ON THE PLANCHEREL FORMULA FOR THE RIGHT-INVARIANT FUNCTIONS ON A SEMISIMPLE LIE GROUP

By HARISH-CHANDRA

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated by Paul A. Smith, January 21, 1954

Let G be a connected semisimple Lie group and K the complete inverse image in G of a maximal compact subgroup of its adjoint group. Let μ denote the invariant measure on the space G/K of all cosets $xK(x \in G)$. We construct the space $L_2(G/K)$ with respect to μ and consider the problem of the complete reduction of the natural representation σ of G on $L_2(G/K)$. Let D be any subgroup contained in the center

of G. Then $D \subset K$ and so if we replace G by G/D our problem is not affected in any way. Hence we may assume that the center of G is finite and K is compact. We can now regard $L_2(G/K)$ as a closed subspace of $L_2(G)$ consisting of those functions f for which f(x) = f(xu) ($x \in G$, $u \in K$). Then σ is the restriction of the left-regular representation of G to $L_2(G/K)$. Let dx denote the Haar measure on G. Put

$$(f, g) = \int_G f(x)g(x) dx \qquad (f, g \in L_2(G))$$

where the bar denotes complex conjugate.

Let \mathfrak{g} and \mathfrak{f}_0 be the Lie algebras of G and K respectively. In order to save space we shall adhere strictly to the notation of an earlier paper.¹ Thus any symbol should automatically be given the same meaning as there unless it is explicitly defined anew. Let η be the anti-automorphism of \mathfrak{B} over R such that $\eta(X + (-1)^{1/2}Y) = -X + (-1)^{1/2}Y$ ($X, Y \in \mathfrak{g}_0$). We denote by \mathfrak{B}_H the set of those elements in \mathfrak{B} which are left fixed by η . Let \mathfrak{Q} be the centralizer of \mathfrak{f} in \mathfrak{B} . Put $\mathfrak{Q}_0 = \mathfrak{Q} \cap \mathfrak{B}_0, \mathfrak{Q}_H = \mathfrak{Q} \cap \mathfrak{B}_H$, and $\mathfrak{Q}_{0, H} = \mathfrak{Q}_0 \cap \mathfrak{Q}_H$. (Here \mathfrak{B}_0 is the algebra generated over R by (1, \mathfrak{g}_0).) Let \mathfrak{P}_d ($d \ge 0$) denote the subspace of \mathfrak{B} spanned over C by the basic canonical elements² of degree d formed out of a base for \mathfrak{p} . Let $\mathfrak{P} = \sum_{d \ge 0} \mathfrak{P}_d$. An element in \mathfrak{P} is called homogeneous of degree d if it lies in \mathfrak{P}_d . Let $l_+ = \dim_R \mathfrak{h}_{\mathfrak{P}_0} = \dim A_+$.

LEMMA 1. The algebra $\mathfrak{Q}^* = (\mathfrak{Q} + \mathfrak{B}\mathfrak{k})/\mathfrak{B}\mathfrak{k}$ is abelian and there exist l_+ elements $z_i \ 1 \leq i \leq l_+$ in $\mathfrak{Q}_{0, H}$ such that their residue-classes mod $\mathfrak{B}\mathfrak{k}$ generate \mathfrak{Q}^* . z_i may be chosen to be homogeneous elements in $\mathfrak{P} \cap \mathfrak{Q}_{0, H}$.

Let $C_{c}(G)$ denote the space of all complex-valued continuous functions f on Gwhich vanish outside a compact set and $C_{c}^{\infty}(G)$ the subspace consisting of those f which are indefinitely differentiable everywhere. Moreover let $C_{c}(G/K)$ and $I_{c}(G)$, respectively, be the subsets of those $f \in C_{c}(G)$ for which f(xu) = f(x) and $f(uxu^{-1}) = f(x)(x \in G, u \in K)$. Put $I_{c}(G/K) = I_{c}(G) \cap C_{c}(G/K)$ and denote the closures of $I_{c}(G)$ and $I_{c}(G/K)$ in $L_{1}(G)$ and $L_{2}(G/K)$ by I_{1} (G) and $I_{2}(G/K)$ respectively. For any f and g in $L_{1}(G)$ we denote by f*g their convolution and by $\sigma(f)$ the operator $\int f(x)\sigma(x) dx$. Then $f \to \sigma(f)$ is a continuous representation of $L_{1}(G)$ and it is clear that if $f \in I_{1}(G), I_{2}(G/K)$ is invariant under $\sigma(f)$. Let $\tau(f)$ denote its restriction on $I_{2}(G/K)$. Then $f \to \tau(f)$ is a representation of the subalgebra $I_{1}(G)$ on $I_{2}(G/K)$.

