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Let G be a connected semisimple Lie group and g, its Lie algebra over the field B
of real numbers. Let x — Ad(x) denote the adjoint representation of G. A maxi-
mal connected abelian subgroup A of G is called a Cartan subgroup if g, is fully
reducible under Ad(A). The corresponding subalgebra of g, is called a Cartan
subalgebra. Two Cartan subgroups 4,, 4. are called conjugate (in @) if 4, =
zAx—'for some z ¢ G. Experience shows! that there is a close connection between
the classes of conjugate Cartan subgroups and the various series of irreducible
unitary representations of G which appear in the reduction of its regular repre-
sentation. The object of this note is to give a general method of constructing ir-
reducible unitary representations of G from each such class.

Let X — adX denote the adjoint representation go. Put B (X,Y) = sp (adXadY):
(X, Y € go). A subalgebra I, of g is called compact if the quadratic form
B(X, X) is negative definite on l;. Let f, be a maximal compact subalgebra of g,.
We denote by p, the subspace of go orthogonal to £, under the bilinear form B(X, Y).
Then g is the direct sum of ¥ and po. Let B be a Cartan subalgebra of go. It is
possible to choose Iy in such a way that Y = b,, + by, where b,, = by 0 by, by, =
B N Y. Let Hy, ..., H, be a base for b, over R. We order real linear functions on
by, lexicographically with respect to this base. For any such function X let go, » de-
note the set of all X e go such that [H, X] = N(H)X (H ¢ Y,). Thenn, = Y go,»
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is a nilpotent subalgebra of go. Let m, denote the set of all X e go such that [X, H]
= 0 and B(X, H) = Oforall H ¢ b,. Then m, is a reductive? subalgebra of g,
and by, is a maximal abelian subalgebra of ms.

Let K, Ay, My, N be the analytic subgroups of G corresponding to fy, by,, 1, and
1. Let M, be the centralizer and M’, the normalizer of A+ in K. Then W =
M'y,/M; is a finite group. Put M = M M, and S = MA+N. Then M and S
are closed subgroups of @, and we have the following generalization of a lemma of
F. Bruhat:3

LeEMMA 1. There exist only a finite number of distinct double cosets SzS (x € @).

In case b, is a maximal abelian subspace of po, these double cosets are in a
natural 1-1 correspondence with the elements of W.

Let A\ be an irreducible unitary representation of M on a Hilbert space U and
¢ a (unitary) character of A+. If we put AMman) = A(m)&(a) (m ¢ M, a ¢ A+,
n e N), X defines a representation of S. Let = be the induced* representation of G
corresponding to X\, and let $ denote the representation space of =. If Z is the
center of G, Z € M, and therefore both A and = map Z into scalars. Let Q denote
the set of all equivalence classes of finite-dimensional irreducible representations of
K, and let $p (D € Q) be the set of all elements of § which transform under =(K)
according to .

THEOREM 1. = s a unitary quasi-simple® representation of G, and dim Hp < @
for every © € Q.
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It follows from this theorem that = decomposes into a (discrete) direct sum of at
most a countable number of irreducible unitary representations. However, in
view of Lemma 1 and Bruhat’s results,® it seems likely that = is irreducible at least
“in general.” Since M/M,Z is finite, the above procedure will be applicable as
soon as we have a method of constructing irreducible unitary representations of
M,. Such a method is given in the following note.”

Let z — z* denote the natural mapping of G onto G* = G/Z, and let dz* denote
the Haar measure on G*. Let = be a unitary irreducible representation of G on a
Hilbert space . Then for any fixed ¥ in 9, ](.p, 1r(x)|[/)| depends only on z*.
We say that = is square-integrable if ‘/(';4|(¢, w(x) ¢)l2 dr* < « for every ¢ ¢ 9.
One can prove that this is indeed the case if there exist a finite number of elements

é1, ¥: (1 < ¢ < 7)in O such that the function f(x) = Y, (¢;, =(z)¢¥:) is not identi-
i=1

cally zero and j{;‘[ f(x)|2d:c* < . The following theorem gives the analogue of
the Schur orthogonality relations for square-integrable representations.?

THEOREM 2. Let w and n’ be two trreducible unitary representations of G on the
Hilbert space © and ', respectively. Suppose that they are both square-integrable and
that they both define the same character of Z. Then

Jt‘?*('ﬁ) 7’(£)¢)(¢,r ”,(x)\l”) dz* =0 (¢’ Ve @y ¢’ !V € @')’

unless = and =’ are equivalent. On the other hand, if U is a unitary mapping of O on
9’ under which = and =’ are equivalent, then

Jos(¢, m(@)¥) (&', #'(2)¥) dz* = c(', Ug) (U¥, ¥),

where ¢ is a positive real number independent of ¢, ¥, ¢', ¥’.
We shall give a general method of constructing square-integrable representations
in the following note.”
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