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§1. The Dirac mairices y, (3= 1, 2, 3, 4) arc characterised by the
. : commutation rules |
E' ‘ : , '}'xz?’b"l"?&'}'awzaab‘ )
o ' These four matrices give rise to a set of 16 quantities V
! )

I ,: ' " Ya
I / | iy (4 b) L
- N fyyay, (a, b, call different)

: _ Y1¥e¥ 3V )

j G ' which is closed under multiplication if we regard two quantitics which
BRI . differ by a numerical factor — I, j or — i as cssentially the same. As is

B . +well known these sixtecn matrices are linearly independent and apart from ‘3‘ -

; 3i| E : /" equivalence possess only onc four-dimensional representation which &

' | / *arreducible.  Several important identities concerning these matrices, which {

Fer -

. . are independent of any particular representation have been established by
‘ | 1 Pauli (1936) by making usc of the’ well-known results following from
REE IR U Schur’s theorem, The object of the present paper is to point out that the
SRR IR - commutation rules of the above 15 quantities (all excluding 1) can be
7 N ‘ expressed quite clegantly by one single formula and that the above-
1 mentioned identities can therefore be derived directly from the commutation
rules. It seems that perhaps the present method is more general and
powerful than that of Pauli. The identities arc obtained in a form such
. that the five clements of any pentad (see Eddington, 1936) can be regarded
_ 5 . as basal elements. The use of the matrix B of Pauli is avoided so that the
PR - identities (34,) and (34;) of his paper can now be generalised to the case i
P, o $t+yt, d+ 4 This was not possible previously. Some new temsor -*
L identitics are also obtained. ' £
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Further the present method yields quite easily the matrix determinant
of a quantity composed linearly from the above sixtcen matrices, As is-

l .30 " J,




Algebra of the Divac- Matrices 31

well known this determinant is independent of the representation used.
Eddington (1936) has alrcady calculated it by using the rather cumbersome
method of employing a particular representation.  As a physical application
of the evaluation of this detcrminant we shall consider the case of a charged
particle  of spin -} having an explicit spin interaction with (e clectro-
magnetic field. Tt will be shown that apart from quantum eflects and
upto the first approximation the particle behaves as if it possessed a pure
magnelic dipole moment, which points either along or opposile to the
magnelic field in the rest system.  This magnetic moment which arises from
the explicit spin interaction is to be distinguished from the uwsual magnetic
moment of the electron which is due purely Lo quantum effects, and which
would thercfore disappear if the non-commutability of the dilferent operators
were ignored,

§2. For the purpose ol this paper it is more -convenieni to multiply
the 9, by { and use ‘
Eil;': i?ﬂ (3)

Eﬂ st ElaEa =—2 Smﬁ (4)

The matrices E,, By, E,, E; anticommuie and their squarcs arc equal to
— 1. Put*

instead of y,. Therefore

s = iBJE,EqE, (5
so that
Ele=— |, L E=—FEE, (a=1, 2,3, 4). (6)
Following Eddington we define
E,uv = E,ILEV (P’: V== l; 2: 3: 4: 5! M = V)
Eﬂr- = Ey ..
EanuE “Lny‘—“l:}(v 2 ) (7)
L, =0 (v=10,1,--5).
Then the following equations hold (¢f. Eddinglon /.c.) for u, v==0,1,"++5
E.m' == By _ (8a)
E = E iy Ep:'z_ ! (H == ") - (Sb)
B, B, =E,, (u, v pall different) (8¢c)
Epv Eop = rap E;uv =+ iEM' (u, v, 0, p, A, 7 all difTCI'lBllt) (Sff]

* The present definition of By differs in sign from that of Eddington, The advantage is that
now . i
L5 = IE\ELaEs = Ivyvayaye = Iyg
cortesponding to (3). ¥, is the same as in Pauli’s paper.
A3 '