LEMMA 2. τ is an abelian representation of $I_1(G)$.

Let V denote the Garding subspace³ of $L_2(G/K)$ with respect to σ and $b \rightarrow \sigma(b)(b \in \mathfrak{B})$ the corresponding representation of \mathfrak{B} on V. It is obvious that for any $z \in \mathfrak{Q}$, $\sigma(z)$ leaves $V_I = V \cap I_2(G/K)$ invariant. We denote by $\tau(z)$ the restriction of $\sigma(z)$ on $V_I(z \in \mathfrak{Q})$.

LEMMA 3. If $z \in \mathfrak{Q}_H$, $\tau(z)$ is an essentially hypermaximal operator on $I_2(G/K)$.

For any $z \in \mathfrak{Q}_H$ let U(z) denote the Cayley transform of $\tau(z)$. Then U(z) is a unitary operator on $I_2(G/K)$ and

$$U(z)(\sigma(z) + (-1)^{1/2}I)g = (\sigma(z) - (-1)^{1/2}I)g \qquad (g \in V_I)$$

where I is the unit operator on $I_2(G/K)$. Put $U_i = U(z_i)(1 \le i \le l_+)$ where z_i are the elements defined in Lemma 1. Let \mathfrak{A} be the smallest C^* -algebra⁴ of operators

on $I_2(G/K)$ containing $\tau(f)(f \in I_1(G))$ and $U_i \ 1 \le i \le l_+$. One proves without difficulty that \mathfrak{A} is abelian. Let Γ be the spectrum of \mathfrak{A} . Then Γ is a compact Hausdorff space. For any $\omega \in \Gamma$ we denote by ξ_{ω} the corresponding continuous character of \mathfrak{A} . Let λ and ρ , respectively, denote the left- and the right-regular representations of G on $L_1(G)$. Put

$$E = \int K \lambda(u) \rho(u) \ du$$

where du is the normalized Haar measure on K so that $\int_K du = 1$. Then E is a projection from $L_1(G)$ to $I_1(G)$ and $||Ef||_1 \leq ||f||_1 (f \in L_1(G))$ where $|| \quad ||_1$ denotes the norm in $L_1(G)$. Now set

$$\xi_{\omega}(f) = \xi_{\omega}(\tau(Ef)) \qquad (f \ \epsilon \ L_1(G)).$$

Then if $f(x) = \overline{f(x^{-1})}(f \in L_1(G), x \in G)$ it is easy to verify that $|\xi_{\omega}(f)| \leq ||f||_1$ and $\xi_{\omega}(\tilde{f}*f)$ is real and non-negative $(f \in L_1(G))$. Let Γ_0 denote the set of all $\omega \in \Gamma$ such that ξ_{ω} vanishes identically on $L_1(G)$. Then it follows from well-known results⁵ that if $\omega \in \Gamma_0$ there exists a unitary representation π of G on a Hilbert space \mathfrak{F} and a vector $\psi \in \mathfrak{F}$ such that

- (i) $|\psi| = 1$ and $\xi_{\omega}(f) = \int_G f(x)(\psi, \pi(x)\psi) dx$ ($f \in L_1(G)$).
- (ii) The space spanned by $\pi(x)\psi(x \in G)$ is dense in \mathfrak{H} .

Here (ψ_1, ψ_2) denotes the scalar product and $|\psi|$ the norm in \mathfrak{H} . It is easy to verify that $\xi_{\omega}(\lambda(u)f) = \xi_{\omega}(\rho(u)f) = \xi_{\omega}(f)(f \in L_1(G), u \in K)$. From this one can prove that $\pi(u)\psi = \psi(u \in K)$ and π is irreducible. Moreover the choice of ψ is unique, apart from a unimodular factor, and ψ is well-behaved⁶ under π . Put $\xi_{\omega}(b) = (\psi, \pi(b)\psi)(b \in \mathfrak{A})$. Then it is not difficult to show that

$$\xi_{\omega}(U_i) = (\xi_{\omega}(z_i) - (-1)^{1/2})(\xi_{\omega}(z_i) + (-1)^{1/2})^{-1} \qquad 1 \le i \le l_+.$$

