Proc. Indian Acad. Sci. (Math. Sci.), Vol. 90, Number 2, April 1981, pp. 95-102. © Printed in India.

# A submersion principle and its applications

By

### HARISH-CHANDRA

#### 1. Introduction

Let G be a real reductive group and  $\pi$  an irreducible admissible representation of G. Let  $\Theta$  denote the character of  $\pi$ . We recall that  $\Theta$  is a distribution on G defined by

$$\Theta(f) = \operatorname{tr} \pi(f) \quad (f \in C_{\mathfrak{o}}^{\infty}(G)).$$

It is well known that  $\Theta$  is a locally summable function on G which is analytic on the set G' of regular elements. Fix  $\gamma_0 \in G'$  and let  $\Gamma$  be the Cartan subgroup of G containing  $\gamma_0$ . Put

$$\varGamma' = \mathit{G'} \, \cap \, \varGamma \, \, \text{and} \, \, \mathit{G}_{\Gamma} = \bigcup_{\sigma \, \in \, \mathit{G}} \, x \, \varGamma' \, x^{-1}.$$

The mapping  $(x, \gamma) \mapsto x\gamma x^{-1}$  of  $G \times \Gamma'$  into G is everywhere submersive. Since  $\Theta$  is invariant under all inner automorphisms of G, one proves easily that  $\Theta$  defines a distribution  $\theta$  on  $\Gamma'$ . Let  $\mathcal{G}$  be the algebra of all differential operators on G which commute with both left and right translations. Then  $\Theta$  satisfies the differential equations

$$z\Theta = \chi(z)\Theta \quad (z \in \mathcal{Z}),$$

where  $\chi$  is the infinitesimal character of  $\pi$ . We can transcribe these equations in terms of  $\theta$ . In this way we obtain a system of differential equations for  $\theta$  on  $\Gamma'$ . It turns out that this system is elliptic and therefore  $\theta$  is an analytic function on  $\Gamma'$ . But this implies that  $\Theta$  coincides with an analytic function on  $G_{\Gamma}$ .

We would like to prove a similar result in the p-adic case. Let  $\Omega$  be a  $\mathfrak{p}$ -adic field and G the group of all  $\Omega$ -rational points of a connected reductive  $\Omega$ -group G [3]. Then G, with its usual topology, is a locally compact, totally disconnected, unimodular group. Let dx denote its Haar measure. We shall use the terminology of [3] without further comment.

Let  $\pi$  be an admissible irreducible representation of G. Then for every  $f \in C_{\mathfrak{o}}^{\infty}(G)$ , the operator

$$\pi(f) = \int_{G} f(x) \pi(x) dx$$

has finite rank. Put

$$\Theta\left(f\right)=\operatorname{tr}\pi\left(f\right).$$

Then  $\Theta$  is a distribution on G. Let G' be the set of all points  $x \in G$  where  $D_G(x) \neq O([3], \S 15)$ . Then G' is an open, dense subset of G whose complement has measure zero. We intend to show that  $\Theta$  coincides with a locally constant function F on G'. This means that

$$\Theta(f) = \int f(x) F(x) dx$$

for all  $f \in C_{\mathfrak{o}}^{\infty}(G')$ .

In case char  $\Omega = 0$ , this fact was first proved by Howe by making use of his Kirillov theory for p-adic groups. Moreover when char  $\Omega = 0$ , it is known that  $\Theta$  is a locally summable function on G [4, 5]. But these methods, which make extensive use of Lie algebras and the exponential mapping, do not seem to work in characteristic p. We shall therefore construct a proof on a totally different principle.

## 2. The submersion principle

Let P be a parabolic subgroup of G and  $x \mapsto x^*$  the projection of G on  $G^* = G/P$ . Theorem 1 (the submersion principle). Fix  $\gamma \in G'$ . Then the mapping

$$x \mapsto (x\gamma x^{-1})^*$$

from G to G\* is everywhere submersive.

When char  $\Omega = 0$ , the proof is very easy. Moreover Borel assures me that this principle is actually true over an arbitrary field.

