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IN a recent paper (Harish-Chandra, 1944, referred to as A in this paper) the
equations of motion of a point particle interacting with a scalar meson
field have been derived. The object of this note is to use these equations
to calculate the scattering of scalar mesons by neutrons (or protons) on the
classical theory, taking into account the radiation damping. This calcula-
tion is entirely similar to the corresponding one, done by Bhabha (1939,
1941) for the case of the vector-mesons. On account of the neglect of the
quantum effects and the charge of the meson these calculations are subject
to the same limitations as those of Bhabha. Since it is as yet not at all
certain whether the actual meson has a spin of 1 or O unit, the scattering
formule obtained here are to be looked upon as possible alternatives to those
given by Bhabha. ,

§l. We shall keep to the notation of the previous papers (Bhabha and
Harish-Chandra, 1944, Harish-Chandra, 1944). « is the proper time at any
point on the world line of the neutron measured from some fixed point on
it. z, (7) are the co-ordinates of this point. x, denote the co-ordinates
of any field-point. The fundamental metric tensor is taken to be

Loy =0 p==v80=—"8u1= 8nu= —La=1
A dot denotes differentiation with respect to =+v,= 2z, (7) and u, = x,—z, (7).
We shall assume that the neutron has a ‘charge’ and a °dipole’.

Following Bhabha we consider the scattering due to each of these separately.
_ First we calculate the scattering due to the charge alone.

In the notation of A the equation of motion of the neutron is
, d fmean o, - " 'mean
my, — & - (Unet g) = — g U, 4y

where m is the mass and g, the ‘charge’ of the neutron. U’m and
U’ ma are the modified mean-potential and field respectively. It has been
shown in A [Eqs. (3-17) and (3-18)] that

U’mean = [Jin + ﬁ’

U /men= U, — g ( %}u +3u, ()% + % xv,) + ﬁ“ (2a)
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where
~ T, (¢ , =~ Y T, (xw)
T = —gx fJ 59 42, T, = g1 X f u, 25 ap)

U is the ingoing potential and U, =3, U is the ingoing field. We
assume the ingoing field to be a plane wave travelling in the x,-direction.
Assuming that the amplitude of oscillation of the neutron is small compared
to the incident wave length we can write

Uyr =y sin wyf, Uy,* =0, U,in =0 (3)

where ¢ = z, (7). We assume that the velocity of the neutron is small
so that
dZ p

=l

for k =1, 2, 3. 1In conformity with (3) we put (¢f. Bhabha, 1939)

0
v; = B cos (wyt + 8), {Jln-——- Bwg sinl (wotf + ) ¢ (4)
vo= 1, 10 =03 =0 J

We assume the amplitudes 8 and y to be small so that quantities quadratic
in them may be neglected. Putting x, = z, (7) we get for (2)

o= 2() =5 () = L [sin (wgt + 8) — sin (wit’ +8)]
U = ug = 0 (5a;
U= E—~t =u, (5b)

From (25), (4) and (3} we get

U= —g x f {;_.%f_i‘)_ dr’

oo

= J X
—ax f U~ g (6)

]

ﬁo ;—_glxzf u, Js (Xu) d+'

u?

-0

OO

= g1 X? f = (u % dqu =% gy x° (7
°
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T

Ul =g1X2 f ul J‘.} Ej{zu) d’T'

-0

"
=g X2 f 3%—@ u, du

_B&X 1) . : |
= wlo f 2S( ) [Sin o — sin (a — vs)] ds (8)
where s = xu, v = 20 and o = wot + 8 Using the well-known result that
f ds T, (S) {%- [(1— )32 8 s iv]0< ve 1 ©)
F— (2= 1)+ 50— giy] v o1
we get
where U= —Bg i (Pcos « + Q sin a) (10a)
%— — 51/2 0<v<i
2 1 312 1
l %(l,__ _)_+3 2;;2 v>1
1 — 2312
f% Q=" L 0<v<1
Q = 1 _ (105)
|- 5 v> 1

