is conjugate (with respect to M) to some ele-
ment in A%, Therefore it follows from known theory (see Weyl [13]) that if
the Haar measure dk_ on A° Z is suitably normalised

= VA_(h_)2dh_
fMozv(m)dm on_Zv(h )A_(h)

(® Since Ej;E;=E; and E;E;=E; and E;; commutes with =(x), it is clear that =; and ;
are equivalent under the mapping y—E;¢ (W& $:) of 9; onto H;.
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for any continuous class function 4 on MZ which vanishes outside a com-
pact set. Here

A_(h) =| J] (a2 — gratmriz)

«EP_

where H is any element in by, such that k2! exp HEZ. If we put
vm) = tam) [ f(Gmim)) exp (& + 26)log )} du*dhan

we get the following result.

LEMMA 6. It is possible to normalize the Haar measures dh_ and dhy on
A% Z and A, in such a way that

Tx,s(f) =Lozsa(h_)A_(h_th_ff((th+n)“‘)

-exp {(A + 2p)(log h+)}du*dh+dn
for every linear function A on Yy, dCwu,z and fEC?(G).

4. Transformation of certain integrals. We keep to the notation of §2.
Let X—ad X (X &go) denote the adjoint representation of go. We say that
an element X €g, is singular if the characteristic polynomial of ad X in the
indeterminate \ is divisible by Nt! (I=dim ¥,). The coefficient of A is clearly
a polynomial function(®) F(X) on g, which is not identically zero. Since X
is singular if and only if F(X) =0, it follows that the set of singular elements
is closed and nowhere dense in the Euclidean space go. We call an element
regular if it is not singular. Let x—Ad (x) (x&G) denote the adjoint repre-
sentation of G on go. It is clear that Ad (x) X (x&EG) is regular if and only if X
is regular.

LEMMA 7. Let H be a regular element in Yo. Suppose x is an element in G
such that Ad (x)HE Y. Then xE A’ A, where A’ is the normalizer of A° in K.

Since H is regular, b, is the centralizer of H in go. Hence Ad (x)}, is the
centralizer of Ad (x)H. But since Ad (x)HE,, Bo is contained in this cen-
tralizer and therefore §,CAd (x)bo. Since hp and Ad (x)ho have the same
dimension, ho=Ad (x)ho. Let x=ubn’ (uEK, hEA, n’ EN). Since hn' =nh
where n=hn'h—'E N we get

Ad (w)ho = Ad (nh)ho = Ad (n)ho C bo + 0.
On the other hand Ad (#~)bhp,Cpo and po(Hho-+10) = by, where p, is defined

() Let V be a vector space over R or C. A complex-valued function f on V is called a poly-
nomial function if it can be written as a polynomial (with complex coefficients) in linear func-
tions on V. .
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as in [6, §2]. Similarly Ad (%) b, C¥, and £o\(ho=+10) = br,. Therefore
Ad (u—l)bpo C bbo» Ad (u—l)bfo C bfo'

Hence Ad (#1)HCho and so uEA”. Therefore in order to prove our asser-
tion we have only to show that #» =1. This follows from the lemma below.

LEMMA 8. Let H be a regular element in Y. Then n—Ad (n)H (nEN) is a
1-1 mapping of N onto the set of all elements of the form H+Z (ZEny).

Define X, and n as in the proof of Lemma 4. Then no=n/\go; since NN is
nilpotent every # &N can be written in the form n=exp X (X &ny). There-
fore Ad (n)H—H =exp (ad X)H — HEn, since [1g, ho] Cno. This proves that
Ad (n)H=H-+Z where Z&n,. Now suppose Ad (n)H =H. Then exp (ad X)H
—H=0 and this implies that X =0. For otherwise suppose X#0. Then
X= Z.,E Py @aXa (@aEC) and not all a, are zero. Let 8 be the lowest root
in P, such that ag=0. Then

exp (ad X)H —H = (ad X)H = — ag8(H)Xsmod 2 CX,.
a>f
Since H is regular, B(H)#0 and therefore it follows from the linear inde-
pendence of X, (a&P,) over C that exp (ad X)H—H#0 in contradiction
with our hypothesis. Now if Ad (m)H=Ad (n))H (n;, n.EN), Ad (ny'nm))H
=H and therefore n;'n,=1 so that n,=n,.

Finally we claim that every element of the form H+Z (Z&mn,) can be
written as Ad (n)H for some n & N. For otherwise choose Z such that such
a representation is impossible. Then clearly Z50. Let

Z = a.Xo+ 2 a5Xs (a4, a5 € C)
f>a
where a is a root in P, and a,#0. We choose Z in such a way that « has the
highest possible value. Since H is regular the mapping X —[H, X] (X Eny) is
a nonsingular linear mapping of 1, into itself. Hence there exists a Y&n,
such that [H, Y]=2Z. Put n;=exp Y. Then it is clear that
Ad (m)(H+2) —H= [V, H|+Zmod ) CX;

p>a
= Omod Y CXp.
B>a
Hence Ad (1)) (H+2Z)=H+Z2'" where Z'EneN\( 2_gsa CXp). In view of our
choice of Z it follows that H+Z'=Ad (n;)H for some n,&N. Therefore
H+Z=Ad (n)H where n=n{"n,. Since this contradicts our hypothesis the
assertion is proved.

COROLLARY. A =A,A_ is exactly the centralizer of A°=A,A° in G.

Let x be an element of G which commutes with all elements in 4°. Then
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it follows from Lemma 7 that x=uh where u€ A’ and hEA,. Since x com-
mutes with 4° the same is true of #. Hence u lies in the centralizer A_ of 4°
in K.

Since g, is a vector space over R of finite dimension we can regard it as an
analytic manifold(?) and identify in the usual way the tangent space at each
point X Eg, with g, itself. Then if f is a function on go which is differentiable
at X,

d
PO = {5500+ m) ¥ € ).
dat t=0
Similar remarks hold also for any linear subspace of go which may also be
regarded as an analytic manifold.

Consider the subgroup 4°Z in G. It is clear that Ad (49 is a maximal
connected abelian subgroup of Ad (G) and therefore it is closed. Hence A°Z
is closed in G. Let € denote the factor space G/A4°Z consisting of all cosets of
the form x4°Z (x&G). We regard € as an analytic manifold in the usual
way (see [1]) and denote by x—& the natural mapping of G on €. Then
for any fixed HE Yy, Ad (x)H depends only on . We put sH=Ad (x)H
(xEG). It is evident that the mapping ¢: (%, H)—zH (€€, HE ) is an
analytic mapping of €Xb, into go. We consider the differential(?) of ¢. Let
Xi, + + -+, X, be a base for go mod by and let (dr), denote the differential of
the natural mapping of G on € at x. Then (dr).X;, 1<i<r, forms a base for
the tangent space of € at & (see [1, p. 110]). Hence if we regard the tangent
space of €X Y at (&, H) as the direct sum of the tangent spaces of € and b,
it is easily seen that

dgo(dr).X: = — Ad (%) [H, X.], l=sisy,

d¢H, = Ad (x)H, (Ho € bo).

Let D be the linear mapping of g, into itself defined by DX;= — [H, X.],
1=i=r,and DHy=H, (HyEhy). Then D defines a linear mapping D in the

factor space go/ho which is the same as that induced by —adH. Since G is
semisimple det Ad (x) =1. Hence

| det Ad (x)D| = |det D| = |det D| = I]| a(&) |2
a>0

where a runs over all positive roots. This shows that if H isregular det Ad (x)D
#0 and therefore d¢ is regular(?) at (£, H). Let b, be the set of all regular
elements in Y. Then ¢ defines a continuous open mapping of €XJ; into go.
The image of €X b, in g, is obviously the set g; of all regular elements in go
which are conjugate (under G) to some element in §,. Since b is open in b,
¢1 is open in g.

(") We shall follow the terminology of Chevalley [1] in the rest of this paper.
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Define A’ as in Lemma 7 and put 4’=4"A4,. Since Ad (4’) is the
normalizer of Ad (4°) in Ad (K), it is closed and therefore compact. Since
by, is the normalizer of B, in f, it follows that A% is the connected component
of A’ and therefore A’/A°Z=>~A" /A Z=~Ad (4")/Ad (4%) is finite. We
denote by W the finite group A’/A°Z. For any #€ € and s& W we define
&s as follows. Choose x &G and e €A’ lying above % and s respectively. Then
the coset xa4°Z depends only on # and s and we define #s to be this coset.
It is clear that &5 % unless s=1. Since WCE, sH (sEW, HE,) is defined
and lies in §o. Now suppose & H;=&H, (%, #:E E; Hy, Ho€Y,). Then if x;
liesin G above %; (1 =1, 2), Ad (x1) H; = Ad (x;) H;and therefore, from Lemma 7,
x7 €A’ and Hy=Ad (x7'x;)H,. Hence there exists an s&€W such that
Za==%s and Ho=s"'H,. Moreover % 7% unless s=1. Therefore if w is the
order of the group W, there are exactly w distinct points in €X5, which
have the same image in g;.