Let us verify it when char  $\Omega = 0$ . Put

$$\phi_{\gamma}\colon x\mid \to (x\gamma x^{-1})^*.$$

Then 
$$\phi_{\gamma}(xy) = \phi_{y\gamma y^{-1}}(x)$$
  $(x, y \in G)$ .

Hence it is enough to prove that  $\phi_{\gamma}$  is submersive at x = 1.

Fix a split component A of P and let P=MN be the corresponding Levi decomposition of P. Let  $(\overline{P},A)$  denote the p-pair opposite to (P,A). Then  $\overline{P}=M\overline{N}$ . We denote the Lie algebras of  $G,P,M,N,\overline{N}$  by  $\mathfrak{g},\mathfrak{p},\mathfrak{m},\mathfrak{m},\overline{\mathfrak{n}}$  respectively. Then

$$p = m + n$$
,  $q = \overline{n} + m + n$ ,

and we have to verify that

(Ad 
$$(y^{-1}) - 1$$
)  $g + p = g$ .

Fix a symmetric, nondegenerate, G-invariant bilinear form B on  $\mathfrak{g}$  with values in  $\Omega$ . Since G is reductive, this is possible. Let  $\Gamma$  be the Cartan subgroup of G determined by  $\gamma$  and  $\mathfrak{c}$  the Lie algebra of  $\Gamma$ . Then  $\mathfrak{c} = \ker (\operatorname{Ad}(\gamma) - 1)$ . For

any linear subspace  $\mathfrak{q}$  of  $\mathfrak{g}$ , let  $\mathfrak{q}^{\perp}$  denote the space of all  $Y \in \mathfrak{g}$  such that B(X, Y) = 0 for all  $X \in \mathfrak{q}$ . Then

$$\mathfrak{p}^{\perp} = \mathfrak{n}$$
,  $((\mathrm{Ad}(\gamma^{-1}) - 1)\mathfrak{g})^{\perp} = \ker (\mathrm{Ad}(\gamma) - 1) = \mathfrak{e}$ .

Therefore  $((\operatorname{Ad}(\gamma^{-1})-1)\mathfrak{g}+\mathfrak{p})^{\perp}\subset\mathfrak{c}\cap\mathfrak{m}=\{0\},$  and this implies the desired result.

# 3. The function $f_{\alpha, \nu}$

Fix  $\gamma$  and P as in theorem 1. Then the mapping\*

$$(x, p) \mapsto {}^{x}\gamma \cdot p \qquad (x \in G, p \in P)$$

of  $G \times P$  into G is everywhere submersive. Hence ([2], p. 49) there exists a unique linear mapping

$$a \mapsto f_{\alpha, \gamma}$$
  $(a \in C^{\infty}(G \times P))$ 

from  $C_{\mathfrak{o}}^{\infty}\left(G\times P\right)$  to  $C_{\mathfrak{o}}^{\infty}\left(G\right)$  such that

$$\int_{G \times P} \alpha(x : p) F(^{\alpha}\gamma \cdot p) dx d_{t}p = \int_{G} f_{\alpha, \gamma}(x) F(x) dx,$$

for all  $F \in C_a^{\infty}(G)$ . Here  $d_1p$  is the left Haar measure on P.

Lemma 1. Fix  $\alpha \in C_a^{\infty}(G \times P)$ . Then the mapping

$$y \mapsto f_{\alpha, y} \quad (y \in G')$$

from G' to  $C_{\mathfrak{a}}^{\infty}(G)$  is locally constant.

The mapping

$$(y, x, p) \mapsto (y, {}^{x}y \cdot p)$$

from  $G' \times G \times P$  to  $G' \times G$  is submersive. Hence there exists a unique linear mapping

$$\beta \mapsto \phi_{\beta} \qquad (\beta \in C_c^{\infty} \ (G' \times G \times P))$$

from  $C_o^{\infty}(G' \times G \times P)$  to  $C_o^{\infty}(G' \times G)$  such that

$$\int \beta(y:x:p) \Phi(y:xy\cdot p) dy dx d_1 p = \int \phi_{\beta}(y:x) \Phi(y:x) dy dx$$

for all  $\Phi \in C_o^{\infty}(G' \times G)$ . Now let

$$\Phi(y:x) = \lambda(y) F(x),$$

where  $\lambda \in C_{\mathfrak{o}}^{\infty}\left(G'\right)$  and  $F \in C_{\mathfrak{o}}^{\infty}\left(G\right)$ . Then

$$\int_{G} \lambda(y) dy \int_{G \times P} \beta(y:x:p) F(^{o}y \cdot p) dx d_{i} p = \int_{G} \lambda(y) dy \int_{G} \phi_{\beta}(y:x) F(x) dx.$$