32 Harish-Chandra

In (8d) the positive or the negative sign is to be chosen accordiug as
(4, v, o, p, A, 7) is an odd or even permutation of (0, 1, 2,3, 4, 5). Tt s
easy Lo see thal (8) is cquivalent to the single equation

E'\It B”P = — 3‘\‘. Sﬂp '|' 3"“, St\p 'l' E.’ll" SPP - E,ur- SAP

~ E?\p a;w - Ep.p s)w ; E\urpor [ior (%) |
Here 8,, is the usual Kronecker’s symbol H’
[ ‘u,= v .
O = 0 pstr j?

and e,,,p07 1S antisymmetric in all 6 indices and eggqq+ 1. [t is convenient
to make the convention that the same index appearing once below and once

above in the same term implies a summation. Thus for example
5 i
E,E,o = ?;0 E,, E,, l'
while no summation js infended in the expression |
Epl’ E.I'Jd' I
In fact (9) can be looked upon as a tensor cquation in a six-dimensional
space whose metric tensor is §,,. Equation (9) is invariant (o any ortho- "
gonal transformation of this six-dimensional space, if we regard E,, as an |
antisymmetric tensor. Also if Fy, is any set of fiftecen E-numberst, anti-
symmetric in A, p and satisfying the same commutation rules as (9), then
it is not difficult to prove that i

F.\,u.’: a, ', pEvp
where @, are the cocfficients ol an orthogonal transformation of the

six-dimensional space, i.c.,
Xayar =38,
’l‘
. I (l[\" |= l
where | iy | denotes the six-dimensional determinant of the transformation.
Thus every matrix transformation

Flﬂ :ﬂAE.\ﬂ A1

is equivalent to an orthogonal transformation of the six-dimensional space.
The converse 18 also true due to the eqiivalence of all lour-dimensional

represcntations.

-

TAny.Iine:‘u' combinatioit of the B’ and s called an B-number (¢f. Bddington, fe).
Every matrix with 4 rows and 4 columns js an E-number due to the lincar independence of
the Fs and |,
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- For future use we notc the following relations which follow directly
from (9):—

By Eup+ Eay Bpp = 8y, 8~ By, Byp 1 20, ipt Ligy 8 + Iy, B

ap Yup
=205, 8, - Epdy, 1 Epdy,  (10a)
Ep B,y = 5%, — 4L, (105)
Also if
S= sk Sy BN (5302 = 5,) (Ila)
Te by, BN (1, 25 1)) (11b)

where 5, 5, £, 1, are ordinary numbers it follows from (9) that
!

ST== st~ 28y, (M4 (313, 5y, — 4 53, 1) — 9

so that

1 1 eqgrn) BN (12)

ST—"T8:x =8y, 1, LM (13a}

ST+ TS = 21— 45y, 094 2 (st oty = 5% 08 eqypy) BN (130)
In particulac ou choosing = Eq, (13} gives
TEqp— Eop T d (1) 12 — 1p) BAy) (140}
TEap o Eop T = 4 fag+ 2 thigg - it eqpyppg B (14h)
On contracting with A (10a) yields
TE,y b 0 By Ty = = 34,1 300 By, — (MEy, o+ T6,,
A (L= 8, 1 (15)
Multiplying (14e) by L8, on the right and using (15) we oblain
Eag TERy = T8y 4 (Tay= Eayp) I A 1gf Bgy 1 18 ) - Sty (16)
On contracting a, y (16) gives the well-known result
21 8 TE g - 324
Muiltiplying (14a) by E,p on the right we got
Eop TEap= =T+ 4 1o Bry+d 15 BNy — 81, Byp (a 3= ) (17)
As is well known (¢f. Pauli, 1936) it follows from the commutation

rules (9) that the spur of E,, is zero. Thercfore for any four-rowed repre-
sentation

sp(T)=414
Py, Thei = 81,
Also since 1, Ey, are 16 lincarly independent matrices T in (115) can be

any arbitrary matrix of 4 rows and 4 columns. Let f and ¢ be any 1wo

matrices with 4 rows und ! column and ¢* and ¢* with | row and 4
Ala
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columns. Then ¢d*, yyit, ¢ and gt are square matrices with 4 rows
and 4 columns and we can choose T equal to any of them. We notice that
for T= ¢4* *

t=4s5p (T)= ¢} ¢ (18a)
t.l/; =—4sp (EA,u T) =~} ¢+E?\p, ¢- (1817}

Substituting these values in (116) and (14b) and multiplying by ¢ on the
left and ¢r on the right we obtain