Since A°Z is abelian, it is unimodular and therefore (see Weil [11, p. 42])
there exists a measure d% (which is unique apart from a constant factor) on
€ such that it is invariant under the translations induced on € by G. Let
n=dim go and let (H;, - - - , H;) be a base for o so that r=% —1 (in the nota-
tion used above). As before let X3, - - -, X, be a base for go mod §. Let w be
a left invariant differential form of degree #» on G such that w(X,, - - -, X,
H,, - - -, H))=1. Then if & is the differential form of degree 7 on € correspond-
ing to the (suitably normalized) invariant measure we have(?)

“:’((dr)zylr Tty (dﬂ.)zyf) = O)(Yl, R Yrr Hl) AR Hl)

for any Y3, - - -, Y,Ego. Let dX denote the Euclidean measure on go and 75
the corresponding differential form of degree # on go. We may assume that
72Xy, + ¢+, Xy, Hy, - -+, H)) =1. Consider the image of 7 under the dual(?)
d¢ of the mapping d¢. Then (8¢7)s,x is the form defined at (£, H) on €X},
by the rule

(3¢m)z,m((d7) 2 X1, - + -, (A7) Xy, Hy, - -+, Hy)

= ﬂjH(dd)O(dﬂ') zXl, t Tty d¢°(d7r)z Ty (d¢)Hl) Tty (d¢)Hl)

= + HI a(H) lz

a>0
as we saw above. Let £ be the differential form on }, corresponding to the
Euclidean measure dH. We assume that §(H,, - -+ -, H;)=1. Then
(64’77)517(((1#) IXI! Tty (d‘ll'),;X,-, Hl) Tty Hl)
=+ HI a(H) I%((dr)zXl, <o, (A7) XP)E(Hy, - - -, H)).
a>0

(®) We give here once in some detail the computation of the measure on g, in terms of the
measure on € and B;. All subsequent computations of a similar sort will be sketched only very
briefly.
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This proves that
(O¢mzn = * []| (@) |%

a>0
where { is the differential form on € X}, corresponding to the product meas-
ure didH. Therefore taking into account the fact that every point in g,
has exactly w distinct pre-images in €Xl;, we can conclude that

w f f(X)dX = f 11| «(#) |?/(zH)d2dH
81 E:Xb, >0
for any measurable function f on g¢;, whenever at least one of the two sides
of this equation remains finite on replacing f by lf[ .

Now let Gx =G/Z and let x—xx denote the natural mapping of G on Gx.
Since ZCK, A, and N are mapped isomorphically and so we may identify
them with their images under this mapping. Then Gx =KxAN. Now an
=ana'-a (@EA,, nEN). Hence Gy =K« NA, and KxNNA,={1}. There-
fore Gx/A; is homeomorphic to K4N under the mapping usn—usnd,
(ux €EKx, nEN). If we identify Gx/A, with K4 N under this mapping it is
easy to verify that dusxdn is the invariant measure on G«/A4 . (Here dusx and
dn are the Haar measures on K4 and N respectively.) Now E=G/A°Z
=Gy/A% where A% =A4,4° and A%, is the analytic subgroup of Ky cor-
responding to by,. Let dx«, dk, and dhs be the Haar measures on Gx, 44, and
A° , respectively. Then dxy =duxdndh (xx =usxnh) if dn is suitably normalized.
We shall assume that [dh« =1. Let d% be the invariant measure on €. Then
if d% is suitably normalized, dxs =d#&dh«dh in the sense of [11, p. 42]. Let
F(%) be a continuous function on € which vanishes outside a compact set.
Then there exists (see [11, p. 43]) a continuous function F; on Gx vanishing
outside a compact set such that

where x4—f4 is the natural mapping of Gx on E=Gx/4%. Put

Fz(x*) = f Fl(x*h*)dh*.

f Fawy)day = f F(%)ds.

ng(x*)dx* =fF2(u*nh)du*dndh =fF(m)du*dn

Then

But
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since

f Fy(ugnh)dh = f Fi(ugnhhy)dhdhy, = F(ugn).

Therefore

fF(ic)da?: =fF(u?)du*dn

and from this the same relation follows for any measurable function F on €
provided either one of the two sides of the above equation remains finite on
replacing F by | F | . Therefore in particular

f f(zH)dz = f(Ad (uygn)H)dusdn
6 K.N
where x4 —Ad (x4) is the adjoint representation of G«. Hence

wf f(X)dX = duy f(Ad (wen)H)dndH.
81 Ko N Xb;

We have seen (Lemma 8) that the mapping (#, H)—Ad (n)H is a 1-1 map-
ping of N Xb; onto h;+1o which is obviously analytic. Now

lim% [Ad (n exp tX)H — Ad (n)H] = — Ad () [H, X] (X Eny),

lim% [Ad (n)(H + tHo) — Ad (W)H] = Ad (n)Ho (Ho € ho).

Hence if D is the linear mapping of ho+n, into itself given by DX = — (adH) X
(XEng) and DHo=H, (HyEY,) it follows that

| det (Ad (n)D) | = |det D| = JI | ()|
«E P+

as the determinant of the restriction of Ad (#) on §o+n, is obviously 1. Since
Heb, [leer, [a(H)| #0 and our mapping is regular at (n, H). Therefore
in view of Lemma 8, it defines a topological mapping of §; XN onto 41,
and [wxs,f(Ad (uwn) H)dndH = f,4n, [ o€, | a(H) |7f(Ad (us)(H + Z))dHIZ
where dZ is the suitably normalised Euclidean measure on 1y. Therefore

'wj;l f(X)dX

= f» I |«@| I | @ |%4BdZ | f(Ad (w)(H + Z))dus.
a Ke

iy «E Py EP_
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Thus we have proved the following result.

LEMMA 9. It is possible to normalise the Euclidean measures dX,dH, and dZ
on go, ho, and n, respectively in such a way that for any measurable function f(X)
on @i,

j; 1 f(X)dX

- f I @ | I | @) |2amaz f F(A () (H + 2))duy
[} K.

1+ng aEP4 aEP_
provided at least one of these two integrals remains finite on replacing f by | f I .

We shall call an element x E€G singular if the characteristic polynomial of
Ad (x) in the indeterminate \ is divisible by (1 —=\)!*! (I=dim by). If x is
not singular we say it is regular. Let HE . Then h=exp H is singular if
and only if a(H) =27wm(—1)Y2 for some root o and some integer m. Let nEN.
Then it is easily seen that Ad (k), Ad (kn) have the same characteristic
polynomials. Hence %n is singular if and only if % is singular.

LEMMA 10. Let H be an element in Yo such that h=exp H is regular. Then
X—h! exp (H+X) (XEny) is a 1-1 analytic mapping of ny onto N which is
everywhere regular.

We denote by (1—e™)/\ the power series Y .mz0 (—1)™\"/(m—+1)!
which is convergent for all values of N. If B is a matrix or an endomorphism
of a finite-dimensional (real or complex) vector space we put

1 —¢B Bm

In the proof of the above lemma we shall make use of the following known
result (see Chevalley [1, p. 157]). If YE€go and f is a function on G differ-
entiable at y=exp Y, then

d
{5 flexp (¥ + tZ»} - 2D Z € g

t=0

1 —_— e—adY
z = (————)z
adY

Now let ¢(X)=h"1! exp (H+X) (X Eny). Then

1 —exp {—ad (H+ X)}
ad (H + X)

where

<

(dp)xY = ¥ €mno).
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Clearly 1, is invariant under ad (H+X). Let D denote the restriction of
ad (H+X) on 1n,. We extend D on n by linearity. Then the matrix of D with
respect to the base X, (¢ € P,) is in triangular form and therefore it is clear

that
1—¢P 1 — ¢ge®
det ( ) = H — # 0
D aEP+ a(H)

since & is regular. This proves that ¢ is everywhere regular.

We claim moreover that z~! exp (H4+X)#1 (XEn,) unless X=0.
For suppose X#0. Then X =a,X.+ D g>« asXs where aEP,, as, asEC,
and a,7#0. Hence for any H;E},,

Ad (exp (H + X))H,

exp (ad (H + X))H,
= H, — aqa(H) X, mod Y CXg.

g>a
Therefore if a(H;) #0, Ad (exp (H+ X)) H,# H,. This proves that exp (H+X)
#h.

