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A submersion principle and its applications
By

HARISH-CHANDRA

1. Introduction

Let G be a real reductive group and 7z an irreducible admissible representation of
G. Let © denote the character of #. We recall that ® is a distribution on
G defined by

e()=trz(f) (fe CX(G).

It is well known that @ is a locally summable function on G which is analytic on
the set G’ of regular elements. Fix y,e G’ and let I" be the Cartan subgroup of
G containing 7,. Put

I'=G NTIand Gpr = U xI"x™.
sEG
The mapping (x,7)|— xpx* of G X I'" into G is everywhere submersive.
Since © is invariant under all inner automorphisms of G, one proves easily
that © defines a distribution @ on I". Let ¥ be the algebra of all differential
operators on G which commute with both left and right translations. Then ©
satisfies the differential equations

0 =x(2)0 (ze%P),

where x is the infinitesimal character of z. We can transcribe these equations in
terms of #. In this way we obtain a system of differential equations for @ on I.
It turns out that this system is elliptic and therefore @ is an analytic function on I,
But this implies that ® coincides with an analytic function on Gp. '

We would like to prove a similar result in the p-adic case. Let Q be a p-adic
field and G the group of all Q-rational points of a connected reductive Q-group G
[3]. Then G, with its usual topology, is a locally compact, totally disconnected
unimodular group. Let dx denote its Haar measure. We shall use the termino:
logy of [3] without further comment. '

Let = be an admissible irreducible representation of G. Then for every
fe C® (G), the operator

n(f) = ‘!f(x)n(x)dx
95
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has finite rank. Put
O (f) = trn (f).

Then @ is a distribution on G. Let G’ be the set of all points x € G where Dg (x)#
0([3], §15). Then G’ is an open, dense subset of G whose complement has measure
zero. We intend to show that @ coincides with a locally constant function Fon
G’. 'This means that

O ()= [ f(x) F(x)dx,
for all fe C& (G).

In case char Q = 0, this fact was first proved by Howe by making use of his
Kirillov theory for p-adic groups. Moreover when char Q = 0, it is known that
© is a locally summable function on G'[4, 5]. But these methods, which make
extensive use of Lie algebras and the exponential mapping, do not seem to work
in characteristic p. We shall therefore construct a proof on a totally different
principle.

2. The submersion principle

Let P be a parabolic subgroup of Gand x |- x* the projection of G on G* = G/P

Theorem 1 (the submersion principle). Fix yeG'. Then the mapping
x | (xyx~1)*

from G to G* is everywhere submersive.

When char Q = 0, the proof is very easy. Moreover Borel assures me that this
principle is actually true over an arbitrary field.

Let us verify it when char @ = 0. Put
bz x| (epx~i)*.

Then ¢y (09) =G (¥) (5, ¥e6). |
Hence it is enough to prove that ¢, is submersive at x = 1.
Fix a split component 4 of P and let P= MN be the corresponding Levi

decomposition of P. Let (P, 4) denote the p-pair opposite to (P, 4). Then
B = MN. We denote the Lie algebras of G, P, M, N, N by g, p, m, 1, n_Tespec-
tively. Then

p=m-+n g=n+m+mn

and we have to verify that
AdGH—-Dg+p=1g

Fix a symmetric, nondegenerate, G-invariant bilinear form B on g with values
in Q. Since G is reductive, this is possible. Let I' be the Cartan subgroup of G
determined by y and ¢ the Lie algebra of I. Then ¢ = ker (Ad (y) — 1). For

3
.
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any linear subspace g of g, let gl denote the space of all Yeg such thaj
B(X,Y)=0 for all Xeg. Then

pl=mn, (Ad() - gt =ker (Ad() —1)=¢

Therefore (Ad(y™) — 1)g+p)L c ¢ N n=1{0},
and this implies the desired result.