B b e~ | EM T g (19)
b & Bagthk ¥ B $ 0= 4§ Bt S B 14
+ g MESPYER g, (20)

On choosing T= gt (16) gives in the same way
' Bagp R g = by drbot- drdedop— B BB 21)
W Bagih ¢*Ef b= 4+ Eq - 1ib -+ it By
= 3 By B Py 3 Epad p BB, (a e ), (22)
Similarly on putting T= ¢¢* (17) gives
' Bap &' Byp th= — i dii— 4 110 Y BN, ¥
~ 3 ¢ Typd W BNtk P B gt 6 B, (0 2% ). (23)

Now let a, b, ¢, d be indices which run from | to 4 only. Then
following Pauli ((936) we put

'lb.’ll!"' = I.Qﬂ .
‘i’J{EOa”b: ‘!’d'Ea’,‘ = ""/"+1’n\{’ = IS,.,

"b.? ﬂs"b = ¢,-f ?"y53ﬁ= f"a£'+3:n¢' = iga
Y B =— Jry b = M,y (0 =2 b) L (24
M.m =0

W Eg= ity = 10
Mnb = i €abed M

Here
Vs = yiveravs= BiE,BEj = (E,

~ /
and Yo = Wi = 31 Cotea V¥

where the tensor e, is autisymmetric in all the four indices and €y = 1.
IT the corresponding quantities constructed from ¢, ¢ be distinguished by

x
-
|

- —_— . o
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a dash, (19) can be written in the following form:
= — 4 D020 4 3,87+ 15,87 - ¥ MM 44 907 (29)
Choosing e= 0, =5 in (20) we gel
, it eyl 1 ysh b= } Q082" — 4 20+ 11 MM, (20)
Simlarly putting «=0 in (21) we obtain
§,8 + Q0 =— 2,8 + B o — i Y b — O e b v @n
On the other hand we get on taking a=3

§ 874 0,0 =— Q@+ §rdedh— PG v — v Sk (28)
On putting a= 0, y= 5 (22) gives

— 8,8 =— iy drip - iryhebtd

IR R AR R (29)
Also if we put e=0, §= 5 in (23) we get |
gy — i - 3,87 48,8 (30)
which is the same as equation (44 P).¥ From (30) and (25) we get
by By b= § D+ A MM 2607 (3D)

which corresponds to cquation (43 P). Lquations (20), (27), (28), (29) and
(31) can be written in the following form:
};M‘MM b=y (-Qg-‘?g 5820 ) = (Whrep g — i ye)
(e s~ s e 1 1) (32)
2 Sas“'= _ 20,00 — 2 0 Ly by vt 61 YE)
e (fyh By — s b} E (S G i) (33)
28,87 =— 2 Q0 — 2 Q0 — (i rab-# P~ byl $17P)
b= g B (e ) (34)

28,80 Ly b= b B

b by b Py — 2y VY (3%)
L MM = Q000 — Q0 — 2 b frip— i $*¢)
— 2 (i ysp P ygth — Prvepdtved) (36)

* P refers to Panli's paper.
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Equations (32) to (36) are the generalisation of equations (34, P), (34, P),
(34, P), (34, P) and (34, P) respectively. Equations (32) and (36) have
alrcady been given by Pauli as equations (47P) and (43 P). The others
were not obtained by him. It is noteworthy that we have derived the |
identities directly without employing the matrix B of Pauli, One more |
interesting identity can be derived by interchanging 4* and ' in (23) and
putting =10, =5

Ly e b+ b Pyl yh=— 23 - 0,9,
However on putting ¢+ =1’ and =« it degenerates metely into the sum
of (34, P) and (34, ).