Now suppose o(X;)=¢(X;) (X1, X2Emn,). Then exp (HH4X))
=exp (H+X,). Since H is regular in by, it follows from Lemma 8 that
H4+X:;=Ad n)H (n;EN, i=1, 2). Hence if n7'n;=n and Ad(n)H=H+X
(X Eny), we get exp (H+X) =h. Therefore in view of the above result X =0
and so from Lemma 8, n=1. This proves that n, =%, and X;=X,. Therefore
¢ is univalent.

Let V=¢(n,). Since ¢ is everywhere regular, V is an open subset of N.
In order to prove the lemma it only remains to show that V=N. Let n&N.
Since N is nilpotent, n =exp X for some X &n,. Consider the one-parameter
group exp tX (!&R). Let T be the subset of R consisting of all ¢ such that
exp tXE V. Since V is open, T is an open set containing zero. Let T be the
connected component of zero in T. Put Z(t) =¢—(exp tX) (&ET,). Since ¢
defines an analytic isomorphism of no with V, {—Z(t) is an analytic mapping
of T, into ny. Moreover exp (H+Z(t)) =exp H exp tX (t&T,). From this it
follows immediately that

1 — exp (—ad (H + Z(¥)))

ad (H + Z(0))

where Z(t) =lim..o (1/€) (Z(t+¢€) —Z(t)) (¢ER). Hence
(1 — exp (—ad (H 4+ Z())Z(t) = ad (H + Z(1))X.

Let @ be the automorphism of g, such that 8(Vi+Y.)=Y:—Y: (Y1 EL,
Y:Ep,). Then (see [6, §2])

QY) = — sp (ad ((Y)) ad ¥) (¥ € g
is a positive definite quadratic form on go. Put | Y| 2=Q(Y) and let D(¢) de-

Zit) =X




506 HARISH-CHANDRA [May

note the restriction of 1—Ad ((exp H exp tX)~!) on ny,. Then det D(f)
= HaEP+ (1—e) 0. Hence D(¢) is nonsingular and

Z(@t) = D()~' ad (H + Z(1)) X.

For any endomorphism A of 1, let ||4]|? denote the sum of the squares of
the matrix coefficients of 4 relative to any base of n, which is orthonormal
with respect to the quadratic form Q. Then it is clear that

[Z@)| = ||D®)~Y| | ad (H + Z(1) X |
and

lad (H+z@)Xx| < | [H, X]|+| [20), X]| = p + q| 2|

where p and ¢ are some positive numbers independent of £. Now it is evident
that D(¢), and therefore D(¢)~!, depends continuously on ¢. Hence ||D(t)‘1[| is
bounded on every bounded subset of R. Therefore given any positive num-
ber t,, there exists a constant M such that ||D(t)—1|| =M if |t| <t,. Now
suppose t& T and |¢| <to. Then, if we denote the corresponding bilinear form
also by Q,

1 4 , . .
> EIZ(t) P =0z®),2) = zw || zw).

Hence, if ¢ # 0,
d .
1201 =120 s M@ +q[20) ).
From this it follows by integration that
q
1+ ?|Z(t)| < eMaltl

provided |¢| <, and t€ T,. This proves that | Z(f)| remains bounded so long
as ¢t remains bounded in T,.

We shall now show that T is closed in R. Let f be a sequence in T,
which converges to t&R. Then # remains bounded and therefore |Z(t)]
also remains bounded. Since every bounded closed subset of 1, is compact,
we can choose a subsequence #,; such that Z(#,) converges to a limit Z in n,.
Then

¢(Z) = lim ¢(Z(tr;)) = lim exp ¢x, X = exp tX.
1o i
This proves that :&T. But T, being a component of T, is closed in T.
Therefore t&To. Hence T is both open and closed in R. Since R is connected
and 0E Ty, To=R. Therefore n=exp XE V. This proves that V=N.
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COROLLARY. Let h be a regular element in A°. Then the mapping n—h~‘nhn="
(nEN) is a topological mapping of N onto itself.

Choose H& by such that h=exp H. Then nhn—'=exp (Ad (n)H)
=exp (H+X(n)) where X(n) =Ad (n)H—HEn,. But if YEn,,

1
lim " {X(nexptV) — X(n)} = — Ad () [H, V].

—0

Therefore if D is the restriction of adH on ny,

|det Ad m)D| =|detD| = JI |«(H)| =0
«EPy

since H is regular. Therefore the mapping n—X(n) is everywhere regular.
Hence it is a topological mapping of N onto 1, from Lemma 8. The corollary
now follows immediately from Lemma 10.

We shall also prove the following lemma which will be useful later.

LeMMA 11. There exists a neighbourhood .U of zero in Y such that the ex-
ponential mapping is univalent and regular on U-+nyand exp H is regular in G
for every H#0 in U.

It is obvious that there exists a neighbourhood U of zero in §, such that
exp H is regular for all H#0 in U and the mapping H—exp H is univalent
on U. Now we know (see Chevalley [1, p. 157]) that the exponential mapping
is regular at a point X &g, if and only if det ((1 —exp (—adX))/adX) 0.
But if HEU and XEny, det ((1—exp (—ad(H+X)))/ad(H+X))
=det (1 —e~*) /adH) = [Ja>o (1 —e==®) /a(H)) [Taso (ex® —1) /a(H) #0.
Hence the exponential mapping is regular on U—+1o.Now suppose exp (H;+X1)
=exp (H:+X2) (Hy, Ho€U; X1, X2En,). Let hy=exp H; (¢=1, 2). Then it
is clear that k€N and therefore b 'h, E NN A= {1}. Since the exponential
mapping is univalent on U it follows that Hy;=H,. Put H=H;=H,. Then if
H=0, exp X1 =exp X,. Since the exponential mapping is well known to be
univalent on 1y, X;=X,. On the other hand suppose H>0. Then exp H is
regular and therefore from Lemma 10, X;=X,. This proves the lemma.

CoROLLARY. The exponential mapping maps U-+n, topologically into G.
Moreover if U is compact, exp (U-+1n,) s closed in G.

The first assertion is obvious from Lemma 11. Moreover it follows from
Lemma 10 that exp (U-+no) = (exp U)N. Therefore if U is compact, exp U is
also compact and therefore (exp U)N is closed.

Let G, be the set of all regular elements of G which are conjugate to some
element in A°Z. Let 4, be the set of all regular elements in A° Define the
factor space £=G/A°Z as before. For any #€ € and h€A°Z define h* =xhx~!
where x is any element of the coset # Then ¢: (&, h)—h® is a continuous map-
ping of EXA'Z into G and ¢(E X A:Z) =G,. We shall prove that ¢ is regular
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on EXA,Z. Since A,Z is obviously open in 4°Z, it would follow that G is
open in G. Let X, - - -, X, be a base for go mod b, and let 7w denote the nat-
ural mapping of G on €. Then if xE% we know that (dr).X;, 1Si<r,is a
base for the tangent space of € at #. Now if X Egoand HE},,

xexp tX h(xexp tX)™! = xhalexp ¢t Ad (22 1) X exp (—¢ Ad (x)X),
and
xhexptHx! = xhx'expt Ad (x)H.

Therefore
d¢o (dr).X; = Ad (x)[Ad (b)) — 1]X,,

d¢H = Ad (x)H.

Then if D is the endomorphism of g, such that
DX; = (Ad (k) — )X, 1=2i=r,
DH=H (H € bo),

it is clear that

| det Ad (#)D| = |det D| = | [J (= — 1) [ (e=® — 1)

a>0 a>0

where H is any element in § such that 2~! exp HEZ. Put

A(h) = H(ea(ﬂ)/z — e——a(H)l2)

a>0
Then if k is regular, |det (Ad (x)D| =A?%(k)5£0 and this shows that ¢ is
regular on €XA4,Z. Now suppose x and % are two elements in G and A4,Z re-
spectively such that xhx—1€A°Z. The set of all points in g, which are left
fixed by Ad (k) is exactly §o. Hence the corresponding set of fixed points for
Ad (xhx~!) is Ad (x)ho. But since xhx—'€A°Z it follows that §CAd (x)5ho.
Therefore ho=Ad (x)h (because dim Ad (x)§o=dim by) and xE A’ (Lemma
7). From this we deduce easily that the complete inverse image under ¢ of
any point in G; consists of exactly w distinct points (w is the order of W
=A'/A°Z). Therefore the method used in the proof of Lemma 9 permits us
to conclude that

H(x)ds = f duy F(nhn=y ) A2(k)dndh
G K, NXA\Z

for any measurable function f on G, for which at least one of the two integrals

above remains finite on replacing f by | f | . Here dx, dn, dh are the suitably

normalised Haar measures on G, N, and A°Z respectively.
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Now consider the mapping ¢: (k, n)—nkn=! of A°ZXN into A°ZN.
Then
nhexp tHn! = nhnw'expt Ad (n)H (H € ),
(n exp tX)h(n exp tX)!
= nhntexpt Ad (nh )X exp (—t Ad (n)X) (X € ny).
This shows that
()H = Ad (n)H (H € bo),
(@)X = Ad (n)[Ad () — 1]X (X €ny).