<sup>\*</sup> We write  $^{a}y = x\gamma x^{-1}$  for  $x, y \in G$ .

This being true for all  $\lambda$ , we conclude that

$$\int_{G \times P} \beta(y : x : p) F(xy \cdot p) dx d_{l} p = \int \phi_{\beta}(y : x) F(x) dx$$

for all  $y \in G'$  and  $F \in C_a^{\infty}(G)$ .

Now fix  $y_0 \in G'$  and put

$$\beta(y:x:p) = \mu(y) \alpha(x:p)$$

where  $\alpha \in C_o^{\infty}(G \times P)$ ,  $\mu \in C_o^{\infty}(G')$  and  $\mu(y_0) = 1$ . Let  $G_0$  be a neighbourhood of  $y_0$  in G' such that  $\mu = 1$  on  $G_0$ . Then  $\beta(y:x:p) = \alpha(x:p)$  for  $y \in G_0$  and therefore

$$\int_{G \times P} \beta(y : x : p) F(^{a}y \cdot p) dx d_{i} p = \int_{G \times P} \alpha(x : p) F(^{a}y \cdot p) dx d_{i} p$$
$$= \int_{G \times P} f_{a,y}(x) F(x) dx.$$

Hence  $\int f_{\alpha,y}(x) F(x) dx = \int \phi_{\beta}(y:x) F(x) dx$ 

for  $y \in G_0$  and  $F \in C_o^{\infty}(G)$ . This shows that

$$f_{a,y}(x) = \phi_{\beta}(y:x) \quad (y \in G_0, x \in G).$$

Since  $\phi_{\beta} \in C_{\mathfrak{o}}^{\infty}$   $(G' \times G)$ , our assertion is now obvious.

# 4. The operator T.

Fix a minimal p-pair (P, A) in G(P = MN) and let K be an open compact subgroup of G of Bruhat-Tits ([2], p. 16) corresponding to A. Let  $\pi$  be an admissible representation of G on V. We recall that  $\operatorname{End}^{0}V$  is defined to be the subspace of all  $T \in \operatorname{End} V$  such that the mappings

$$x \mapsto \pi(x) T, x \mapsto T\pi(x),$$

of G into End V are both smooth.

Let dk denote the normalised Haar measure on K.

Theorem 2. Let  $\pi$  be an admissible representation of G on V such that V is a finite G-module under  $\pi$ . For  $x \in G'$ , define

$$T_{\bullet} = \int\limits_{K} \pi (kxk^{-1}) dk.$$

Then  $T_x \in \text{End } {}^{\circ}V$  and  $x \mapsto T_x$  is a smooth mapping from G' to  $\text{End } {}^{\circ}V$ .

Let  $K_0$  be an open and normal subgroup of K and  $V_0$  the subspace of all vectors in V, which are left fixed by  $K_0$ . Then dim  $V_0 < \infty$ . By choosing  $K_0$  sufficiently small, we may assume that V is spanned by elements of the form  $\pi(x)$  v  $(x \in G, v \in V_0)$ .

Let  $M^+$  denote the set of all  $m \in M$  such that  $\langle \alpha, H_M(m) \rangle \geqslant 0$  for every root  $\alpha$  of (P,A) (see [3], § 7) for the definition of  $H_M$ ). Then  $G = KM^+ \cdot K$ . Put  $A^+ = A \cap M^+$ . Since M/A is compact, we conclude that  $M^+ \subset CA^+$  where C is a compact subset of M. Hence it is clear that we can choose an open compact subgroup  $P_0$  of P such that  $m^{-1}P_0 m \subset K_0$  for all  $m \in M^+$ .