It may be mentioned here that it is possible to derive temsor identities
in addition to the fvarians identities given above, by choosing other
suitable sets of values for «, § and ¢ in the equations (20) to (22). On -
pulting ¢=4 and &' = * the following identities are obtained

M, 88~ 0,8, 0 [a:- 0, B = @ in (20)] (374 |
Mt 4 2,8, 0 [as=a, B= 5in (20)] (37h)
M8 4 120+ (8,8 — 85, 0 fa=a, B=56in (200]  (37c)
M SH 4 0828, =2 0 [~ 0, 3 = @ in (22)] *(37d)
M,,S" = $2,8,= 0 [a-= o, y=5in(22)] (37) -

$u85°F 8,85+ M MGy == 8,0, [« =, f=b in (21) or (22)] (37/)

The gencralised identilies for the case ¢ == and ¢' == ¢ can be obtained
by similar substitutions and they need not be given here explicitly.

§3. Now we shall caleulate the matrix determinant of T. As is well
known this determinant, which we denole by det, T is the same for all four-
dimensional representations of E,,. In fact it is equal to the independent
term in the characteristic cquation of T. It is thercfore sullicient (o
determing the characteristic equation. For this purpose we make use of

(12) and find that
T“‘ t"’ tA#EM[

(T~ )= 2p,m— ) gty

2
(P 004 2 ) | 100 OWH Y 1

Capyplt

i dFor
— .
=3 € fi’#ra'-r{m{”g?ﬁ# ve'r ’y’v”a'r'ﬁaﬂympmp

T This identity was mentioned by Prof. Dhabhy in a leglure,
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i
8 E“ﬂ'um'rr;wfa‘r 16 (faﬁ'r.\pu f;\ﬁ’a,ﬂ - fa).!ﬂp) Ere

-

= 2 fealiroty f oo (Iaphh BN — 2 fanty 1)

== 2 feﬂﬂﬂmnaﬂf,uv’uf (T - I) ~4i taafﬂpenpm‘r”‘upl’gTEhp (38)
Now '
foy !ﬁpc“ﬁa‘“’ﬂ'ﬁ;w[ﬂ | !Ap Gaﬂpw‘”aﬂ’ur’a?‘ (39)

(39) is casily verified for a “tensor’ f,, whosc only non-vanishing coempo-
nents are fyp, feg fge  Since by a suilable orthogonal transformation every
antisymmetrical tensor £,, can be brought into this form, it follows that the
invariant cquation (39) holds for every f,.. Also
'5aﬂy8?\pEhpa'ﬂ'r'a”‘a‘ﬂ'r}"ﬁ' = 16 (fuﬁ"}’ﬁ "" ra)“'ﬂ& - raﬁ’yﬁ)* (40)
Substituting (39) and (40) in (38) we get
(T = 024 2 £, (813~ 8 (1) — 2 19815, lga}
— & i Hgglyshypc®fY (T — 1} =: 0. (41)
Equation (41) is the characteristic equation of T. Pulting T==0 on the
lefl side of (41) we oblain the ferm independent of T so that
det T (2 4,00 -+ 12— 8 {(1281, IG)9~ -2 (1%R1 gy 1¥8154)}
+ $i taplyglyp 4P YEMY (42)
(42) agrees with the result given by Eddington™ (1936).  For the purposc
of the following discussion it is convenienl to replace T by T' where

T = (k4 1, BN (43)
s0 that

det T = (13- 4 £, 10) — § ((1°B1gp)® - 2 1%B Ly 7815,)
! |
T laplvalape®s Yédpy (d44)