Hence

= | P+ (H) |

H (ex(E) /2 — gma(E)]2)

a Py

|det (dp)| =| II (e=® —1)

«EPy

where p, =21 Eaep ;o and H is any element in §, such that b~ exp HEZ.
Suppose H=H,+H_ where H,Eby, and H_Eh,. Then p (H_) is purely
imaginary while p,.(H,) is real and equal to p(H,). Hence

| det @y) | = e | ] (ext®i2 — gatmi2)

«EPy

Since ZNA,= {1}, H, is uniquely determined by k. Therefore if we put

Au(h) =

II (ext®ri2 — —a(H)/2)‘,

aEPy

A4 is a well-defined function on 4°Z. Now if we take into account the fact
that the Haar measure on A°ZN is ds=dhdn (s=hn; hEA°Z, nEN) we find
from the corollary to Lemma 11 that

f f(nhn=") exp { —p(log k) }Ay(h)dhdn = f(hn)dhdn.
NXA1Z A ZN

Here k. denotes the unique element in 4, such that A~ €A% Z. Comparing
this with our earlier result we get

f(x)dx = f duy f((hn)v=)eror BOA  (B)A(K)2dhdn.
Gy . AyZN
Let A be a linear function on by, and let d Cwx,z (see §3 for notation). Put

vi(h) = {A(h)}~* exp {(A + p)(log k) }£s(h) (h € 4:2).

Here &, and k_ are the unique elements in 4, and 4% Z respectively such
that h=h, h_. Moreover let
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v(h) = 20 vi(h?)
EwW
and consider the mapping (&, h)—h® of EXAZ onto G,. It is everywhere

open and continuous and the complete inverse image of 4* under this map-
ping is the set (Zs7!, h*) (s& W). Therefore if we put

Ou,s(h%) = v(h) EEE hE A2

we clearly get a continuous function on G;. Then
f lf(x)®A,a(x) | dx
Gy
= f | 7(h®)y(h) | A%(h)dzdh
Exa \Z
<w f dus f | 7((nhn=)w)y1(h) | A2(h)dzdh
K. NX4,Z

= w f duy f N | #((hn)=)y1(B) | exp {p(log k) } Ay (R)AZ(K)dndh

w [ i [y exp {8+ 20)hog k) esCh) | A% dnd
. A1ZN

where A_(h) =A(h) /A(h) = | [Tagpr_ (ex®/2—e=t2)| | H being any ele-
ment in b, such that 2! exp HEZ. Now suppose f is a continuous function
on G which vanishes outside a compact set. Then the right-hand side is
clearly finite. Hence f(x)®a s(x) is integrable on G;. Hence we may apply the
above argument to f(x)®, ;(x) instead of | f(x)@A,;(x)I and conclude from
Lemma 6 that

f(®)O4a,5(x)dx = cTas(f)
Gy

since A_(k) =A_(h_). Here ¢ is a positive constant which is independent of
A, 8, or f.

Let s be any element in W. Then there exists an element « &K such that
Ad (u)H =sH for all HEY,. Since Ad (u) leaves po and ¥, invariant it follows
that Ad (#)bp,Cpo\ho= by, and Ad (u)bhe,Cby,. This shows that s leaves
br, and by, separately invariant. Hence if » is any linear function on By, (or
br, or Bo) we can define another such function sy by the rule sv(H) =»(s—H).
Similarly if 8 Ewar,z we can define another class s~'6 Ewy,z by the condition
£5(h) =£5(h*) (hEA° Z). That such a class actually exists and is unique is
seen as follows. Since my is the centralizer of By, in £y, Ad (w)my=m, and
uMw='= M,. Let ¢ be any representation of MZ in 8. Define a new repre-
sentation ¢’ by the rule
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o'(m) = o(umu1) (m € MoZ).

Then ¢’ is irreducible and if & is its class & (k) =& (uhu=1) =§5(h*) (h€A°Z).
Since every element in M, is conjugate (with respect to M,) to some element
in A%, every class in wy,z is completely determined by the restriction of its
character on 4% Z. Hence 516 is uniquely defined.

Notice that if « is a root, s« is also a root and s« is zero on By, if and only
if the same holds for a. From this it follows immediately that

Ay(ht) = Ay(B),  A(h) = A_(h) (b€ A2).
Therefore

Ors(h) = [A(W] 2 exp {s(A + p)(log k) }Es(h-)

sEW
and we have the following theorem.

THEOREM 2. There exists a positive real constant ¢ with the following prop-
erty. If A is any linear function on by, and 8 a class in wu,z, then

Tas(f) =c¢ f(x)O 4, s(x)dx
Gy

for any fEC,(G). Here Oy is a continuous function on G, deﬁn\ed uniquely by
the following two properties:

(i) On,s(yxy™) =04 s(x) (x EGL, vy €G),
(if) Oas(h) = [as() ] éSW exp {s(A + p)(log k) }Ea(ho).

Let A*=s(A+p) —p. Then the above theorem shows that Ta s =Ta,
(0Ewum,z). Conversely suppose A;, A, are two linear functions on b, and
01, 82 two classes in wy,z such that Ta, s, =Th4,s,- Then it follows from the
above theorem that ®y,,5,=04,,s, on Gi. Therefore

é: exp {s(Ar + p)(log ki) } £y (ho) = EZ: exp {s(Az + p)(log /y) }&us, (ko)
sew s&w

for all regular k& A4°Z. But since both sides are continuous functions on 4°Z
and the set of regular elements is dense in A°Z, they are equal everywhere.
Now the exponentials of distinct linear functions are well known to be
linearly independent (see for example [8, Lemma 41]). Hence it follows on
putting z_=1 that A, =AY for so& W. Let W, be the subgroup consisting of
all t€W such that Aj=A.,. Therefore if we compare coefficients of
exp { (Az2+p)(log h+)} on the two sides we get

Z Stsofq(h—-) = Z Et&z(h—'> (h— EAOZ)'
tEW, tEwW,

But every element in M, is conjugate to some element in A% and therefore
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2 un(m) = 2 Ewm(m) (m € Mo2).
EwW, tEW,
On the other hand it is well known that the characters corresponding to dis-
tinct irreducible classes are linearly independent. Hence 8, =1£s¢0; for some
tEW,. Put s=tso. Then A;=A] and 8,=s6;. Thus we have the following
lemma.

LEMMA 12. Let Ay, A; be two linear functions on by, and 81, 82 two classes in
Waryz. Then Ta,5,=Th,s, if and only if there exists an element s& W such that
A2 =A; and 62=551.

5. Plancherel formula for complex semisimple Lie groups. We shall now
assume that G is a complex semisimple group. We keep to the notation of
§2 of [6]. Since G is complex, there exists a linear mapping T' of ¥, on o
such that [X, T(V)]=T'([X, Y]) and [[(X), T(V)]=—[X, Y] (X, YE¥).
We extend T to a linear mapping of go onto itself by defining I'T'(X)) = —X
(XEY). Let (—1)Y2be a fixed squareroot of —1in C. Then if c=a+(—1)V2%
(a, bER) we put ¢ * X =aX+bT'(X) (XEgo). Under this multiplication g,
becomes a Lie algebra over C. We shall denote this complex algebra by g*.
Similarly the algebra §o= br,+ by,, regarded as a (complex) subalgebra of g*,
will be denoted by h*. Then h* is a Cartan subalgebra of g*. Let X—ad X
(XEg*) denote the adjoint representation of ¢* and let B(X, Y)
=sp (ad X ad ¥) (X, YEg*). Given any linear function N on h*, we denote
by H, the unique element in §* such that N(H) =B(H, H,) for all H&p*.
Let H;, - - -, H; be a base for §,, over R. Then it is also a base for h* over C.
We shall say that \ is real if Hy= Y 1<i<: ¢:H; (c;ER), and furthermore that
A>0if A520 and ¢;>0 where j is the least index (1 =j=<1) such that ¢;0. For
every root o of g* (with respect to h*) we choose an element X,>0 in g*
such that [H, X.|=a(H) » X. (HEYH*). We can do this in such a way that
B(X., X_o=1and X,—X_, (—1)V2+(X.+X_,) are both in ¥ (The
corresponding statement on p. 814 of my earlier note (Proc. Nat. Acad.
Sci. U. S. A. vol. 37(1951) pp. 813-818) has wrong signs.) Since every
root a is real, Ho= Y ., a'H; (ai€R). Let n*= D ,cq C* X, where Q is
the set of all roots @>0. Then n* is a nilpotent sugalgebra of g* to which
there corresponds an analytic subgroup N of G. We shall denote by 1, the
space n* regarded as a real vector-subspace of go.

