INVARIANT DIFFERENTIAL OPERATORS ON A SEMISIMPLE LIE ALGEBRA

By HARISH-CHANDRA

INSTITUTE FOR ADVANCED STUDY

Communicated by M. Morse, March 1, 1956

Let R and C be the fields of real and complex numbers, respectively, and E_0 a vector space over R of finite dimension. Then, E being the complexification of E_0 , we consider the symmetric algebra S(E) and the algebra Q(E) of polynomial functions on E. We regard E_0 as a differentiable manifold and, for any differential operator D and indefinitely differentiable function f, denote by f(X; D) the value of Df at $X \in E_0$. Corresponding to any X in E_0 we define the differential operator $\partial(X)$ by

$$f(Y; \ \partial(X)) = \left\{ \frac{d}{dt} f(Y + tX) \right\}_{t=0} (Y \ \epsilon \ E_0, \ t \ \epsilon \ R).$$

Then ∂ can be extended uniquely to an isomorphism of S(E) into the algebra of differential operators on E_0 . Let U be an open subset of E_0 . By $\mathcal{C}(U)$ we mean the space of all functions f on U of class C^{∞} such that $\tau(q, \partial(p); f) = \sup_{X \in U} |q(X)f(X; \partial(p))| < \infty$ for all $q \in Q(E)$ and $p \in S(E)$. We define a topology in $\mathcal{C}(U)$ by means of the collection of these seminorms $\tau(q, \partial(p)) (q \in Q(E), p \in S(E))$.

Let \mathfrak{g}_0 be a semisimple Lie algebra over R and \mathfrak{h}_0 a Cartan subalgebra of \mathfrak{g}_0 . Complexify \mathfrak{g}_0 , \mathfrak{h}_0 to \mathfrak{g} and \mathfrak{h} , respectively. We can identify¹ $S(\mathfrak{g})$ and $Q(\mathfrak{g})$ by means of the fundamental bilinear form $B(X, Y) = \mathfrak{sp}(\mathfrak{ad} X \mathfrak{ad} Y)(X, Y \in \mathfrak{g})$ on \mathfrak{g} . Let G_0 be the (connected) adjoint group of \mathfrak{g}_0 . A function f on \mathfrak{g}_0 will be called invariant if f(xX) = f(X) for all $x \in G_0$ and $X \in \mathfrak{g}_0$. Let $I(\mathfrak{g})$ be the subalgebra of $S(\mathfrak{g})$ consisting of invariant polynomial functions. Similarly, let $I(\mathfrak{h})$ denote the algebra of those elements in $S(\mathfrak{h})$ which are invariant under the Weyl group W(of \mathfrak{g} with respect to \mathfrak{h}). For any $p \in I(\mathfrak{g})$, let \overline{p} denote the restriction of the polynomial function p on \mathfrak{h} . Then $p \to \overline{p}$ is an isomorphism of $I(\mathfrak{g})$ onto $I(\mathfrak{h})$. Let P denote the set of all positive roots (of \mathfrak{g} with respect to \mathfrak{h}) under some fixed order. Put $\pi = \prod_{\alpha} \alpha$. Then $\pi \in S(\mathfrak{h})$. Notice that if $q \in S(\mathfrak{h}), \ \partial(q)$ is a differential exerts on \mathfrak{h} .

operator on \mathfrak{h}_0 .

THEOREM² 1. Suppose that f is an invariant function on g_0 of class C^{∞} . Then, if $p \in I(g)$,

$$\pi(H) f(H; \partial(p) = g(H; \partial(\bar{p})) \qquad (H \in \mathfrak{h}_0),$$

where g is the function on \mathfrak{h}_0 given by $g(H) = \pi(H) f(H)$.

Let dx denote the Haar measure of G_0 .

COROLLARY. Suppose that G_0 is compact. Then³

$$\pi(H) \ \pi(H') \ \int_{G_0} \exp B(xH, H') \ dx = c \sum_{s \in W} \varepsilon(s) \ \exp B(sH, H')$$

for all H, H' in \mathfrak{h} . Here c is a constant which is easily determined by the condition $\int_{\Omega_{n}} dx = 1$.

Let A_0 be the Cartan subgroup of G_0 corresponding to \mathfrak{h}_0 , and let dx^* denote the invariant measure on the factor space $G^* = G_0/A_0$. Define $x^*H = xH$ ($H \in \mathfrak{h}$), where x is any element in the coset $x^* \in G^*$. Let \mathfrak{h}_0' be the set of those elements $H \in \mathfrak{h}_0$, where $\pi(H) \neq 0$. Then, if $f \in C(\mathfrak{g}_0)$, the integral

$$F_f(H) = \pi(H) \int_{G^*} f(x^*H) \, dx^*$$

is convergent for $H \epsilon \mathfrak{h}_0'$, and F_f is of class C^{∞} on \mathfrak{h}_0' . Moreover, it follows from Theorem 1 that $F_{\mathfrak{d}(p)f} = \mathfrak{d}(\bar{p}) F_f(p \epsilon I(\mathfrak{g}))$. This relation, in its turn, implies the following result.

THEOREM 2. The mapping $f \to F_f$ is a continuous mapping of $\mathbb{C}(\mathfrak{g}_0)$ into $\mathbb{C}(\mathfrak{h}_0')$. For any $f \in \mathbb{C}(\mathfrak{g}_0)$, let f denote the Fourier transform of f, so that

$$\tilde{f}(X) = \int_{\mathfrak{g}_0} \exp\left(iB(X, Y)\right) f(Y) \, dY \qquad (X \,\epsilon \,\mathfrak{g}_0),$$

where dY is the (suitably normalized) Euclidean measure on \mathfrak{g}_0 . Then it is possible to obtain interesting relations between F_f and $F_{\tilde{f}}$. For example, if G_0 is either compact or complex,

$$F_{\tilde{f}}(H) = \int_{\mathfrak{h}_0} \exp \left(iB(H, H') \right) F_f(H') \, dH' \qquad (H \epsilon \mathfrak{h}_0')$$

where dH' is the (suitably normalized) Euclidean measure on \mathfrak{h}_0 . Similar but more complicated relations hold in other cases as well, under suitable restrictions on f.

If G_0 is a complex semisimple group, the above relation between F_f and $F_{\tilde{f}}$ can be obtained directly without much difficulty. This, in fact, is the starting point of the proof of Theorem 1.

¹See Trans. Am. Math. Soc., 75, 194, 1953.

² This theorem should be compared with Lemma 2 of Bull. Am. Math. Soc., 61, 394, 1955.

 ${}^{3}\varepsilon(s) = 1$ or -1, according as s takes an even or odd number of positive roots into negative roots.