Let us now revert from IEM to the original mateices [, and their
products. Qbviously T can be put in the form

T' s £ 1B 4 1B ) (: Cateul BB s

i IPYS
by S ) D i B £ig (45)

Here @, b, ¢, d rvn from | to 4 only and 7, and s, are four-dimensional
vectors while s is a scalar, TFrom (§8) we have

~* Eddingtoh has chosen Eg == — il E;EyEy aind therefore in his case the sign of ¢ in (42)
is reversed.
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oy BB = — (Ege= — (Eg, (46a)
3 € g B BB = (EEg=— iBu (46b)
On compating (43) and (45) and using (46) we find
tos=la
Ly == 54 (47
g = 5.

For brevity the following notation for any vector A, or a tensor By, is
introduced s

b AL R = AAS (48a)
| B {* = 4 B.sB™. (48b)
Then
%‘ f“"f“vﬁ ,'ml‘f}“ + ‘ td@ ‘2 _"‘ .‘05[05 ‘{" faafa‘.’
=4, |34 |t 1241 5, B4 57 (49)
Also put
(13)gy= (13)yq = fnﬁfﬁv"—"“ folyy t fa“’av - 158ty
so that
(e =— 85— 11, §? (30a)
(13 = 175 85 (508)
(ra)né = — . lst farrcé'—_ Sa8s . (SOC)
(1), == — sta+ 155, (50d)
(g =13, (50¢)
(1B =—58% — |5 |? (501)

Thus we have
lap (8,518 == (P4, (7)Y
== (12) ol 12)00 4= (1R (12)38 4 2 (1R (12 -+ 2 (121, (£2)Y”
2 (£2),5(721%8 - (1) s(13)"
= (s34 1, 103 (524 15, [P 207,02 4 2 s — 350 P
2] 05— sty |2 2 | tatst SaSu— 1510 |2 (51)
From (44), (47), (49) and (31) we have
det, T/= (134 | £, |2k | 45 |24 | Sa 124 802 = 2 [ 4, |21 | 1o |24 | 5, |24 823
A 02k 12 (32 {5, B2+ 2(175) - 2] 1010 — 58, |
2105 — st |2 2| 2t SaSe— 1,50 |2
408 Ll g €54 Ai 11y, 8¢ (52)
since
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Instead of E, or y, which salisfy (4) or (1) respectively it is convenient

to introduce the mairices a, (=0, 1, 2, 3) whose commutation yules are
Gty + @y, = 2guv (53)
where g,, is the usual metric tensor of flat spacedime (g,,=0, p== v,
Bop= g1y =~ 8= — g33= 1). For this purpose it is sullicient to choose
(), 0y, ap=(E,, By By} and og=— iEy=1y, [rom now onwards the
greek indices run from 0 to 3. We make the convention that for any
tensor A,... ‘
" A= A (54
where A, denotes that among a, b, there are # indices cqual to 4. The
new quantity A, defined by (54) is obtained by replacing each index 4 by
0. Since for raising the greck indices we use the tensor g the following
relation holds ,
Ay oo B (=1" Ay, BT
where m is the total number of indices a, b, -+ in each of the tensors
Ay...and B .« - which aro contracted together. Also from (54)
€o193= — €1aa0 ™" €194 = 1.
Therefore we put
G,u.:faT = i"}uw'r
where ygaa= 1. Thus (45) and (52) can be written as
T' =t — 1,0+ § 1,000 — & fyer tFatalsT

— 3y § oy WiaucaT (55)

ot T/ (12— |, 1P | 12 L 124 899 2(= (1, 1241, 12
— 1, [P+ 59)*
A (5% ) 1, 192 (52— 15, |92 2 (s, )2 — 2 Lo, - 171, |
— 20 8t A 128, |PF 2 [ty ol 8,8, 4 470, |
— 8 Ly lgpIPPOTL = AL 1L, S pPOTL, {56)
A notation similar to (48) has been employed in (56) for greek indices also.