Let g be the complexification of the real algebra go. Let I, p, b, by, and by
respectively denote the subspaces of g spanned by Iy, o, Ho, by, and by, over
C. We denote by « the isomorphism between g* and ! given by y(¢c * X) =cX
(ceC, XELy). Put

+(X) = (X — (=1)Y1(X))/2,
7-(X) = (X + (=D 1(X))/2 X el
and let £, =v,(f), I_=v_(f). (Here we have extended T' on g by linearity.)
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Then f; and ¥_ are ideals in g and g is their direct sum. Moreover 7. and y_
are isomorphisms of f on I, and f_ respectively. Now §=v,(h) +v_(br). Let
A, u be two linear functions on h*. Then we denote by (A, u) the linear function
v on § defined as follows:

v(v+(v(H))) = MH),

v(v-(v(H))) = w(H) (H € v%).
It is easy to verify that

v(H) = NH) + p(H) it HE b,

v(H) = N(H) — u(H) it HE b,

Put Ay =(, 0) and A\_=(0, —X\). Then if X\ is real (in the sense described
above) Ni(H)=N(H) and N_(H)=conj N(H) for HEY,. Therefore, in par-
ticular, for every root « (of g* with respect to h*) we get two linear functions
ay, c_on hand if we put X} =v,(v(X.)), X; =v_(v(X.)), we have

[, X.] = ap(ADXs,  [H, X2] = a(H)X. (H €Y).

Notice that a;#a_ since ay vanishes on y_(f) while a_ vanishes on v, (br)
and neither of them is zero. Hence for each root a of g* we get two distinct
roots ay and «_ of g. Moreover if we take (Hy, - - -, H;, (—1)VI'(Hy), - - -,
(—1)Y2I'(H;)) as an ordered base for by, +(—1)Y2hs, over R and define the sets
P, P, and P_ of positive roots of g with respect to this base (see [6, §2]), we
find that if e €Q, a4 and a_ are both in P. In view of the isomorphisms 7, and
v- it is clear that every root of g is of the form +a; (@ EQ). Hence every root
in P is the form a; for some a & Q. Moreover since a is complex-linear, it
cannot vanish on Y, Therefore the set P_ is empty and P=P,. Now let
Xo=Xd +T(Xd") (Xd, X' EY). Then ¥(X) =X +(—1)V2X)" and it is
easily verified that

Xa = (Xa — (—1)'°T(X.))/2,
Xo = (Xo 4 (—1)20(X.))/2.

Hence X.=X}+X_ and therefore n* =n,Cgo N\ { D_acq (CX} +CX;)}. Since
dimpg 119=2 dim¢ n*, dimg 1, is equal to the number of roots in P, =P. Hence
=0 { Page (CXI +CX7).

If f is a complex-valued differentiable function of two real variables x, y
and g=x+4(—1)Y2y we write

=g 2= (o)

3z° 2 \ox dy ’ %" 2 \ox dy,
where the bar denotes complex conjugate. Put p=(1/2) Zaeo a and let K
and A; be the analytic subgroups of G corresponding to ¥y and by, respec-
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tively. Then K is compact. Moreover ¢o={0} in the present case and
therefore D= {1}. Let du and dn denote the Haar measures on K and N
respectively. We assume [xdu = 1. The following theorem is the principal step
in the proof of the Plancherel formula for G (see Gelfand and Naimark (3,
p. 198]).

THEOREM 3. Put H,= Zl_s_iél a;+H; (a,EC) and

a 9
Dy = 2, of

) Do= 2, o

1.5 0ay 1=:50 94,

(e € Q).
Then if dn is suitably normalised we have

f1) = lim ][] D.D. {exp {p(H.) + o(H.)} f(u(exp Ha)nu‘l)dudn}
H,—0 o9 KEXN

for every fEC; (G).

The proof depends on the theory of Fourier transforms for functions on g,.
Let C;°(go) be the class of all complex-valued functions on g, which are every-
where indefinitely differentiable and which vanish outside a compact set. Put

X =2 aivHi+ 2, (a* Xa+ 2a* X_a)
15051 «EQ
where a;, 2., 2, (124151, aE€Q) are independent complex variables. For any
complex variable z=x4(—1)Y%y (x, yER) let du(z) denote the Euclidean
measure dxdy on the corresponding complex plane. Let F be a function
in C:, (Qo) Put

g1) = @0~ [ exp {(—DURBX, V) IFOOIX
{1}
where n=(1/2)dimz go, dX = [ Licisi du(a:) [Jago du(za)dp(z;) and Re (cE€C)
denotes the real part of ¢. Then if we assume, as we may, that B(H;, H;)
=0;;, 1=14, j=<I (d:; is the usual Kronecker symbol), it follows from the
theory of Fourier transforms that fy,| g(X)|dX < » and

F(0) = (21r)""f g(X)dX.
8o
Now suppose F(Ad (#)X)=F(X) for all u€K and X &Ego. We know that the
bilinear form B(X, V) is invariant under the adjoint representation of G and
d(Ad (x)X)=dX (x&EG) since det Ad (x)=1. We can now transform the
integral [;,g(X)dX in another form. Let dH and dZ denote the Euclidean
measures on Y, and n, respectively. Then we have the following lemma.

LEMMA 13. It is possible to normalise the measures dZ and dH in such a way
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that

[ snix - [ | o) |z + myazin
) Botne aEQ
for any measurable function g(X) on go such that g(Ad () X)=g(X) (uEK,
XEgo) and [y g(X)|dX < 0.

Let g, be the set of all regular elements in go. Then we know (see Chevalley
[2]) that every X Eqg, is conjugate under G to some HE§,. Since the set
of singular elements in g, is of measure zero,

j;og(X)dX =j;lg(X)dX

and Lemma 9 is applicable. Now P_ is empty and it follows from our earlier
remarks that

II |8 = IeI | a(H) |2 (H € bo).

BEP aEQ

Moreover the set of singular elements in §, is also of measure zero (with re-
spect to the Euclidean measure dH on Y),). The above lemma is therefore an
immediate consequence of Lemma 9.

F and g being as above, consider the function F'= Haeo D,D,F. Its
Fourier transform g’ is given by

¢@) = 2o [ e {(—DURBE, V)IFEIX (¥ E ).
8o

Let X= Zi-l a;«H;+ Zaeq (Ba* Xa+2, + X o) and Y= Zi,l b+ H;
+ Zaeq (We * Xo+w, » X_,) where (e, 2, 2, b, w, w™) are all independent
complex variables. Put F(X)=F(a, 2, z7), g(¥V)=g(b, w, w™), and g'(Y)
=g'(b, w, w™). Then

l -— -
g%, w w) = (21r)"”f exp {(—1)1/292< > abi + go (2ewe + Zawa))}

1=1

. IEI D.D.F(a, 3, 7)dp(a)du(z)du(z")
acQ

where
l
du(a) = TTdu(ed),  du(x) = I] du(z),  du(z) = I du(z).
=1 «€Q «EQ
Hence by partial integration
g, w,w) = I |a(Hs)|%(s, », w)
«€Q
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where Hy= Y i_, b; = H;. Therefore

II | «(H.) |%(a, 2, 0)du(a)du(s)
aGQ
= [ ¢ 5 au@ants)

= 0 [ du@uto) [ exp {(—1)1/m(§laib,-+a§0 zw)}
-F'(b, w, w™)du(b)du(w)du(w")
= @2m)—+ f F'(0, w, 0)du(w)

from the theory of Fourier transforms. Here 7 is the complex dimension of
h*+n* = ho+n,. This shows that

F(0)

(2m) | eg(X)dX

8o

¢(2m)~n f Iqu | «(H.) |2%¢(a, 2, 0)du(a)du(z) (from Lemma 13)

o(2m)—m+r f F'(0, w, 0)du(w)

c(21r)_”+'f Jim {II DDF(H + Eza*X)}dp(z)

«E€Q «€Q

where ¢ is a positive real constant independent of F. Since F vanishes out-
side a compact set it follows easily that

f lim {H D.D.F (H,, + > za*X.,)} du(z)
H,—0 \oEq «€Q
= lim ] Daﬁa{fF(H¢+Z za*Xa)dy(z)}.
H,—0 o€Q «€Q

Thus we have the following result.

