IN Variant DIFFERENTIAL OPERATORS ON A SEMISIMPLE LIE ALGEBRA

By Harish-Chandra

Institute for Advanced Study

Communicated by M. Morse, March 1, 1956

Let R and C be the fields of real and complex numbers, respectively, and E_0 a vector space over R of finite dimension. Then, E being the complexification of E_0, we consider the symmetric algebra $S(E)$ and the algebra $Q(E)$ of polynomial functions on E. We regard E_0 as a differentiable manifold and, for any differential operator D and indefinitely differentiable function f, denote by $f(X; D)$ the value of Df at $X \in E_0$. Corresponding to any X in E_0 we define the differential operator $\partial(X)$ by

$$f(Y; \partial(X)) = \left\{ \frac{d}{dt} f(Y + tX) \right\}_{t=0} (Y \in E_0, t \in R).$$

Then ∂ can be extended uniquely to an isomorphism of $S(E)$ into the algebra of differential operators on E_0. Let U be an open subset of E_0. By $C(U)$ we mean the space of all functions f on U of class C^∞ such that $\tau(q, \partial(p); f) = \sup_{x \in U} |q(X)f(X; \partial(p))| < \infty$ for all $q \in Q(E)$ and $p \in S(E)$. We define a topology in $C(U)$ by means of the collection of these seminorms $\tau(q, \partial(p)); (q \in Q(E), p \in S(E)).$

Let g_0 be a semisimple Lie algebra over R and h_0 a Cartan subalgebra of g_0. Complexify g_0, h_0 to g and h, respectively. We can identify $S(g)$ and $Q(g)$ by means of the fundamental bilinear form $B(X, Y) = sp(ad X ad Y)(X, Y \in g)$ on g. Let G_0 be the (connected) adjoint group of g_0. A function f on g_0 will be called invariant if $f(xX) = f(X)$ for all $x \in G_0$ and $X \in g_0$. Let $I(g)$ be the subalgebra of $S(g)$ consisting of invariant polynomial functions. Similarly, let $I(h)$ denote the algebra of those elements in $S(h)$ which are invariant under the Weyl group W (of g with respect to h). For any $p \in I(g)$, let \overline{p} denote the restriction of the polynomial function p on h. Then $p \rightarrow \overline{p}$ is an isomorphism of $I(g)$ onto $I(h)$. Let P denote the set of all positive roots (of g with respect to h) under some fixed order. Put $\pi = \Pi_{\alpha \in P}$. Then $\pi \in S(h)$. Notice that if $q \in S(h), \partial(q)$ is a differential operator on h_0.

Theorem 1. Suppose that f is an invariant function on g_0 of class C^∞. Then, if $p \in I(g)$,

$$\pi(H) f(H; \partial(p)) = g(H; \partial(\overline{p})), \quad (H \in h_0),$$

where g is the function on h_0 given by $g(H) = \pi(H) f(H)$.

Let dx denote the Haar measure of G_0.

Corollary. Suppose that G_0 is compact. Then

$$\pi(H) \pi(H') \int_{G_0} \exp B(xH, H') dx = c \sum_{s \in W} \chi(s) \exp B(sH, H')$$

for all H, H' in h. Here c is a constant which is easily determined by the condition $\int_{G_0} dx = 1$.

252
Let \(A_0 \) be the Cartan subgroup of \(G_0 \) corresponding to \(\mathfrak{h}_0 \), and let \(dx^* \) denote the invariant measure on the factor space \(G^* = G_0/A_0 \). Define \(x^*H = xH \) \((H \in \mathfrak{h})\), where \(x \) is any element in the coset \(x^* \in G^* \). Let \(\mathfrak{b}_0' \) be the set of those elements \(H \in \mathfrak{h}_0 \), where \(\pi(H) \neq 0 \). Then, if \(f \in C(\mathfrak{h}_0) \), the integral

\[
F_f(H) = \pi(H) \int_{G^*} f(x^*H) \, dx^*
\]

is convergent for \(H \in \mathfrak{b}_0' \), and \(F_f \) is of class \(C^\infty \) on \(\mathfrak{b}_0' \). Moreover, it follows from Theorem 1 that \(F_{\phi(p)f} = \partial(\bar{p}) \, F_f \) \((p \in I(\mathfrak{g}))\). This relation, in its turn, implies the following result.

Theorem 2. The mapping \(f \mapsto F_f \) is a continuous mapping of \(C(\mathfrak{h}_0) \) into \(C(\mathfrak{b}_0') \).

For any \(f \in C(\mathfrak{h}_0) \), let \(\hat{f} \) denote the Fourier transform of \(f \), so that

\[
\hat{f}(X) = \int_{\mathfrak{g}_0} \exp(iB(X, Y)) \, f(Y) \, dY \quad (X \in \mathfrak{g}_0),
\]

where \(dY \) is the (suitably normalized) Euclidean measure on \(\mathfrak{g}_0 \). Then it is possible to obtain interesting relations between \(F_f \) and \(F_{\hat{f}} \). For example, if \(G_0 \) is either compact or complex,

\[
F_{\hat{f}}(H) = \int_{\mathfrak{b}_0} \exp(iB(H, H')) \, F_f(H') \, dH' \quad (H \in \mathfrak{b}_0')
\]

where \(dH' \) is the (suitably normalized) Euclidean measure on \(\mathfrak{b}_0' \). Similar but more complicated relations hold in other cases as well, under suitable restrictions on \(f \).

If \(G_0 \) is a complex semisimple group, the above relation between \(F_f \) and \(F_{\hat{f}} \) can be obtained directly without much difficulty. This, in fact, is the starting point of the proof of Theorem 1.

2. This theorem should be compared with Lemma 2 of *Bull. Am. Math. Soc.*, 61, 394, 1955.
3. \(\varepsilon(s) = 1 \) or \(-1\), according as \(s \) takes an even or odd number of positive roots into negative roots.