Substituting the value of the various quantities in (1) and putting m - 2x=M
we get up to terms of the first order in 8 and v

— Bw, M sin a= — g, y cos (a — 9)
-+ B g w [P cos a + Qsin a]
— 38 Buwicosa +1x2giBcosa (11)
Equating coefficients of sin o and cos « on both sides of (11) we get

B o= Y - (12a)
(pr ) M )
cos § = w, P (12b)

(e

o1

where the positive value of the square root is to be taken. P'=P—- 3+ 1 42
Ala
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so that . |
o 0 2 r <1 129
== 2 __ 1\3
- %Q"__;glL v> 1
Tt is clear from (12) that the quantity M+ g% Qu, behaves as the effective

S 1
mass. For very slow oscillations v, €X (*<1) Q= —

M+gQu=M-3glx=m+38 X
Therefore in this case the field contributes a pesitive mass 3 g%x. On the
other hand ir the vector meson case the field adds a negative mass — %g; x
for slow oscillations (c¢j. Bhabha, 1939).
Te calculate the scattering we have to calculate the retarded field at a
very distant point x, = (X, Y, Z, T) lying on the future light cone from the
point + on the world line.

T
ret _____tg‘]j___ _ Jl (X u) .’
= X glf oA 4

o (7) u
N T3 tw d
_ (Xu) d p
T 1 "—oo,
=5 [ L6055} & (13)

-_ 00

where & == ut(7'j v, (') and ' =u* (=" 1')# (+). For a very distant point

we can neglect the first term ;}1'? and write

T o0
Uy-et = —g f JO (.-YI{) :_2 dr' = — 2 f JO (X!l) ,ﬁé du (14)
— 00 0

Writing R = X2+ Y2 + 72 we get up to terms of the first order in 8

K = — Xy, = Bw, X sin (wt’ + ) |
ut = (T — 1) — R® + 228 sin (wyf’ +9) l% (15)
0
k =T —1) =Xy, =(T — ) — BX cos (wt +5)
so that in the same approximation
k' Pwy X sin (wgt’ + 9)
x-S (u® + R2)32
_ Py Xsin (w,T + 8 — wy /17 +-R¥)
- (uz + R2)3I2 .
— '_BBOX Sin (a' — Wy \/uz + R?') | (16)

% + R9)32
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if we write o” for w T + 5. Thus from (14) and (16)
U™ = — g, B, X Jo( )Sln(amwo \/uz—l—i{”)udu

( 4+ R2)3I 2

_&Boy X d sin (¢ — v /s¥ Lt
¥ ) J() (S) (S2 + 72)312 S dS (17)

Q

where § = x4, r =RX and v = (-;i’. On evaluatin ¢ (17) and retaim'ng.only

the terms of the lowest order in {K we find

'V 2 —R /A=t .
!(31/3§—Y}R~abﬁ’e Ve ° sin (cuOT—}-B) wy < X (
U = . 18)
‘o X Vaw? — X
Lc BR R COS(wOT-f-g—"R'\/wO——-X) Wy > X

For the case wy, <y the potential falls off exponentially with distance and
obviously there is-no scattering. We therefore consider the case w, > y.
In this case the incident wave is consistently with (3)

U = 72—0;-_3:'—78111 (wp t — Va2 =X xy). (19)
The flow of energy per unit area per unit time in the x, direction as calculated
from the energy-momentum tensor
. 4 T,, = U, U, — % g, (U, Ur — x* U?) (20)
1s

U_OTK — | 'yl_i“ow : (21)

4 87 VWi — 3
where the bar denotes the average over time. Similarly the flow of energy
due to (18) in the direction of the radius R across an element of surface
subtending a solid angle d is

gl éz cos® # (ﬁ_i&?ajz Ao

8 w,
where 0 is the angle between the incident and the scattered wave ie.,
X/R =cos #. The differential-scattering cross-section in the direction
6 is therefore