LEMMA 14. There exists a positive real constant ¢ with the following property:
For any FEC; (g0) such that F(Ad (u)X)=F(X) w€K, XEgo),

F(0) = lim ¢ [[ D.D. fF(H,, + ze‘:za*X«) du(s).
a&Q

H,—0 oE¢Q

Now we come to the proof of Theorem 3. Let f be a function in C;°(G).
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Put
f1(x) =ff(uxu‘1)du (x €G).
K

Then f; is also in C;(G). Let F1(X) =fi(exp X) (X Ego). Choose a compact
neighbourhood U of zero in by corresponding to Lemma 11. Let v be the
carrier of F; (i.e. the smallest closed set outside which F; is zero). Then
1=y (U+n,) is the complete inverse image in U-4n, (under the ex-
ponential mapping) of the intersection of the carrier of f; with the closed
set exp (U+n,) (see corollary to Lemma 11). Hence 7, is compact. Then
E=U.,ex Ad (u)7: is also compact. Moreover the exponential mapping is
regular on v; and therefore on E. Since E is compact, it is clear that there
exists a compact neighbourhood V; of E in gy such that the exponential map-
ping is everywhere regular on Vi. Put V=U,cx Ad (%) Vy. Then V is still
compact and the exponential mapping is regular on V. Let V' be an open
neighbourhood of V such that the exponential mapping is still regular on V.
We may assume that the closure of 7’ is compact. Select a function ¢ & C;” (go)
such that ¢=1 on V and ¢ =0 outside V.

For any X€&go consider the endomorphism (1—e=dX)/ad X of g,.
(Here X—ad X is the adjoint representation of the real algebra g,.) Since
the exponential mapping is regular on V’, det ((1 —e—#d X)/ad X)#0 on V",
Therefore the function ] det (1 —e=d X)/ad X) | /2 is indefinitely differentiable
on V'. Put

Fy(X) = Fi(X)$(X) | det (1 — 74 %)/ad X) ¥/ (X € go).
Since ¢ is zero outside V' it follows that F.&C," (go). Now let
F(X) = f Fy(Ad (w)X)du (X € g0).
K

IfXxXev,
Fy(Ad (0)X) = F{(Ad (u)X) = F{(X)

1 i e—a.dX
det ( >
ad X

Hence F(X)=F/(X) if XE€V. Now suppose X&E U-+n, but X& V. Then
X &~ and since y=Ad (»)y (w€EK), Ad (u) X &y for any uE K. Hence

where

1/2

F{(X) = F«(X)

F(X) = fK Fy(Ad () X)du = 0 = F{ (X).

This proves that F=F{ on U+n,.
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Since F,&C;(go) the same holds for F. Moreover F(Ad (x)X)=F(X)
(rEK, XEqo). Therefore from Lemma 14

F(0) = ¢lim ][] D.D. F(H,, + > za*X,,) du(z)
-0 oEQ «€Q

=clim JJ D.J)‘af F{(H.+ 2)dZ
-0 oEQ No

where dZ=du(z) (Z= Zaeq 24+ X,) 1s the Euclidean measure on m,.

But
/1 — g—sd (H42)\ |1/2
Fi(H+2)=F,(H+2)|d —_—
{(H+2) !(+)et(ad(H+Z))
1 — e—ad H\ |1/2
= Fi(H + Z) |det (W) (H €ho, Z €Emn)
and
1— & 1 — ¢—BUD 1 — B
det (____)= o =2 g =g
ad H s€r, B(H) sEr, B(H)
B2 — B2 2
- { I }
pEP, B(H)
Therefore
F{(H +Z) = F\(H + Z)A(H)
where
I SUEI2 . B2
AL (H) = H & h).
W)= . T @ #E b

Now let HE U. Then the mapping ¢: Z—h~! exp (H+2Z) (h=exp.H') is a
topological and regular mapping of n, onto N (see Lemmas 10 and 11) and

det (d9) —dt(l—e_p)
e )z = de D

where D is the restriction of ad (H+Z) on n,. Hence
| det (d9)z| = exp { —p(H) — o(H) } A+(H).

Therefore

al) [ P(H +2)dz = exp (o) + 5D} [ fiexp Hymin
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where dn=dZ (n=exp Z) is the Haar measure on N. This proves that

f F{(H + Z)dZ = exp {p(H) + p(H)} f fi((exp H)n)dn ~ (H € U)
Ny N
and therefore

FO) =c¢ lim ]J] D.D. {exp {p(H.) + o(H.)} f Nfl((exp H,,)n)dn} .

H,—0 oEQ
But

F(0) = F{(0) = fi(1) = (1)

since 0& V. Hence the theorem.

We shall now obtain the Plancherel formula from Theorem 3. In the
present case By, =m, (in the notation of §§3 and 4) and by, is a maximal
abelian subalgebra of ¥,. Hence A% is a maximal abelian subgroup of K and
it is its own centralizer in K (see A. Weil [12]). Now the adjoint representa-
tion can be regarded as a complex representation of G on g*. Let » be an
element in the centralizer of 4, in K. Then Ad (u) leaves every point in
by, fixed. But since Ad (%) is an endomorphism of g* over C, it leaves every
point in By, also fixed. This proves that M =A4% =A_= M,Z in the present
case. Let A’ be the normalizer of 4_and K. Then the above argument shows
that A” is also the normalizer of A°=A4,4° in K and therefore W=A4'/4
=A’/A_ in the notation of §4. Moreover for any s& W, the mapping
H—sH (HEY,) is an endomorphism of h* over C.

Since A_ is a torus we can choose the base Hy, - - -, H; of by, over R in
such a way that exp H,=1 if and only if (—1)Y%,;/27, 1={=<1, are all
rational integers. For any k€A =A,A_ we denote by k; and k_ the unique
elements in 4, and A_ respectively such that k=h,k_. Let { be the set of
all linear functions v on h* which take real values on f,. Moreover let F_ be
the set of all linear functions X on h* such that A\(H;), 1 £1<1, are all rational
integers. For every NEJ._ we can define a character & of A_ by the rule
&r(exp H) = (HEMh,) and conversely every character of A_ can be ob-
tained from some AEF_ in this way. Put

£(h) = exp {(—1)"%(log hy) }er(h) (P EFuANEF, LE A)
and
Sy = [ jwhna() exp (290108 k) }dudiin (1 € CZG)
KXAXN
where dk is the Haar measure on 4. It is easy to verify that if h=exp H
(HEbo) then p(H)+p(H) =2p(log k) and

lim [ DDutaexp Ho) =TI | (= D)Y%(Ho) + NH) |2 = m(, \)  (say).
H,—0 «EQ aEQ
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Now §, and §_ are groups under ordinary addition of functions and it is
clear that they may be considered as character groups of A, and 4_ re-
spectively. Let dv denote the Haar measure on ;. Then it is the Euclidean
measure on the real vector space §+. A simple application of the theory of
Fourier transforms to the abelian Lie group 4 now shows that

lim ][] D.D. {exp {p(H.) + p(H.)} ff(u exp H, nu“)dudn}

H,—»0 oEQ

=2 m(v, NS, a(f)dv (fECIE)
\NEF- Y §+
provided dv is suitably normalised. Here the series on the right is absolutely
convergent since the function

g(h) = exp {2p(log ky)} ff(u h-nuY)dudn (k€ A)

is everywhere indefinitely differentiable on 4 and vanishes outside a compact
set and S,.(f) is the Fourier transform of g. Now p’(H) =2—lZﬁEP B(H)
=20(H) (HEWY,,). Hence it follows from Theorem 1 that S, (f) =Tas(f)
where A(H)+2p(H)=(—1)Y%(H) (HEWYy,) and & is the class of the one-
dimensional representation h—#\(k) (hEA_) of A_= M = M,. Moreover since
A+p’ takes pure imaginary values on By, S, is a unitary character of G.
Finally, in view of Lemma 12, S, 5, =S,,, (1, 22EF+; M, MEF-) if and only
if vo=sv1, A2=3s\; for some s& W. Now we need the following theorem.

THEOREM 4. Given any NEF_ we can find a subset Vi of T+ of measure
zero such that the character S, is irreducible for all v in ¥ outside V.