Now let ω_1 , ω_2 be two points in $\Gamma - \Gamma_0$ and π_1 , π_2 the corresponding irreducible representations. Then if $\xi_{\omega_1}(U_i) = \xi_{\omega_2}(U_i)$, $1 \le i \le l_+$, it follows from Lemma 1 that $\xi_{\omega_1}(z) = \xi_{\omega_2}(z)(z \in \Omega)$ and therefore⁷ π_1 and π_2 are equivalent. Hence $\xi_{\omega_1}(f) = \xi_{\omega_1}(f)$ for all $f \in L_1(G)$ and so $\omega_1 = \omega_2$. Let \mathfrak{E} denote the set of all equivalence classes of irreducible unitary representations π of G such that the trivial representation of K occurs in the reduction of π . Then if $\omega \in \Gamma - \Gamma_0$ and $\alpha(\omega)$ is the class of the representation π defined above for ω , $\omega \to \alpha(\omega)$ is a 1-1 mapping of $\Gamma - \Gamma_0$ onto a subset \mathfrak{E}_0 of \mathfrak{E} . We identify $\Gamma - \Gamma_0$ with \mathfrak{E}_0 under this mapping.

On the other hand it is well known that there exists a unique projection-valued (regular) measure dP_{ω} on the class of all Borel subsets of Γ such that

$$A = \int \Gamma \xi_{\omega}(A) dP_{\omega}$$

for every operator A in \mathfrak{A} . Since Γ_0 is clearly compact, it is Borel measurable and if P_{Γ_0} is the corresponding projection it is obvious that $\tau(f)P_{\Gamma_0} = 0$ for all $f \in I_1(G)$. Moreover since it is possible to choose a sequence $f_n \in I_1(G)$ such that $\tau(f_n)g \to g$ for every $g \in I_2(G/K)$, it follows that $P_{\Gamma_0} = 0$. From this we can conclude that Γ_0 contains no interior point and therefore if $\omega_0 \in \Gamma_0$ there exists a sequence $\omega_n \in \Gamma - \Gamma_0$ such that $\omega_n \to \omega_0$ in Γ . Furthermore

$$A = \int_{\mathfrak{G}_0} \xi_{\omega}(A) dP_{\omega} \qquad (A \in \mathfrak{A}).$$

For any $\omega \in \mathfrak{E}_0$ let $Q(\omega)$ denote the point $(\xi_{\omega}(z_1), \ldots, \xi_{\omega}(z_{l_+}))$ in the real Euclidean space of dimension l_+ .

LEMMA 4. Let ω_n be a sequence in \mathfrak{S}_0 which converges in Γ to a point $\omega_0 \in \Gamma_0$. Then the sequence $Q(\omega_n)$ diverges to infinity.

In view of the above-mentioned relationship between $\xi_{\omega}(U_i)$ and $\xi_{\omega}(z_i)$ for ω in \mathfrak{E}_0 , it follows that $\xi_{\omega_n}(U_i) \to 1$ for at least one value of $i \ (1 \le i \le l_+)$. This proves that $\xi_{\omega_0}(U_i) = 1$ for some i if and only if $\omega_0 \in \Gamma_0$.

Now let ω_1, ω_2 be two points in Γ such that $\xi_{\omega_1}(U_i) = \xi_{\omega_2}(U_i)$, $i = 1, \ldots, l_+$. Suppose $\omega_1 \in \Gamma_0$. Then $\xi_{\omega_1}(U_i) = 1$ for some i. Therefore since $\xi_{\omega_1}(U_i) = \xi_{\omega_1}(U_i) = 1$ it follows that $\omega_2 \in \Gamma_0$. Hence ω_1, ω_2 are both in Γ_0 and so $\xi_{\omega_1}, \xi_{\omega_2}$ are identically zero on $L_1(G)$. It is then clear that $\omega_1 = \omega_2$. On the other hand if $\omega_1 \notin \Gamma_0$, we conclude in the same way that $\omega_2 \notin \Gamma_0$ and therefore again in view of our earlier remarks $\omega_1 = \omega_2$. This shows that $\xi_{\omega}(U_i) 1 \leq i \leq l_+$ is a separating set of continuous functions on Γ . Therefore from the Stone-Wierstrass theorem we can conclude that \mathfrak{A} is the smallest C^* -algebra containing the operators U_i , $1 \leq i \leq l_+$. Then it follows from Lemma 4 that $\omega \to Q(\omega)$ is a topological mapping of \mathfrak{E}_0 onto a subset $Q(\mathfrak{E}_0)$ of the Euclidean space. Let τ_i denote the unique hypermaximal extension of $\tau(z_i), 1 \leq i \leq l_+$, and let dP_{λ} denote the projection-valued Borel measure on $Q(\mathfrak{E}_0)$ corresponding to dP_{ω} on \mathfrak{E}_0 . Then it is clear from the above remarks that $Q(\mathfrak{E}_0)$ is the spectrum of the abelian set $\tau_i, 1 \leq i \leq l_+$, of hypermaximal operators on $I_2(G/K)$ and