Let a denote the characteristic function of  $K \times P_0$  and put  $f_y = f_{a,y}$   $(y \in G')$  in the notation of lemma 1. Then  $y \mapsto f_y$  is a smooth mapping from G' to  $C_o^{\infty}(G)$  and

$$\int_{\mathbf{K} \times \mathbf{P}_0} F(^k y \cdot p) \, dk dp = \int_{\mathbf{G}} f_y(x) \, F(x) \, dx,$$

for all locally summable functions F on G. (Here dp is the normalised Haar measure on  $P_0$ .) From this we deduce immediately that

$$\int_{\mathbb{R}\times P_0} \pi\left({}^{k}y \cdot p\right) dk dp = \int_{G} f_{y}\left(x\right) \pi\left(x\right) dx = \pi\left(f_{y}\right).$$

Let  $V_y$  be the smallest K-invariant subspace of V containing  $\pi(f_y) V$ . Since  $f_y \in C_a^{\infty}(G)$ , it is clear that dim  $V_y < \infty$ .

Since  $K_0$  is normal in K,  $V_0$  is stable under  $\pi(K)$ . Therefore since  $G = KM^+K$  V is spanned by  $\pi(KM^+)$   $V_0$ . Fix  $k \in K$ ,  $m \in M^+$  and  $v \in V_0$ . Then

$$T_{\mathbf{y}}\pi(km)\mathbf{v} = \pi(k)T_{\mathbf{y}}\pi(m)\mathbf{v}$$
  $(y \in G').$ 

But 
$$\pi(f_y)\pi(m)v = T_y \int_{P_0} \pi(pm)vdp = T_y\pi(m) \int_{P_0} \pi(m^{-1}pm)vdp = T_y\pi(m)v$$

since  $m^{-1} P_0 m \subset K_0$ . Therefore

$$T_{\mathbf{v}}\pi\left(km\right)\mathbf{v}=\pi\left(k\right)\pi\left(f_{\mathbf{v}}\right)\pi\left(m\right)\mathbf{v}\in V_{\mathbf{v}}.$$

This shows that  $T_v V \subset V_v$ . Since  $T_v$  commutes with  $\pi(k)$   $(k \in k)$ , dim  $V_v < \infty$  and  $\pi$  is admissible, it is now clear that  $T_v \in \text{End}^0 V$ .

Fix k, m, v as above. Since the mapping  $y \mapsto f_y$  is smooth, it follows from the result obtained above that the mapping

$$y \mapsto T_{\mathbf{y}} \pi(km) v = \pi(k) \pi(f_{\mathbf{y}}) \pi(m) v (y \in G'),$$

from G' to V is also smooth. The second statement of the theorem is now obvious if we recall that V is spanned by  $\pi(KM^+)$   $V_0$ .

Corollary. Let  $\Theta$  denote the character of  $\pi$ . Then  $\Theta$  coincides on G' with the locally constant function

$$x \mapsto \operatorname{tr} T_x \qquad (x \in G').$$

Put 
$$f^0(x) = \int_{\mathbf{K}} f(kxk^{-1}) dk$$
  $(x \in G),$ 

for  $f \in C_{\bullet}^{\infty}(G)$ . Then

$$\Theta(f) = \Theta(f^0) = \operatorname{tr} \pi(f^0).$$

But 
$$\pi(f^0) = \int_G f(x) T_x dx$$
  
for  $f \in C_c^{\infty}(G')$ . Hence

$$\Theta(f) = \int_{G} f(x) \operatorname{tr} T_{x} dx \qquad (f \in C_{\bullet}^{\infty}(G')).$$

### 5. Some applications

Let  $\Gamma$  be a Cartan subgroup of G. For  $\gamma \in \Gamma' = \Gamma \cap G'$  and  $f \in C_{\sigma}^{\infty}(G)$ , define

$$F_{t}(\gamma) = |D(\gamma)|_{p}^{\frac{1}{2}} \int_{G/A} f(x\gamma x^{-1}) dx^{*}$$

where  $D = D_G$ ,  $A_{\Gamma}$  is the split component of  $\Gamma$  and  $dx^*$  is an invariant measure on  $G/A_{\Gamma}$ .