If we assume this theorem for a moment, we can derive the Plancherel
formula as follows. Let V=Uxep_. Since §_ is a countable set, V is still
a set of measure zero. Let V' be the set of all vyEF,. such that » =sv for some
s#1in W. Then V' is a closed nowhere dense subset of §,; and its measure is
zero. Let §, be a connected component of the complement of V' in {,.
Then . is an open subset of §,. and it is known (see Weyl [13]) that for
every vE{, which is not in V’ there exists a unique s& W such that sy &g .
Since S, (f) =S, 2\(f) it is clear that

S [ o NSai = L w [ meNSatd (G ECTOE)
\EF- T+ A\EF- T+
where &% is the complement of V in §,/ and w is the order of W. Therefore we

get

W= % wf, mo NS0 (fECE)
\EF S+
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from Theorem 3. Now the characters S, (? EF%, NEF_) are all distinct and
they are unitary and irreducible. Hence if € is the set of all equivalence-
classes of irreducible unitary irreducible representations of G, we get a 1-1
mapping of § XF_ into € if we assign to each (v,\) the unique class w(y, \)
in € corresponding to the character S, . We may therefore identify % XgF_
with its image under this mapping and thus regard F% X$_ as a subset of E.
Let du be the discrete measure on §_ which assigns to every point in §_ the
mass w. Then we can define a (positive) measure dw on € as follows. Let F
be a subset of €. We say that F is measurable if Fo= FN\(F% XF_) is measur-
able in §5 X§_ and in case this is so we put

f dw = dvdu.
F Fo

Then it is clear that

1) = [ ¢ Tt AHE)

where T, is the character of the class w. Let

g(3) = [ conj GOGNIra)dy.

Then g is also in C;(G) and therefore applying the above formula to g we get
g0 = [ 1@ s = [ vupaa  GECiE)

where N,(f) is defined as in §1. This gives the Plancherel formula for functions
of class C;°(G). Since such functions are dense in the Hilbert space L.(G) of
all square-integrable functions on G, the corresponding formula for functions
in Ly(G) follows in the usual way by completion.

Now it remains to prove Theorem 4(?). We shall say that a function A\EF_
is dominant if s\ =X for all s& W (with respect to the lexicographic ordering
defined in the beginning of §5). Let §° be the set of all dominant functions
in §_. Let §* be the space of linear functions on h*. Then § and F_ may be
regarded as subsets of §F*. Let Q be the set of all equivalence classes of finite-
dimensional simple representations of K. A linear function uEg* is called a
weight of a class DEQ if there exists a vector ¢ 0 in the representation
space of any representation ¢ €9 such that o(exp H)Y =e*EY (HE by,). We

(°) (Added in proof.) A result considerably stronger than Theorem 4 has recently been
obtained by F. Bruhat for the classical groups. Since it is possible to give a direct proof of his
fundamental lemma (C.R. Acad. Sci. Paris vol. 238 (1954) p. 437) for all connected semisimple
Lie groups, his results hold also for the exceptional groups.
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say that u is the highest (or lowest) weight of D if u+a (or u—a) is not a
weight of D for any a & Q. It is known that every weight lies in §_ and every
highest weight in §% (see for example [5, Part I]). Moreover there is a 1-1
correspondence A, between §° and @ such that A is the highest weight of
Da [5, Part 1]. For any pEF_ let 8, denote the equivalence class of the one-
dimensional representation k—f,(h) (h€A_). Then we denote by (A:u)
(AEF>) the number of times 3, occurs in the reduction of Dx with respect to
A_. It is known that (A:A)=1 and (A:p) =(A:su) for any sEW (see Weyl
[13]).

Put §=L,(K) and define Hp (DEQ) to be the set of all elements in H
which transform according to ®© under the left regular representation of K
on 9. As usual we normalise the Haar measures du and dk on K and 4A_ in
such a way that fxdu=[4 dh=1. Let \ be any function in §* . Put

E, = &(h)r(h)dh
A—
where 7 is the right regular representation of K on $. Then E, is the orthogonal
projection of § on H)=E\P. Since (A\:\) =1, it follows from the Frobenius
reciprocity relation (see A. Weil [11, p. 83]) that dim ($r\Hp,) =d(Dh).
Therefore apart from a constant factor there is exactly one function f0
in §r\Po, such that f(hu) =&(h)f(uw) (WEK, hEA_). For any uEF* define
a representation w,/ of G on § by the rule

! (£)¢(w) = exp [—{((=1)"2% + 20)(H(x™, w)) } Jo(u)

(wEK, ¢ 9, x&G) in the notation of §3. (We recall that K*=K in the
present case.) Let 9, be the smallest closed subspace of § containing f
which is invariant under 7, (G). We denote by m,, the representation of G
induced on §, . Since 7(h) commutes with w/ (x) (h€A_, xEG) it is clear
that $,,CH.

LeMMA 15. m,\ s an irreducible unitary representation of G if vEF,.
Moreover there exists a set Vi in {4 of measure zero such that if v lies in the
complement of Vy in Fi, Dvn=Or.

Letv be a function in §,;. Then we have seen that 7}, and therefore ,.,
is unitary. We shall now show that =, is irreducible. Suppose $, = ;= D,
where 9, 9. are two mutually orthogonal closed subspaces which are both
invariant under m, x(G). Then f=fi+f. (f;€9:, ¢=1, 2) and since f=0 we
may assume f;7%0. Then it is clear that fi€E$:N\Pp, and therefore
dim ($:NHp,) 2d(Dr). But we have seen above that dim (Hr\Po,)
=d(Dr). Therefore $:NPp, =Hr\Oop, and hence fEH;. But then it
follows from the definition of §,, that §,,CH:. Therefore P, is irre-
ducible.

In order to prove the second part we need some lemmas. Put o
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= Z;DEQ . Then every element in §, is well-behaved (see Theorem 4 and
Lemma 30 of [6]) under m; (uEF*). Let B denote the universal enveloping
algebra of g. We shall also denote by 7,/ the representation of 8 induced on
Do (see [6]). Let Ay be a function in § such that OAN\Dpa, # {0 } We denote
by (¢, ¥) the scalar product of ¢, ¢ in $.

LemMA 16. Let ¢4, - « -, ¢m be a base for H\N\Don,. Suppose Fi, 15i=m,
are polynomsial functions on F* such that

3 B (@ mi (B)) = 0

=1
for all b&®B and uEF*. Then F;=0, 1=<i=m.
Notice that

(¢0 mi (8)f) = | conj (¢:(w)) exp {—[(—= 1)V + 20](H(x™, w))  f(u 1) du.
K

Let X, - - -, X, be a base for go over R. Put X,=4X,+ - - - +4.X. ((,; ER)
and |t| =max; Itjl. Let p denote any ordered set (py, - + +, p.) of # non-
negative integers. Put tp=1u32 - - - f» pl=p,1p,! « - - p,], and

1
X(P) = ;'- E X"ﬂX"iz e Xk,-' E %

where s=p1+pas+ - -+ +pa, (b1, --, k) is a sequence of indices in
which j occurs exactly p; times (1 <j<#) and the sum is over all permuta-
tions (¢;, + - - ,4,) of (1,2, - - -, 5). Then X(p) taken together for all p form -

a base for 8 (see [4]) and
(6 71 (exp X0f) = 3 (66, m (XB)) %—,

provided ltl is sufficiently small (see [6, Theorem 2]). Since ¢; and f are
analytic functions on K, it follows from the arguments given in the beginning
of §4 of [7] that for each p there exists a polynomial function ¢;,, on §* such
that

(60 7 (exp X)f) = X ¢e.o(w) %

provided |¢| is sufficiently small. Therefore by comparing coefficients
(¢ m/ (X(9))f) = Lipw).
Since X (p) form a base for B, it follows that for each fixed 6 &8 the mapping
p = (bi, ma (0)f) (S )

is a polynomial function on {*.
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Now let A be any function in §°. Then A+AEF. Let DF denote the class
in @ which is contragredient to Ds. Then — A is the lowest weight of D¥. Choose
two representations a1, o2 in Dayx and D} respectively. We denote the cor-
responding representations of f, (and therefore of f) also by the same sym-
bols. Let U,, U, be the representation space of a1, 0 respectively. Define a
representation w of g on U; X U, by the rule(1?)

T(v+(X) + 1Y) = o1(X) + 0x(¥) X, vyen.

Then it is clear that = is irreducible. Let G’ be the simply-connected covering
group of G, Z’' the kernel of the natural homomorphism of G’ on G and K’
the complete inverse image of K in G’. Then K’ is connected and Z'CK’
(see Mostow [9]). Now 7 defines a representation of G’ which we shall ajso
denote by 7. Note that X =v,(X)+v_(X) (XET). Hence

m(X) = 01i(X) + 02(X) xXer.

From this it follows that 7w(#') =01(u) Xos(u) (v’ EK’) where u is the image
of %’ in K. In particular if #'E€Z’, =1 and therefore Z’ is contained in the
kernel of w. Hence m may also be regarded as a representation of G.

Let x(A’; #) (#EK) denote the character of the class Dr (A’EF2). Then
it is evident that

sp m(#) = x(A + N; u) conj x(A; u) (v € K).