(22)

cos® § » (23)
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Y

from (12a) if we put ;12 = q. Integrating over all directions 6 we find
1

that the total cross-section is .
: 1

127 - . w4 Rt ds2 (24)

(w3 —X)+( 2 2)2 [3‘7 ‘1"3X"“a;_]

0

For the spin 1 case the scattering of the transverse mesons is given by (Bhabha,
1939) .
1

6w(1+ix)( m'"__l_x ( +2w2)

For high energy this i1s half of (24) mdependently of the value of g,.
For x = 0 (24) becomes _

127

9a? + w?
which is of the same form as the corresponding formula of Dirac (1938),
viz., 9a22jtr4 for the scattering of light by an electron. As found in

other cases the cross-section (24) decreases with increasing w, as = for
. 0

high frequencies.

§2. We shall now treat the scattering by the neutron due to the dipole-
moment alone. We denote the dipole-vector by ¢,S% As already pointed
out in A we have to assume

Se v -0 ' | (25)
The equation of rotational motion is [Eqn. (5-36b) of A].

Ie,uvpo' P Sa =82 [Su ﬁv - Sr ﬁu] | (26)
where (G, = U,™= — v, (v* U,™2). ¢,,,, is the tensor which is anti-
symmetric in each pair of indices and e€ya = — 1. * Following Bhabha
we put m equal to infinity to simplify the problem. 1In this case we find from
the translational equation that ¢, = ¢, = ....=0, so that we can consider

the dipole in the rest system. In the usual three-dimensional vector notation
(26) can be written as

[S =g, [S-Umn] | ~ 27)

where the components of S and U™« are S; and U'pze= (k =1, 2, 3)
respectively. The bracket denotes the vector product.

Using (25) we find from (3:19) of A that
U me = U + g, (3 S, +% s#) +U, (28)
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where
¢
Op=gr (5,20 (29)

Here we have used the fact that ~ =t and u, - Uy =u, =0 so that
Seu, =0. Also

u -":UO = — t,_
so that

U gt [ S0 —u2x? (30
0

1t is to be noted that the right side of (30) is the same as ;—a of Bhabha
[1941, Eqn. (68)] if we replace M by S there. (27) can now be written as

18 =g [S'U°] +3g[8-8] +3 5 x2[S5] +¢, [5-U] (D

This equation is the same as Eqn. (66) of Bhabha (1941) if we replace
H by 20" M by S and I by 2I in the latter and put K =0. Thus corres-
ponding to equations (69) and (70) of Bhabha we put

Ur =3Hycoswyt =3+ H (32)
S () =S, + S, sin wy ¢ + S, sin (wt + ) (33)

where S, is the initial direction of the dipole and S,, S; and S, are mutually
perpendicular and such that S, is along [Sy'S;].  We assume Sy* = 1.
Substituting (32), (33) in (30) and (31) we get corresponding to Eqn. (74) of
Bhabha

wy Sy [a cos wyt + }wg%l (€ sin (wq £+ 8) — { cOS (wyl + 3)}]

| S . .
+ wy Sy [a cos (we! + 8) — :wsi—% {€ s1n wef — § COS wot}]
= 2§g'2 [S,-H,] cos wyt | (34)
2 .
where a == ;I and
o2 g 3 2 __ p2\3/2
(l — 20.(0 + (‘_.X.....ma;g),_g)....- wo < X .
¢ = | ’ (35)
- 3
l —'z Wy > X
0
lf . 0 wy < X
‘= G | SRV €
Wy
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Here the value of a is twice that used by Bhabha [Eqn. (73) L.c.], while & and ¢
are the same as in his case. Since (34) is identical with Eqn. (74) of Bhabha,
all the further results derivable from it in terms of «, &, { remain the same.
Thus we get

tan & = ——g | (37a)
Ish - «/fa?i o)
1S, | = 3a|H0[SIDO ‘‘‘‘ (370

A being the angle between S, and H,. The work done bjy the external force
on the dipole is on the average

. 3 H M2 0 CL2 2 2
2 2 (H S) 8 ( 23111 5({_2")_E++§4a_§w%2) (3 8)

To obtain the scattering we have to calculate as before the retarded
potential U™ at a very distant point X, Y, Z, T lying on the future light
cone from the point z, (v) = (0, 0, 0, ).

