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Let R and C be the fields of real and complex numbers, respectively, and E, a
vector space over R of finite dimension. Then, E being the complexification of
E,, we consider the symmetric algebra S(E) and the algebra Q(E) of polynomial
functions on E. We regard E as a differentiable manifold and, for any differential
operator D and indefinitely differentiable function f, denote by f(X; D) the value
of Df at X ¢ E,. Corresponding to any X in Ey we define the differential operator
o(X) by

d
fY; o(X)) = {aTt ¥ + tX)}t . (Y e Eo, t € R).

Then 0 can be extended uniquely to an isomorphism of S(E) into the algebra of
differential operators on E,. Let U be an open subset of Ey. By €(U) we mean
the space of all functions f on U of class C® such that 7(q, o(p); f) =
iug |g(X) f(X; d(p))| < = forall ¢ ¢ Q(E) and p ¢ S(E). We define a topology in

€(U) by means of the collection of these seminorms 7(gq, 3(p)) (¢ e Q(E), p e S(E)).

Let go be a semisimple Lie algebra over R and b a Cartan subalgebra of g,.
Complexify go, ho to g and b, respectively. We can identify! S(g) and Q(g) by
means of the fundamental bilinear form B(X, Y) = sp(ad X ad Y)(X, Y ¢ g) on
g. Let G, be the (connected) adjoint group of go. A function f on g, will be called
invariant if f(xX) = f(X) for all z ¢ Gy and X € go. Let I(g) be the subalgebra of
S(g) consisting of invariant polynomial functions. Similarly, let I(h) denote the
algebra of those elements in S(h) which are invariant under the Weyl group W
(of g with respect to §). For any p € I(g), let p denote the restriction of the poly-
nomial function p on §. Then p — P is an isomorphism of I(g) onto I(h). Let
P denote the set of all positive roots (of g with respect to §) under some fixed order.

Put r = I «. Then 7 € S(h). Notice that if ¢ ¢ S(bh), O(¢g) is a differential
aeP

operator on b.
TueoreM? 1. Suppose that f s an tnvariant function on gy of class C*. Then,

if pel(g),
=(H) f(H; o(p) = g(H; o(p)) (H € bo),

where g 18 the function on by given by g(H) = =(H) f(H).
Let dx denote the Haar measure of G,.
CoroLLARY. Suppose that Gy is compact. Then?

w(H) #(H') S exp B(zxH, H') dx = ¢ Y, ¢(s) exp B (sH, H’)
Go seW

for all H, H' in Y. Here c is a constant which is eastly determined by the condition
S dx = 1.
Go
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Let A, be the Cartan subgroup of Gy corresponding to hy, and let dz* denote the
invariant measure on the factor space G* = Gy/A,. Define 2*H = zH (H € }),
where z is any element in the coset z* ¢ G*. Let b’ be the set of those elements
H € by, where w(H) #£ 0. Then, if f € €(go), the integral

F((H) = =(H) J f@*H) dz*

is convergent for H € by’, and F, is of class C* on bhy’. Moreover, it follows from
Theorem 1 that Fory; = 0(P) F, (p € I(g)). This relation, in its turn, implies the
following result.
TuEOREM 2. The mapping f — F,is a continuous mapping of C(go) into C(bhy’).
For any f e @(go), let f denote the Fourier transform of f, so that

J&x) = {' exp (iB(X, Y)) f(Y) dY (X €00,

where dY is the (suitably normalized) Euclidean measure on go. Then it is possible
to obtain interesting relations between F, and F;. For example, if G, is either
compact or complex,

F;(H) = { exp (:B(H, H")) F,(H') dH’ (H € ho')

where dH' is the (suitably normalized) Euclidean measure on h,. Similar but more
complicated relations hold in other cases as well, under suitable restrictions on f.

If Gy is a complex semisimple group, the above relation between F, and F7 can
be obtained directly without much difficulty. This, in fact, is the starting point
of the proof of Theorem 1.

1See Trans. Am. Math. Soc., 75, 194, 1953.

2 This theorem should be compared with Lemma 2 of Bull. Am. Math. Soc., 61, 394, 1955.

3g(s) = 1 or —1, according as s takes an even or odd number of positive roots into negative
roots.