For any DEQ let (7:D) denote the number of times ® occurs in the reduc-
tion of w(K). Then it follows from the Schur orthogonality relations for the
characters that

(m:Da,) = stp m(u) conj x(Ao; w)du

=f x(A + N\; %) conj {x(Ao; u)x(A; u)}du.
K

Now put
AH) = ] (ee® 12 — gt (H € br,)
«€Q
and
Aexp H) = | A(H) | (H € b,).

Then we know from the theory of compact Lie groups (see Weyl [13]) that

(D) = % X(A+ N5 &) conj {x(A; Rx(ho; )} AXH)d

A_

(1%) The operations X and =+ have the same meaning as in [6].
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where
w =f A%(h)dh = order of W.

But it is well known (see Weyl [13]) that
x(W'; exp H) = {A(H)} 7 3 (s) exp {s(A" +0)(H)}  (H € bry)

&Ew
for any A’EJ". Here €(s) = +1 and is determined by the rule
A(sH) = e(s)A(H) (sEeW,HE ).
Therefore

x(A + \; exp H) conj {x(A; exp H)x(Ao; exp H)} {A(H)}2

[ = o) exp sa 43+ D) - 0+ D) ]

5,8’ EW

- 20 (AoiAy) exp { —Ay(H)} (H € br,)
7=0
where A;, 0<j=<r, are all the distinct weights of Dka,.
Now for any function uEF* put u(H,) =tu(H1)+ -« - - +tu(H;) where
t, - - -, t; are independent indeterminates. Consider the polynomial S(u, f)
in () given by

Sw) =TI II {G+r+o)E) — s+ aH) — ALH)).

=0 € W 81
Then S(u, t) =0 if and only if
s(wtp) —(u+p) =N—A;

for some s1 in W and some j. Since it is obviously possible to choose u in
such a way that none of these conditions is fulfilled, it follows that S(u, £) is
not identically zero in p.

Now suppose the assertion of the lemma is false. Then we may suppose
that F15#0. Let F{ denote the polynomial function on §* such that F{ (u)
=F(u/) where 2u+X=—[(—1)V2u'+2p]. Since F,50, it is evident that
F{ 0. Hence F{ (u)S(u, ?) is not identically zero in u. Then the argument of
Lemma 32 of [5] is applicable and we can choose AEJF such that
F{ (A)S(A, £)#0. Then

sSAA+N+p) —s'"(A+p) = A, (s, s €W)
for any j unless s=s’, in which case

s(A+XN+p) — s(A+p) = s\
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Hence it follows from the orthogonality of the characters of A_ that
(T:Da,)) = (Ao:N).

Let U be the representation space of m. We may regard U as a finite-
dimensional Hilbert space and assume that w(%) is unitary for #¥€K. Put
7' (x) = (m(x~1)) * where the star denotes adjoint. Then =’ is also an irreducible
representation of G on U and 7'(u) =7w(u) (#EK). Since 7 (v+(X)+v-(Y))
=0(X)+0:(Y), (X, YET) it is clear that the weights(!) of = (with respect
to §) are exactly the functions (ui1, u2) where u; and p, run independently
through all weights of o; and ¢ respectively. Moreover (ui, ps) is the highest
weight of 7 if and only if (u+ea, pe) and (w1, p2—a) are not weights of = for
any a& Q. Hence y; must be the highest weight of ¢; and u. the lowest weight
of 5. Therefore u;=A+X\, uo= —A. Hence the highest weight of 7 is (A4,
—A) and so it coincides with 2A+X on by, and X on by, Let Y0 be a vector
in U belonging to the highest weight. Then w(#)o=v, w(h)¥o=E(h)¥o, and
7 (exp Hiyo=exp { QA-+N)(H) Yo mEN, hEA_, HEDY,,). Let u be the
function in §* such that

(=1)Y2u(H) + 2o(H) = — conj (2A(H) + N(H))  (H € by,).
For any ¢ € U put
Fy(u) = (w(u)¥o, ¢)
where the bracket denotes scalar product in U. Then
Fr@e(u) = (r(u)o, 7'(2)¢) = (w(x7u)o, ¢) = m/ (2)Fy(u).

Moreover if Fy=0, (w(u){o, ¢) =0 for all uE K. But then if x=ubn (uEK,
h€A,, nEN),

(m(2)o, @) = (w(u)¥o, ¢) exp (= [(=1)"% + 2p](log h)) = 0.

Since 7 is an irreducible representation, U is spanned by the transforms
w(x)Yo of Yo and therefore ¢ =0. Finally

Fy(uh) = (x(uh)do, ) = conj (&x(h))Fy(u) (he A).

Therefore ¢—F, is a 1-1 linear mapping of U into O and Far (e =/ (x) Fy.
Now it is obvious that Das occurs in the reduction of DaXD). Therefore
D» also occurs in the reduction of DaaXD}. Since 7'(u) =w(u) (HEK), it
follows that there exists a vector ¢¢>0 in U which transforms according to
Dy under 7'(K) and which is such that #'(h)Yo=£E(h)de (BEA_). Then Fy,
is a nonzero function in $rMN P, and

w4 (B)F4, = Ex(R)Fy, (hE A
(™) The weights of = are defined as usual (see [5]). They are ordered by the lexicographic
ordering introduced by the base (Hi, - - -, Hi, (—1)Y:I'(Hy), - -+, (—1)VI'(Hy)) for b,

+(—1)!2fy, over R.
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Since apart from a constant factor, f is the only function in §rNHD, satis-
fying this condition Fy,=c¢f where c€C and ¢#0. Then it is evident that the
representation m,\ on . is equivalent to 7’ under the mapping ¢—F,

(p&€ U). Therefore
dim (Dunr N HDo4,) = (D) (1:Day) = d(Da,)(Ao:N)

since 7’ coincides with = on K. But we know from the Frobenius reciprocity
relation (A. Weil [11, p. 83]) that

m = dim (H N .‘{J:DAo) = d(Da,) (Ao:N).
Therefore

$r N $o,, = N Bo,,

Since 7’ is irreducible and finite-dimensional the same holds for m, . There-
fore we can choose b&® such that D _m, Fi(u)¢;=m, (b)f. Then

(md (B)f, md (B)f) = ;Fi(u)(qﬁi, ™ (0)f) =0
and therefore w/ (b)f=0. Since ¢;, 1 £7¢=<m, are linearly independent over C,
Fi(u) =F{ (A) =0. But this contradicts our choice of A and so Lemma 16 is
proved.

Now choose the base (¢, - - + , ¢») so that it is orthonormal. For any
bESD let 7,5 denote the polynomial function u— (¢, 7. (b)f) on F*. Let J, be
the ring of all polynomial functions on {* and let J be the quotient field of
Jo. Select elements by, - - -, b, in B such that the matrix B = (9:,5,)1gigm15isq
(with coefficients in J,) has the maximum possible rank (over J). We claim
this rank is m. For otherwise we can find F;€J,, 1 <¢<m, not all zero such

that

I\
<.
IA
'

2 Faini =0, 1

1=1

But in view of the above lemma we can choose b &% such that

m

> Faip 0.

i=1
Hence if we put b,1=5, the matrix (7:,b;)15ism12i<e+1 has a larger rank
than B, which contradicts the definition of B. Hence B has rank m.
Therefore g=m and we may assume without loss of generality that F
=det (m,bi)l_s_i,jém?fo. Now put

i) = 30 (o 1 B)Nbs = 3 e, () v € §a).

1=1 t=1
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Since F50, the set V(Ao, N) of all vEF such that F(v) =0 is clearly of meas-
ure zero. So if v& V(Ao, N), F(»)£0 and therefore ¢,;(¥), 1 £j<m, span O»
NPp,,. It is obvious that ¢;(») is the orthogonal component of w, (b;)f in
$p,, and therefore it lies in $aMPp,,. Hence if v&V(Ao, V), SOy,
=92 N\Op,,-

Now put Va=Useg® V(Ao, \) where V(Ao, N) is defined to be the empty
set in case S Do, = {0}. Then Vi is a set of measure zero and if v& Vj,
SN D9, =D AN Doy, for all AEG. Hence the orthogonal complement of
D, in ) is zero and therefore 9, = H»r. This completes the proof of Lemma
15.

It is clear from the work §3 that S, is the character of the representa-
tion of G induced on $, under w; (»EF,). Therefore it follows that S, is
an irreducible character if v& V.

So far we have assumed that AEJ". Now let N\ be any element in §_.
Choose s& W such that A\, =s\ is dominant. Then S, =S,,, for any vEF;.
We have seen above that there exists a set V), in §,; of measure zero such
that if sy Vs, Sua=3S,,., is an irreducible character. Put Vy=s"1V,. Then
Vy is also of measure zero and if v& V3, S, is irreducible. Therefore Theorem
4 is now established.
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