INTEGRABLE AND SQUARE-INTEGRABLE REPRESENTATIONS OF A SEMISIMPLE LIE GROUP

BY HARISH-CHANDRA

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated by Paul A. Smith, March 11, 1955

Let G be a connected semisimple Lie group. We shall suppose for simplicity that the center of G is finite. Let π be an irreducible unitary representation of G on a Hilbert space \mathcal{H}. We say that π is integrable (square-integrable) if there exists an element $\psi \neq 0$ in \mathcal{H} such that the function $\langle \psi, \pi(x)\psi \rangle$ is integrable (square-integrable) on G, with respect to the Haar measure. Assuming that the Haar measure dx has been normalized in some way once for all and that π is square-integrable, we denote by d_π^* the positive constant given by the relation

$$\int_G |\langle \psi, \pi(x)\psi \rangle|^2 \, dx = \frac{1}{d_\pi^*},$$

where ψ is any unit vector in \mathcal{H}. Let $C_c^\infty(G)$ denote the set of all complex-valued functions on G which are everywhere indefinitely differentiable and which vanish outside a compact set. Then the following result is an easy consequence of the Schur orthogonality relations.
THEOREM 1. Let \(\pi \) be an irreducible unitary representation of \(G \) on \(\mathcal{S} \) which is square-integrable, and let \(T_\pi \) denote the character of \(\pi \). Then, if \(f \in C_c^\infty(G) \),

\[
T_\pi(f) = \int_G f(x) \, d\phi,
\]

where \(\phi \) is any unit vector in \(\mathcal{S} \).

Now suppose \(G \) has a Cartan subgroup \(A \) which is compact. We extend \(A \) to a maximal compact subgroup \(K \). Let \(g_0 \) be the Lie algebra of \(G \) and \(g \) its complexification. We shall assume for simplicity that \(G \) has a finite-dimensional faithful representation and therefore there exists a complex analytic group \(G_c \) with the Lie algebra \(g \) such that \(G \) is the (real) analytic subgroup of \(G_c \) corresponding to \(g_0 \).

Let \(h_0 \) and \(f_0 \) be the subalgebras of \(g_0 \) which correspond to \(A \) and \(K \), respectively. We define \(p_0, \overline{p}, \overline{f} \) as in a previous note and introduce a lexicographic order among roots of \(g \) with respect to \(h_0 \). For any root \(\alpha \) define \(X_\alpha, X_{-\alpha} \) and \(H_\alpha = [X_\alpha, X_{-\alpha}] \) as before, so that \(\alpha(H_\alpha) = 2 \). Put

\[
u_+ = \sum_{\alpha > 0} CX_\alpha, \quad \nu_- = \sum_{\alpha > 0} CX_{-\alpha},
\]

where \(C \) is the field of complex numbers and \(\alpha \) runs over all positive roots. Then \(\nu_+, \nu_- \) are subalgebras of \(g \). Let \(A_\alpha, N^+, N^- \) be the complex analytic subgroups of \(G_c \) corresponding to \(h_0, \nu_+, \nu_- \), respectively. Then \(G_c^0 = N^- A_\alpha G \) is an open submanifold of \(G_c \).

If \(\xi \) is a holomorphic character of \(A_\alpha \), we can choose a (unique) linear function \(\Lambda \) on \(h_0 \) such that \(\xi(\exp H) = e^{\Lambda(H)} \) \((H \in h_0)\). We denote by \(\mathcal{S}_\Lambda \) the space of all holomorphic functions \(\phi \) on \(G_c^0 \) such that

\[
\begin{align*}
(\phi(\text{naw}) &= \xi(a)\phi(w) & (n \in N^-, a \in A_\alpha, w \in G_c^0), \\
\|\phi\|^2 &= \int_G |\phi(x)|^2 \, dx < \infty.
\end{align*}
\]

Then \(\mathcal{S}_\Lambda \) is a Hilbert space under the norm \(|| \cdot || \), and we get a representation \(\pi_\Lambda \) of \(G \) on \(\mathcal{S}_\Lambda \) if we put \((\pi_\Lambda(x)\phi)(y) = \phi(xy) \) \((\phi \in \mathcal{S}_\Lambda; x, y \in G)\). If \(\mathcal{S}_\Lambda \not\cong \{0\} \), \(\pi_\Lambda \) is an irreducible unitary representation which is square-integrable. Let \(2\rho \) denote the sum of all positive roots. In case \(G \) is simple and not compact, the following four conditions are both necessary and sufficient in order that \(\mathcal{S}_\Lambda \not\cong \{0\} \):

1. The first Betti number of \(G \) is 1.
2. Every noncompact positive root is totally positive.
3. \(\Lambda(H_\alpha) \) is a nonnegative integer for every positive compact root \(\alpha \).
4. \(\Lambda(H_\beta) + \rho(H_\beta) \) is a negative integer for every positive noncompact root \(\beta \).

