INTEGRABLE AND SQUARE-INTEGRABLE REPRESENTATIONS OF A SEMISIMPLE LIE GROUP

By HARISH-CHANDRA

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated by Paul A. Smith, March 11, 1955

Let G be a connected semisimple Lie group. We shall suppose for simplicity that the center of G is finite. Let π be an irreducible unitary representation of G on a Hilbert space \mathfrak{F} . We say that π is integrable (square-integrable) if there exists an element $\psi \neq 0$ in \mathfrak{F} such that the function $(\psi, \pi(x)\psi)$ $(x \in G)$ is integrable (square-integrable) on G, with respect to the Haar measure. Assuming that the Haar measure dx has been normalized in some way once for all and that π is squareintegrable, we denote by d_{π} the positive constant given by the relation¹

$$\int_{G} \left| (\psi, \pi(x)\psi) \right|^{2} dx = \frac{1}{d_{\pi}},$$

where ψ is any unit vector in \mathfrak{H} . Let $C_e^{\infty}(G)$ denote the set of all complex-valued functions on G which are everywhere indefinitely differentiable and which vanish outside a compact set. Then the following result is an easy consequence of the Schur orthogonality¹ relations.

Vol. 41, 1955

THEOREM 1. Let π be an irreducible unitary representation of G on \mathfrak{H} which is square-integrable, and let T_{π} denote the character² of π . Then, if $f \in C_c^{\infty}(G)$,

$$T_{\pi}(f) = d_{\pi} \int_{G} dx \left(\int_{G} f(xyx^{-1}) \left(\phi, \pi(y)\phi \right) dy \right)_{f}$$

where ϕ is any unit vector in \mathfrak{H} .

Now suppose G has a Cartan subgroup A which is compact. We extend A to a maximal compact subgroup K. Let \mathfrak{g}_0 be the Lie algebra of G and \mathfrak{g} its complexification. We shall assume for simplicity that G has a finite-dimensional faithful representation and therefore there exists a complex analytic group G_c with the Lie algebra \mathfrak{g} such that G is the (real) analytic subgroup of G_c corresponding to \mathfrak{g}_0 . Let \mathfrak{h}_0 and \mathfrak{t}_0 be the subalgebras of \mathfrak{g}_0 which correspond to A and K, respectively. We define \mathfrak{p}_0 , \mathfrak{h} , \mathfrak{t} , \mathfrak{p} as in a previous note³ and introduce a lexicographic order among roots (of \mathfrak{g} with respect to \mathfrak{h}). For any root α we define X_{α} , $X_{-\alpha}$ and $H_{\alpha} = [X_{\alpha}, X_{-\alpha}]$ as before,³ so that $\alpha(H_{\alpha}) = 2$. Put $\mathfrak{n}_+ = \sum_{\alpha>0} CX_{\alpha}$, $\mathfrak{n}^- = \sum_{\alpha>0} CX_{-\alpha}$, where C is the field of complex numbers and α runs over all positive roots. Then \mathfrak{n}_+ , \mathfrak{n}_- are subalgebras of \mathfrak{g} . Let A_c , N_c^+ , N_c^- be the complex analytic subgroups of G_c corresponding to \mathfrak{h} , \mathfrak{n}_+ , \mathfrak{n}_- , respectively. Then $G_c^0 = N_c^{-}A_cG$ is an open submanifold of G_c . If ξ is a holomorphic character of A_c , we can choose a (unique) linear function Λ on \mathfrak{h} such that $\xi(\exp H) = e^{\Lambda(H)}$ ($H \in \mathfrak{h}$). We denote by \mathfrak{F}_{Λ} the space

of all holomorphic functions ϕ on G_c^0 such that

(i)
$$\phi(naw) = \xi(a)\phi(w)$$
 (*n* $\epsilon N_c^{-}, a \epsilon A_c, w \epsilon G_c^{0}),$

(ii)
$$\|\phi\|^2 = \int_G |\phi(x)|^2 dx < \infty$$

Then \mathfrak{H}_{Λ} is a Hilbert space under the norm $\|\cdot\|$, and we get a representation π_{Λ} of G on \mathfrak{H}_{Λ} if we put $(\pi_{\Lambda}(x)\phi)(y) = \phi(yx)$ ($\phi \in \mathfrak{H}_{\Lambda}; x, y \in G$). If $\mathfrak{H}_{\Lambda} \neq \{0\}$, π_{Λ} is an irreducible unitary representation⁴ which is square-integrable. Let 2ρ denote the sum of all positive roots. In case G is simple and not compact, the following four conditions are both necessary and sufficient in order that $\mathfrak{H}_{\Lambda} \neq \{0\}$:

- 1. The first Betti number of G is 1.
- 2. Every noncompact³ positive root is totally positive.³
- 3. $\Lambda(H_{\alpha})$ is a nonnegative integer for every positive compact³ root α .
- 4. $\Lambda(H_{\beta}) + \rho(H_{\beta})$ is a negative integer for every positive noncompact³ root β .

Let $2\rho_+$ denote the sum of all positive noncompact roots. Then, in the presence of the first three conditions, the following condition is sufficient to insure the integrability of π :

4'. $\Lambda(H_{\beta}) + \rho(H_{\beta}) < -2\rho_{+}(H_{\beta}) + 1$ for every positive noncompact root β .