T Sa
U =2 & (1) () dr} (39)

u* = (T —t')2 — R? (40a)
k=T — = if TR (405)
Retaining only terms of the lowest order in i{ we get

o0

e Se
U = g, fJ(Xu)(2+R2)

0

= — g, div{ f woz J—Oi—(l)g,;) {S; cos (w,T — w, u + R?)

0
+ S, cos (wy T + 3 — wy vur 1 RI)}-udu  (41)

0
X BY’.DZ)' The term

inside the divergence can be evaluated and up to the terms of lowest order in

where the components of divergence are d, =

it is equal to

R
—R Vg w3
e,._mew [S; sin w,T + S, sin (w,T + 8)] for w,< X
1
R-lSl S]n ((.UoT R '\/wo _‘X)

+8, sin (w0, T +8 — R +/53 =) for wp > x
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so that to the same approximation
r 2 - R _—
Go —2—0 VA — o} Vo= [(B—Sl) sin w
R
+

(RRS) sin (w,T + 8)] for wy<X

U?‘et —_ { —

- (42)
g \/“"i{ X [(Rs’l) cos (wgT — R +/o3 = %?)

| + (RRsz) cos (wgI + & — R Vw2 — X )] for we>x

where R = (X, Y, Z). (42) would agree completely with the expression (84)
of Bhabha for Uz if we replace the scalar products with R by vector products.
When g, < x there is no radiation. For w,~> y the average rate of radia-
tion in the direction R inside a solid angle d £ is from (20)
XZ)B}Z w; [‘(]21{821)2 (RRS22)2
RS)RS,
+2 82 25

0-2
& (3

cos 8] de (43)

corresponding to (84) of Bhabha. The total radiation obtained by integrating
(43) over all directions is

b8 (0 — XH¥2 w, (1S:]2 + 1S,13) (44
which is the same as (38) due to (37) and (36). The energy flow due to
the incident wave (32) is

H|*  w

27 wi — x*
The total effective cross-section for the scattering of the scalar meson wave
is therefore from (45), (44) and (38) and (36)

2\2 2
T2 (w5 — ) a? 4+ §2 4
127 sin® 6 > e &0 (46)
In terms of a, & { (46) is the same as Eqn. (82) of Bhabha except for a factor 2.
Substituting the value of ¢ and { the scattering cross-section becomes

(45)

n? A — y2)2 a? wf + (wf — x*)° +x° . (47
127 sin® © (o = X pro T — P e

Except for a factor 2, (45) agrees entirely with Eqn. (88) of Bhabha in which
K has been put equal to zero. For small g, and not verv high frequencies
we can expand (47) as a series in ascending powers of g,. The first term is

2 2)2
s g & () “49)
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which is exactly half of the corresponding expression (86) of Bhabha. Thus
for large w, the scattering is double (independently of the value g,) and for
small w, half that of transverse vector-mesons. ~ The formule (47) and (48)
have already been discussed by Bhabha in detail.

§3. The above theory will now be compared with the quantum theory
of neutral mesons. For simplicity we put ¢ =1, # =1. The total
Lagrangian for the neutron and the meson fields together is taken to be

L=} (¢+ﬁwau¢—w+ﬁw)-—p¢+B¢+g1¢+/3w+g2¢+w¢ 2, U

sb Byey” v* b €upop DPU+ ¢ Byry” yo yP i €4yqpU

+3 (aﬁ U -+ U— x2U? (49)