Let \(2\rho_+ \) denote the sum of all positive noncompact roots. Then, in the presence of the first three conditions, the following condition is sufficient to insure the integrability of \(\pi \):

\[
\Lambda(H_\beta) + \rho(H_\beta) < -2\rho_+ \Lambda(H_\beta) + 1 \quad \text{for every positive noncompact root } \beta.
\]

From now on we shall suppose that \(G \) is simple and not compact and that conditions 1 and 2 are fulfilled. We shall also assume that \(G_c \) is simply connected. Then it is possible to choose a fundamental system \((\alpha_0, \alpha_1, \ldots, \alpha_l)\) of positive roots such that \(\alpha_0 \) is noncompact, while \(\alpha_1, \ldots, \alpha_l \) are all compact. Let \(A_i \) denote the linear function on \(h \) given by \(A_i(H_\alpha) = \delta_{ij} (0 \leq i, j \leq l) \). Since \(G_c \) is simply connected, there exists a holomorphic character \(\xi_i \) of \(A_i \) such that \(\xi_i(\exp H) = e^{\Lambda_i(H)} \) \((H \in h, 0 \leq i \leq l)\). Moreover, from the theory of finite-dimensional representations of \(G_c \) one can deduce the existence of a unique holomorphic function \(g_i \) on \(G_c \)
such that $g_i(n\alpha') = \xi_i(a)$ $(n \in N_c, a \in A_c, \alpha' \in N_c^+)$. Put $g = g_{\delta_0}^{m_0} g_{\delta_1}^{m_1} \ldots g_{\delta_l}^{m_l}$, where m_0, \ldots, m_l are nonnegative integers, and let $g_\delta(x) = g(xy) (x, y \in G_c)$. Then, if V is the vector space spanned over C by the functions $g_\delta (y \in G_c)$ and π is the representation of G_c on V given by $(\pi(y)f)(x) = f(xy) (x, y \in G, f \in V)$, π is a finite-dimensional irreducible representation of G_c. The corresponding representation of g is complex-linear, and its highest weight is $m_0 \Lambda_0 + \ldots + m_l \Lambda_l$. On the other hand, suppose that Λ is a linear function on \mathfrak{h} satisfying conditions 3 and 4. Put $\lambda_i = \Lambda(H_{\alpha_i}) (0 \leq i \leq l)$. Then $\lambda_0, \ldots, \lambda_l$ are all integers, and $\Lambda = \lambda_0 \Lambda_1 + \ldots + \lambda_l \Lambda_l$. Moreover, $\lambda_0 < 0$, while $\lambda_1, \ldots, \lambda_l \geq 0$. Put $g_\Lambda = g_0^{\lambda_0} g_1^{\lambda_1} \ldots g_l^{\lambda_l}$. Then g_Λ is a meromorphic function on G_c. However, it can be shown that g_Λ is never zero on G_c^0, and so g_Λ is holomorphic on G_c^0. Also, one can prove that $g_\Lambda \in \mathcal{S}_\Lambda$, and therefore \mathcal{S}_Λ is the closure of the space spanned by the right translates of g_Λ under G. Thus the analogy with the finite-dimensional case mentioned above is rather close.

Let F be the set of all linear functions Λ on \mathfrak{h} which satisfy conditions 3 and 4. For every $\Lambda \in F$ we have defined a square-integrable representation π_Λ above. Put $d_\Lambda = d_{\pi_\Lambda}$. Then, if m is the number of totally positive roots, we have the following result:

Theorem 2. It is possible to normalize the Haar measure of G in such a way that

$$d_\Lambda = (-1)^m \prod_{\alpha > 0} \left(\frac{\Lambda(H_{\alpha}) + \rho(H_{\alpha})}{\rho(H_{\alpha})} \right)$$

for every $\Lambda \in F$.

The analogy with Weyl's formula for the degree of an irreducible finite-dimensional representation in terms of its highest weight is obvious.

Let \mathcal{E} be the set of all equivalence classes of irreducible unitary representations of G. Let \mathcal{E}_0 denote the subset of \mathcal{E} consisting of those classes ω which correspond to square-integrable representations. If $\omega \in \mathcal{E}_0$ and $\pi \in \omega$, we put $d_\omega = d_\pi$. Also, define

$$N_\omega(f) = \| \int f(x) \pi(x) \, dx \|^2$$

for $f \in C_c^\infty(G)$, where π is any representation in ω and $\|A\|$ denotes the Hilbert-Schmidt norm of an operator A. It follows from the work of von Neumann and Mautner that there exists a unique positive measure μ on \mathcal{E} such that

$$\int_{\mathcal{E}} |f(x)|^2 \, dx = \int_{\mathcal{E}} N_\omega(f) \, d \mu$$

for all $f \in C_c^\infty(G)$. On the other hand, one can prove the following result:

Theorem 3. The μ-measure of a single point ω in \mathcal{E}_0 is exactly d_ω.

For any $\Lambda \in F$ let ω_Λ denote the equivalence class of π_Λ. Then $\Lambda \rightarrow \omega_\Lambda$ is a one-one mapping of F into \mathcal{E}_0. We denote by \mathcal{E}_F the image of F under this mapping. It is obvious from Theorems 2 and 3 that we now have an explicit formula for the restriction of the measure μ on \mathcal{E}_F.

2 See these Proceedings, 37, 366--369, 1951.
5 See *ibid.*, 40, 1078, 1954, hereafter cited as "RVI."
6 See RVI. The last statement of RVI is not correct. In order to rectify it, we have to replace π_1 there by the definition of π_4 given above in the present note.