The above result can immediately be applied to discuss the case of
a particle of spin 4 having a charge- and dipole-interaction with an electro-
magnetic (or meson) field. If p, be the encrgy-momentum vector of the
particle, ¢, the electromagnetic potentials and F,, the field-strengths the
wave cquation for the particle can be written as

(@ (Pu— 8180+ B @R+ 1) =0, (57)
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Here g, is the charge and g, the dipole-strength and m the mass of the
particle. Our object is to determine the classical analogue of this particle.
Hence we treat p,, ,, F,, as numerical quantities commuting with each
other. This corresponds to the neglect of quantum effects,  As is well
known the condition for the existence of a solution of (57) is that

det {an, 1 ; gata’F,, + mp=0. (58)

Here m,=p,— 8¢, and we have wrilten g instead of gp for simplicity.
(58) corresponds to the classical equation of motion of the particle.
Comparing (58) and (55) we find
[=m
t#= -,
ly=igF,,
5,=0,5=0
so that on account of (56), (58) reduces to
(mt — mP 4§ g, B — 4o e (4 g%, o) - 2(3 g°F, F#)

—4 ggﬂu}'m’ F o+ g f.‘uv F, Forbe=0, (59)
Now )
By, P = 2 (4 F, P04 (4 F0)? (60
where F'#* is the tensor dual to F#¥ and is defined by
Fav = fymvor F (61)

Bquation (60) is easily verified for the particular Lorentz-frame in which
only Fo, and Fyy are different from zero. Since it is a tensor cquation
it must hold for every other frame also. Thus we obtain from (39) and (60}
rnt = % 4 g2, T4 4 () g, P mat (§ g°F, )

~ g, FEPF, a7 =0, (62)
When the explicit spin interaction is absent g=0 and (62) reduces to the

usual classical equations of a poini-charge
mh— mi= 0, (63)

In this case

7, i, (64)

where #, s the classical four-velocity of the particle. ~Since we wish to retain
only terms of the lowest order in g in (62) we can substitute (64) in the terms
of {62) containing g, so that on ignoring terms of the order g2, (62) becomes

(ﬂ#ﬂp PR gEI.‘MIZ‘,ul'JQ = 4 iyt ('i-Fm-F’w" l.“'ul:'[l) (65)



Algebra of the Divac-Maltvices 41

where F, = F,»". Thercfore
mt— mt= 2mg /E Fy I —F ¥ (66)
if the second and higher powers of g are neglected. Now
L F I# — F,Fr=: H?

where H is the magnetic field in the rest system of the particle. Therefore

mert—m?=-k 2mg | H| (67)
For the non-relativistic case we find on pulting =y = i+ W that
n? '
W= g (68)

where 7= ('T:‘l, my, my). (68) shows that in the rest system and in a weak
electromagnetic field the particle manifests only a magnetic moment g such
that the direction of the moment is cither along or opposite to the magnetic
component of the field, This is precisely what is to be expected of a
particle of spin .

I am thankful to Prof, H, J. Bhabha for heipful comments and advice,

SUMMARY

The Dirac-matrices generate an algebra consisting of sixteen lincarly
independent clements. A formula is given (or expressing the product of
any two elements as a lincar combination of these sixteen, This delermines
the structure of the algebra completely. [t is shown that certain kuown
idefititics concerning these matrices can be obtained comparatively easily

by the present method. Some new idenlities are also deduced,

The characteristic cquation of a general clement of the algebra is derived
and from it an expression is obiained for the determinant of any four-dimen-
sional matrix representing the clement., ‘I'his cxpression is used to discuss
the case of a particle of spin 4 having an cxplicil spin interaction with the
clectromagnetic field. 1t is shown (hat in the classical limit & — 0 and upto
the first approximation in the interaction constant g the particle manifesis
only a magnetic-moment g in the rest system, the direction of the moment
being cither along or opposite to the magnetic field in the same system,
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