Here y* are the 4-rowed square matrices satisfying
, Y P Pyt = g
and B =y ¢ refers to the neutron field and /* is its hermitian conjugate.
v's are related to the usual Dirac-matrices « and ,8 by
a=(a, o’ a%) = B0 92 )
We assume a and £ to be Hermitian. w is the mass of th% neutron. The
terms contammg g, and g, in (49) represent the usual ¢ scalar’ interactions
for the charge and the dipole respectively while those containing g," and g5’
represent the corresponding ° pseudo-scalar * interactions. FEvidently in the
classical theory there is no distinction between the scalar and pseudo-scalar
interactions since this distinction arises only from the y-matrices. To
simplify (49) we use the usual representation of « and B through two sets
of mutually independent Pauli matrices. )
a =py (% 0% 09, B = p,

With this substitution (49) simplifies to

L =L G 8940, o 0,8t By ) o B g U

8¢ (e U)+Upl ¥+ g5 ¢ [(@ U)+p, Uyl b— g Pt pp U

+4 (0, U-»U—x2U? (50)
where U = (2, U, % U, 3, U), U; =, U. The Hamiltonian of the system
for only one neutron present is found as usual and on ignoring the infinite
self-energy of the neutron terms out to be

H= (9 p)+ uf— “"l’* 2 k) (g1 pi— & 20) {az € %) — gx o7 (#%)
‘\/V 2 (2ky)? (gz P1--82) (9 k) — P1 kot {(1,(,(?z (%2) o gx g% (ko)
+ I N+ %) : 61y
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where ko = + /x* + [k[? N, is the number of mesons in the momentum
state k and «; and aj are the corresponding absorption and emission opera-
tors respectively.

[ak’ a,;c]- =1
As usual V is a large volume in which the field quantities are periodic.

Corresponding to the treatment of §2 we put g, =g, =0 and regard
the neutron as an infinitely heavy particle (u —>o0). A straightforward
calculation shows that the scattering due to a pure °scalar’ dipole-inter-
action (g, == 0) is zero in the usual second order (g%) approximation. This
result holds even when the calculation is perfor ed taking into account the
finite mass of the neutron. Also the terms containing both g, and g,’
vanish for g —oo, so that in this limit the contribution to the scaitering

comes purely from the pseudo-scalar interaction. The differential scattering
cross-section is thus found to be for u —>eo

' \4 pd
do=4dQ (%T) £, sin® ¢ (%2

where p is the momentum, E the energy and ¢ the angle of scattering of
the meson. The total cross-section is therefore

2
(Vg (53)
Y

i is the value of the dipole-moment in the usual units as against its value
77

g.’ in the ¢ Heaviside-units’ which were employed till now. On putting

I = g (== % since #% is put equal to 1) and averaging over all 4, (48) becomes

identical with (53) except for a factor 3. This discrepancy is due to the
well-known (c¢f. Bhabha, 1941, footnote on page 340; also sec Bhabha and
Madhava.Rao, 1941) difference in the classical and the quantum average
over the direction of the spin of the neutron. In fact (52) also agrees to the
same extent with the corresponding differential cross-section obtained by
dividing (43) by (45), expanding in powers of g, and retaining only the lowest
term.

I am thankful to Prof. H. J. Bhabha for his criticism and advice.

SUMMARY

The classical formule for the scattering of scalar mesons by a neutron
are obtained taking account of the radiation damping. The neutron is
assumed to possess a ‘charge’ and a ‘dipole moment ’. The scattering
due to each of these is treated separately. It is found that the formule for
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the scattering due to the dipole has exactly the same form as the one obtained
by Bhabha for the transverse mesons. Due to numerical factors the scatter-
ing for large energies of the incident mesons is double, and for small energies
half that of transverse vector-mesons.

The scalar and pseudo-scalar charge and dipole interactions are con-
sidered in the quantum theory. The scalar dipole interaction does not give
rise to any scattering at all, the whole of the scattering being due to the
pseudo-scalar interaction. In this case the quantum-theoretical formule
agree with the corresponding classical ones if the effect of radiation reaction
is neglected in the latter.
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