Theorem 3. Let  $K_0$  be an open compact subgroup of G. Given  $\gamma_0 \in \Gamma'$ , we can choose a neighbourhood  $\omega$  of  $\gamma_0$  in  $\Gamma'$  such that  $F_f$  is constant on  $\omega$  for every  $f \in C_o(G/K_0)$ .

This result had been proved by Howe some years ago in the case char  $\Omega = 0$ . Without loss of generality, we may assume that  $K_0$  is a normal subgroup of K. Let us now use the notation of § 4. Then

$$\int_{K\times P_{0}} F(^{k}\gamma \cdot p) dkdp = \int_{G} f_{\gamma}(x) F(x) dx,$$

for  $\gamma \in \Gamma'$  and  $F \in C_c^{\infty}(G)$ . Fix  $f \in C_c(G/K_0)$  and put

$$g(x) = \int_{\mathcal{V}} f(kxk^{-1}) dk \qquad (x \in G).$$

Since  $K_0$  is normal in K,  $g \in C_c(G/|K_0)$ . Fix  $m \in M^+$  and let  $F(x) = g(m^{-1}xm)$   $(x \in G)$ . Then

$$\int_{K\times P_0} g\left(m^{-1} \cdot {}^k\gamma \cdot pm\right) dk dp = \int f_{\gamma}\left(x\right) g\left(m^{-1} xm\right) dx.$$

But  $pm = m \cdot m^{-1} pm \in mK_0$ . Hence

$$\int_{K} g(m^{-1} \cdot {}^{k}\gamma \cdot m) dk = \int f_{\gamma}(x) g(m^{-1} x m) dx \qquad (\gamma \in \Gamma').$$

Fix a neighbourhood  $\Gamma_0$  of  $\gamma_0$  in  $\Gamma'$  such that  $f_{\gamma} = f_{\gamma_0}$  for  $\gamma \in \Gamma_0$ . This is possible by lemma 1. Then

$$\int_{K} g(m^{-1} \cdot {}^{k}\gamma \cdot m) dk = \int_{K} g(m^{-1} \cdot {}^{k}\gamma_{0} \cdot m) dk \qquad (\gamma \in \Gamma_{0}).$$

By standard arguments, the proof of theorem 3 is reduced to the case when  $\Gamma$  is elliptic. Then  $A_{\Gamma} = Z$  where Z is the maximal split torus lying in the centre of G. We know from the work of Bruhat and Tits that

$$K \setminus G/KZ \simeq M^{+/0}MZ$$
.

Therefore  $F_f(\gamma) = |D(\gamma)|_{\mathbf{p}}^{\frac{1}{2}} \int_{G|Z} f(x\gamma x^{-1}) dx^*$ 

$$= |D(\gamma)|_{\mathfrak{p}}^{\frac{1}{2}} \sum_{m \in M^{+} \mid 0MZ} \mu(m) \int_{K} g(m^{-1} \cdot {}^{k}\gamma \cdot m) dk,$$

where  $\mu(m)$  is the Haar measure of KmK. Let  $\omega$  be a neighbourhood of  $\gamma_0$  in  $\Gamma_0$  such that  $|D(\gamma)|_{\mathbf{p}}$  is constant for  $\gamma \in \omega$ . Then

$$F_f(\gamma) = F_f(\gamma_0) \qquad (\gamma \in \omega).$$

Since  $\omega$  is independent of  $f \in C_{\sigma}(G/K_0)$ , the theorem is proved.

Theorem 3 makes it possible to prove Lemma 13 of ([3], § 16) without any restriction on char  $\Omega$ .

I believe it is important, from the point of view of harmonic analysis, to obtain an analogue of theorem 5 of ([1], p. 32). We give below a result which may be regarded as a step in this direction.