3. The function f, ,
Fix y and P as in theorem 1. Then the mapping*
(e,p—>%.p (xeG,peP)

of G X Pinto G is everywhere submersive. Hence ([2], p. 49) there exists a unique
linear mapping

ai= fq, (0eC> (G x P))
from C® (G x P) to C*® (G) such that

Ipa(x :p) F(*y . p) dxdip = foa,v(x)F(x) dx,

G X

for all Fe C® (G). Here d;p is the left Haar measure on P.
Lemma 1. Fix «eC® (G X P). Then the mapping
yi=fa, (ve@)
from G' to C® (G) is locally constant.
The mapping
&, x,p)=> (% - p)

from G’ X G X P to G' X G is submersive. Hence there exists a unique linear
mapping

Bi=ds (BeC® (G x G x P))
from C® (G' X G X P) to C® (G’ X G) such that
[BG:x:p)®(y:%y - p)dydxdip= [ ¢g (v : %) ® (v : x) dydx
for all @eC® (G’ X G). Now let

D(y:x)=21(y)F(x),
where le C® (G') and Fe C® (G). Then

GM(y)dyG;gPﬁ(y tx ip) F (y -p)dxdzp=£i(y)dyg¢ﬁ(y 1 x) F(x) dx.

* We write ?y = xyx™! for x, y € G.

P.(A)—7
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This being true for all A, we conclude that

[ BO :x:p)FCy-p)dxdip= [¢g(y :x) F(x)dx

GXP

for all ye G’ and Fe Cx (G).
Now fix y,e G and put

B :x:p)=p®)a(x:p)

where ae C® (G X P), ue C® (G") and u(y,) = 1. Let G, be a neighbourhood

of y, in G’ such that g =1 on G,. Then B(y :x :p) =a(x :p) for ye G, and
therefore

| B :x:p) F(Cy-p)dxdip= [ a(x:p)F(y.p)dxdyp

= [ fa, s (%) F (x) dx.
Hence [ f, ,(x) F{x)dx= [ $g (1 x) F(x) dx
for ye G, and Fe C® (G). This shows that

fa.y(x)=¢p(y 1x) (yeGo,xel).

Since $ge C* (G’ X G), our assertion is now obvious.

4. The operator T,

Fix a minimal p-pair (P, 4) in G(P = MN) and let K be an open compact sub-
group of G of Bruhat-Tits ([2], p. 16) corresponding to 4. Let z be an admissible
representation of G on V. We recall that End*V is defined to be the subspace of
all TeEnd V such that the mappings :

x1= 7w (x) T, x\—> Tr (x),
of G into End V are both smooth.

Let dk denote the normalised Haar measure on X.

Theorem 2. Let it be an admissible representation of G on V such that V is a finite
G-module under n. For xe G’, define

T, = [ n(kxk-1) dk.
K

Then T,eEnd °V and x - T, is a smooth mapping from G' to End °V.
Let K, be an open and normal subgroup of K and ¥V, the subspace of all

" vectors in ¥, which are left fixed by K,. Then dim ¥V, < oo. By choosing K,

sufficiently small, we may assume that V is spanned by elements of the form
T(x)v (xeG,veV,).

S
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Let M+ denote the set of all m e M such that {a, Hy (m)) > 0 for every root a
of (P, 4) (see [3], §7) for the definition of H;). Then G = KM+ K. Put A+ =
A N M+. Since M/A is compact, we conclude that M+ C CA+ where C is a com-
pact subset of M. Hence it is clear that we can choose an open compact sub-
group P, of P such that m1P,m C K, for all me M.

Let o denote the characteristic function of K X P, and put f, = Jo, s (€ G)
in the notation of lemma 1. Then y'— f, is a smooth mapping from G’ to C* (G)
and

[ F(y.p)dkdp= ] f, (x) F(x) dx,
KXP, G

for all locally summable functions F on G. (Here dp is the normalised Haar
measure on P,.) From this we deduce immediately that

[ n(y - p)dkdp = éfJ‘,,(x)ﬂr(x)dx=7r(f,,)-

EXP,

Let V, be the smallest K-invariant subspace of ¥ containing z (f,) ¥. Since
fye C® (G, it is clear that dim ¥V, < co.

Since K, is normal in K, ¥, is stable under n (K). Therefore since G = KM+K
V is spanned by n (KM*) V,. Fix ke K, me M+ and veV,. Then

Tyn(km)v ==n (k) T,m (m) v re@).
But n(f)n(mv=T, 1! 7 (pm) vdp = T, n (m) PI n(m™ pm) vdp = T, % (m) v
since m™* Pym C K,. Therefore

T,n (km) v=nk)r(f)rmuveV,.

This shows that T, V' C ¥V,. Since T, commutes with z (k) (ke k), dim ¥, < oo
and 7 is admissible, it is now clear that T, End°V.

Fix k,m, v as above. Since the mapping yi— f, is smooth, it follows from
the result obtained above that the mapping

yi=» Tyn(km)yv =znk)n(f,) nm)v (ye ),

from G’ to V'is also smooth. The second statement of the theorem is now cbvious
if we recall that V is spanned by = (KM) V,.