From now on we shall suppose that G is simple and not compact and that conditions 1 and 2 are fulfilled. We shall also assume that G_c is simply connected. Then it is possible³ to choose a fundamental system $(\alpha_0, \alpha_1, \ldots, \alpha_l)$ of positive roots such that α_0 is noncompact, while $\alpha_1, \ldots, \alpha_l$ are all compact. Let Λ_i denote the linear function on \mathfrak{h} given by $\Lambda_i(H_{\alpha_j}) = \delta_{ij}$ $(0 \leq i, j \leq l)$. Since G_c is simply connected, there exists a holomorphic character ξ_i of Λ_c such that $\xi_i(\exp H) = e^{\Lambda_i(H)}$ $(H \epsilon \mathfrak{h}, 0 \leq i \leq l)$. Moreover, from the theory of finite-dimensional representations of G_c one can deduce the existence of a unique holomorphic function g_i on G_c such that $g_i(nan') = \xi_i(a)$ $(n \in N_c^{-}, a \in A_c, n' \in N_c^{+})$. Put $g = g_0^{m_0} g_1^{m_1} \ldots g_l^{m_l}$, where m_0, \ldots, m_l are nonnegative integers, and let $g_y(x) = g(xy)(x, y \in G_c)$. Then, if V is the vector space spanned over C by the functions $g_y(y \in G_c)$ and π is the representation of G_c on V given by $(\pi(y)f)(x) = f(xy)(x, y \in G_c, f \in V), \pi$ is a finitedimensional irreducible representation of G_c . The corresponding representation of g is complex-linear, and its highest weight is $m_0\Lambda_0 + \ldots + m_l\Lambda_l$. On the other hand, suppose that Λ is a linear function on \mathfrak{h} satisfying conditions 3 and 4. Put $\lambda_i = \Lambda(H_{\alpha_i})$ $(0 \le i \le l)$. Then $\lambda_0, \ldots, \lambda_l$ are all integers, and $\Lambda = \lambda_0\Lambda_1 + \ldots + \lambda_l\Lambda_l$. Moreover, $\lambda_0 < 0$, while $\lambda_1, \ldots, \lambda_l \ge 0$. Put $g_\Lambda = g_0^{\lambda_0} g_1^{\lambda_1} \ldots g_l^{\lambda_l}$. Then g_Λ is a meromorphic function on G_c . Also, one can prove that $g_\Lambda \in \mathfrak{H}_\Lambda$, and therefore \mathfrak{H}_Λ is the closure of the space spanned by the right translates of g_Λ under G. Thus the analogy with the finite-dimensional case mentioned above is rather close.

Let F be the set of all linear functions Λ on \mathfrak{h} which satisfy conditions 3 and 4. For every $\Lambda \epsilon F$ we have defined a square-integrable representation π_{Λ} above. Put $d_{\Lambda} = d_{\pi_{\Lambda}}$. Then, if m is the number of totally positive roots, we have the following result:

THEOREM 2. It is possible to normalize the Haar measure of G in such a way that

$$d_{\Lambda} = (-1)^{m} \prod_{\alpha > 0} \left\{ \frac{\Lambda(H_{\alpha}) + \rho(H_{\alpha})}{\rho(H_{\alpha})} \right\}$$

for every $\Lambda \in F$.

The analogy with Weyl's formula⁵ for the degree of an irreducible finite-dimensional representation in terms of its highest weight is obvious.

Let \mathfrak{E} be the set of all equivalence classes of irreducible unitary representations of G. Let \mathfrak{E}_0 denote the subset of \mathfrak{E} consisting of those classes ω which correspond to square-integrable representations. If $\omega \in \mathfrak{E}_0$ and $\pi \in \omega$, we put $d_{\omega} = d_{\pi}$. Also, define

$$N_{\omega}(f) = \left\| \int f(x) \pi(x) \ dx \right\|^{2} \qquad (f \ \epsilon \ C_{c}^{\infty} \ (G), \ \omega \ \epsilon \ \mathfrak{S}),$$

where π is any representation in ω and ||A|| denotes the Hilbert-Schmidt norm² of an operator A. It follows from the work of von Neumann⁶ and Mautner⁷ and a previous result of mine⁸ that there exists a *unique* positive measure μ on \mathfrak{E} such that

$$\int_{G} |f(x)|^{2} dx = \int_{\mathfrak{S}} N\omega(f) d\mu$$

for all $f \in C_c^{\infty}(G)$. On the other hand, one can prove the following result:

THEOREM 3. The μ -measure of a single point ω in \mathfrak{S}_0 is exactly d_{ω} .

For any $\Lambda \in F$ let ω_{Λ} denote the equivalence class of π_{Λ} . Then $\Lambda \to \omega_{\Lambda}$ is a oneone mapping of F into \mathfrak{S}_0 . We denote by \mathfrak{S}_F the image of F under this mapping. It is obvious from Theorems 2 and 3 that we now have an explicit formula for the restriction of the measure μ on \mathfrak{S}_F .

¹ See these PROCEEDINGS, **40**, 1076, 1954, Theorem 2; and R. Godement, *Compt. rend. Acad.* sci. (Paris), **225**, 657–659, 1947.

² See these Proceedings, **37**, 366–369, 1951.

³ See *ibid.*, **40**, 1078, 1954, hereafter cited as "RVI."

⁴ See RVI. The last statement of RVI is not correct. In order to rectify it, we have to replace π_{ξ} there by the definition of π_{Λ} given above in the present note.

⁵ H. Weyl, Math. Z., 24, 328–395, 1925.

⁶ J. von Neumann, Ann. Math., 50, 401–485, 1949.

- ⁷ F. I. Mautner, Ann. Math., 52, 528–555, 1950.
- ⁸ Trans. Am. Math. Soc., 75, 230, 1953, Theorem 7.