Take  $K_0 = K$  and define  $f_{\gamma} (\gamma \in \Gamma')$  as in § 4. Then  $f_{\gamma} \geq 0$ . Put

$$\beta(\gamma) = \sup_{\alpha} f_{\gamma}(x) \quad (\gamma \in \Gamma')$$

and define  $\Xi$  as in ([3], §14).

Theorem 4. Let  $\omega$  be a compact subset of  $\Gamma$ . Then we can choose a positive number c such that

$$\int_{K} \Xi(m^{-1} \cdot {}^{k}\gamma \cdot m) dk \leq c\beta(\gamma) \Xi(m)^{2},$$

for all  $m \in M^+$  and  $\gamma \in \omega' = \omega \cap \Gamma'$ .

It is obvious that

Supp 
$$f_{\gamma} \subset \bigcup_{k \in K} {k \choose \gamma} \cdot P_0$$
.  $(\gamma \in \Gamma')$ .

Therefore Supp  $f_{\gamma} \subset {}^{\kappa}\omega \cdot P_{0} = C$  (say)

for  $\gamma \in \omega'$ . Since C is compact, we can choose a finite number of elements  $y_i$   $(1 \le i \le r)$  in G such that

$$\operatorname{Supp} f_{\gamma} \subset \bigcup_{1 \leq i \leq r} y_i K$$

for all  $\gamma \in \omega'$ .

Now fix  $\gamma \in \omega'$ ,  $m \in M^+$  and put

$$F(x) = \Xi(m^{-1}xm) \qquad (x \in G)$$

in the relation

$$\int_{K \times P_0} F(^k \gamma \cdot p) \, dk dp = \int_G f_{\gamma}(x) \, F(x) \, dx.$$

Observe that

$$F(^{k}\gamma \cdot p) = \Xi(m^{-1} \cdot {}^{k}\gamma \cdot pm) = \Xi(m^{-1} \cdot {}^{k}\gamma \cdot m) \qquad (p \in P_{0})$$

since  $m^{-1}$   $pm \in K$ . Therefore

$$\int_{K} \Xi (m^{-1} \cdot {}^{k} \gamma \cdot m) dk \leq \beta (\gamma) \sum_{i} \int_{K} \Xi (m^{-1} y_{i} km) dk$$

$$= \beta (\gamma) \sum_{i} \Xi (m^{-1} y_{i}) \Xi (m)$$

from the identity

$$\int_{K} \Xi(xky) dk = \Xi(x) \Xi(y) \qquad (x, y \in G).$$

We can choose a number  $c_1 \ge 1$  such that

$$\Xi(xy_i) \le c_1 \Xi(x) \qquad (1 \le i \le r)$$

for all  $x \in G$ . Put  $c = rc_1$  and observe that  $\Xi(x^{-1}) = \Xi(x)$ . Then we get

$$\int_{\mathbf{r}} \Xi(m^{-1} \cdot {}^{k} \gamma \cdot m) \leq c \beta(\gamma) \Xi(m)^{2}$$

and this proves our assertion.

One would like to verify that

$$\sup_{\gamma \in \omega'} |D(\gamma)|_{\mathbf{p}}^{\frac{1}{2}} \beta(\gamma) < \infty.$$

I believe this to be true but do not have a proof.

#### References

- [1] Harish-Chandra 1966 Discrete series for semisimple Lie groups, II. Acta Math. 116 1-111.
- [2] Harish-Chandra 1970 Harmonic analysis on reductive p-adic groups, Lecture Notes in Math. (Berlin and New York: Springer-Verlag) Vol. 162.
- [3] Harish-Chandra 1973 Harmonic analysis on reductive p-adic groups, in Harmonic analysis on homogeneous spaces (Providence: Am. Math. Soc.), pp. 167-192.
- [4] Harish-Chandra 1977 The characters of reductive p-adic groups, in Contributions to algebra (New York: Academic Press), pp. 175–182.
- [5] Harish-Chandra 1978 Admissible invariant distributions on reductive p-adic groups, Lie theories and their applications, Queen's papers in pure and applied mathematics, No. 48 (1978), Queen's University, Kingston, Ontario, pp. 281-347.

Institute for Advanced Study, Princeton, New Jersey 08540, USA