Corollary. Let® denote the character of n. Then © coincides on G’ with the
locally constant function ‘

x'-trT, (xeG).

Put fo(x) = [ f(kxk™) dk (xe@),
K

| for fe C® (G). Then
© (f) =0 (/) = trz (f9).




100 Harish-Chandra
But z(fY)= [ f(x)T,dx

. G
for feC® (G'). Hence

()= [fuT,dx (feCr ().

5. Some applications

Let I" be a Cartan subgroup of G. For yel"=1I N G’ and fe C*® (G), define

E(n=|D(@)E | flxyx?)dx*
) G]AI.

where D == Dg, Ap is the split component of I" and dx* is an invariant measure
on G/Ar

Theorem 3. Let K, be an open compact subgroup of G. Given y,el’, we can
choose a mneighbourhood o of y, in I'" such that F, is constant on w for every
feC, (GIK,).
This result had been proved by Howe some years ago in the case char Q = 0.
Without loss of generality, we may assume that K, is a normal subgroup of K.
Let us now use the notation of §4. Then

[ F(y.p)dkdp= [ fx (%) F (x) dx,

KXP,

for yeI" and FeC® (G). Fix fe(, (G/K,) and put
g (x) = [ f(kxk™)dk (x €G).
. K

Since K, is normal in K, g e C,(G//K,). Fix me M+ and let F(x) = g (m™ xm)
(x€G). Then

[ g(m™.*y.pm)dkdp = [fy(x)g (m xm)dx.

KXPy

But pm=m - m*pmemK,. Hence
fgmt by .mydk= [ fy(x)gmxmydx  (yel").
K

Fix a neighbourhood I', of 7, in I such that fy=f,, for ye I, This is
possible by lemma 1. Then ‘

Kfg(m‘l-"y-m)dk=1§g(m‘1-"yo-m)dk (yerly).

By standard arguments, the proof of theorem 3 is reduced to the case when I"
is elliptic. Then Ap = Z where Z is the maximal split torus lying in the centre
of G. We know from the work of Bruhat and Tits that

KN\.G/KZ ~ M*]PMZ.
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Therefore Fy(p) == | D (y) E [ feyx1) dx*

GlZ

=[DME X ulm g™ "y.mdk,
K

mEH TRz

where u (m) is the Haar measure of KmK. Let w be a neighbourhood of y, in I,
such that | D (y) |, is constant for yeco. Then

Fo(y)=F,(yo) (ye 02)-

Since w is independent of fe C,(G/K,), the theorem is proved.

Theorem 3 makes it possible to prove Lemma. 13 of ([3], § 16) without any restric-
tion on char Q. ,

I believe it is important, from the point of view of harmonic analysis, to obtain
an analogue of theorem 5 of ([1], p. 32). We give below a result which may be
regarded as a step in this direction. '

Take K, = K and define fy, (ye ") as in §4. Then fy > 0. Put

B =suwp fr(x)  (rel”)

and define E as in ([3], §14).

Theorem 4. Let w be a compact subset of I'. Then we can choose a positive
number ¢ such that

JEGi Yy m)dk < ¢ (7) E (),

K
for all meM* and yew' =wn I'.

It is obvious that
Supp fy C U (y - Py). (yeI).
ECK .
Therefore Supp fy C Xw . Po= C (say)

for yew'. Since C is compact, we can choose a finite number of elements
y: (l<i<r)in G such that

Suppfy C U » K
1=<i<sr

for all yew'.
Now fix yew', me M+ and put
F(x) = E (m xm) (xe @)

in the relation

{ F(*y.p)dkdp= [ fy(x)F(x)dx.

KXPy

Observe that
F(k?p)=f’3(m“17‘ypm)=3(m*1kym) (PEP0>
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since m~* pme K. Therefore

JE@. Py .mydk < ()X § B(@mty km)dk

K i K
= () {J B (m™ ys) E (m)
from the identity

[E@k)d=EM®EQ) (x,yeq).

We can choose a number ¢; > 1 such that
Ep<aE® (<igr)

for all xeG. Put ¢ =rc; and observe that = (x 1) = Z (x).
JE@r by m) < ef () E ()

and this proves our assertion.

One would like to verify that

sup | D (y) 128(») < oo
YEW!

I believe this to be true but do not have a proof.
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