$$r_i = \int_{Q(\mathfrak{G}_0)} \lambda_i \, dP_\lambda \qquad 1 \le i \le l_+$$

where $\lambda_i(Q(\omega)) = \xi_{\omega}(z_i) \ (\omega \ \epsilon \ \mathfrak{S}_0).$

On the other hand it is not difficult to show that there exists a uniquely determined (regular) Borel measure $d\omega$ on $\mathfrak{E}_0 = \Gamma - \Gamma_0$ such that

$$d(f, P_{\omega}g) = \xi_{\omega}(f)\xi_{\omega}(g) \ d\omega \qquad (f, g \ \epsilon \ I_{c}(G/K), \ \omega \ \epsilon \ \mathfrak{S}_{0}).$$

From this one can prove that

$$\int |f(x)|^2 dx = \int_{\mathfrak{G}_0} \xi_{\omega}(f^*f) \ d\omega \qquad (f \in C_c(G/K))$$

Let π be any unitary representation in the class $\omega \in \mathfrak{S}_0$. Then if $N_{\omega}(f)$ denotes the square of the Hilbert-Schmidt norm of the operator $\int f(x)\pi(x) dx$ ($f \in C_c(G)$) it is easy to verify that $\xi_{\omega}(f*f) = N_{\omega}(f)$ ($f \in C_c(G/K)$). Hence we have the Plancherel formula

$$\int |f(x)|^2 dx = \int_{\mathfrak{G}_0} N_{\omega}(f) d\omega \qquad (f \in C_c(G/K)).$$

Our results may therefore be summarized in the following theorem.

THEOREM. Let F be the spectrum of the abelian family of hypermaximal operators τ_i , $1 \leq i \leq l_+$, regarded as a subset of the real Euclidean space E of dimension l_+ . Let P_{λ} denote the corresponding resolution of the identity so that

$$\tau_i = \int_F \lambda_i \, dP_\lambda \qquad (1 \le i \le l_+)$$

where λ_i is the *i*th coordinate of any point $\lambda \in E$. Then there exists a 1-1 mapping $\lambda \rightarrow \omega(\lambda)$ of F on a subset \mathfrak{S}_0 of \mathfrak{S} with the following property.

If π is any representation in $\omega(\lambda)$ and ψ is the (essentially unique) vector in its representation space such that $|\psi| = 1$ and $\pi(u)\psi = \psi(u \in K)$, then

$$\lambda_i = (\psi, \pi(z_i)\psi) \qquad 1 \le i \le l_+.$$

Put $\varphi_{\lambda}(x) = (\psi, \pi(x)\psi)(x \in G)$. Then there exists a uniquely determined (regular) Borel measure $d\lambda$ on F such that

$$d(f, P_{\lambda}f) = |\int f(x)\varphi_{\lambda}(x) dx|^{2} d\lambda \qquad (f \in I_{c}(G/K)).$$

Moreover we have the following Plancherel formula

$$\int |f(x)|^2 dx = \int F N_{\omega(\lambda)}(f) d\lambda \qquad (f \in C_c(G/K)).$$

Let W denote the group of all those linear mappings s of $\mathfrak{h}_{\mathfrak{p}_0}$ into itself for which we can find an element $u \in K$ such that $sH = Ad(u)H(H \in \mathfrak{h}_{\mathfrak{p}_0})$. Then W is a finite group. Let $I_c(\mathfrak{h}_{\mathfrak{p}_0})$ denote the set of all continuous functions f on $\mathfrak{h}_{\mathfrak{p}_0}$ vanishing outside a compact set such that f(H) = f(sH) ($s \in W$, $H \in \mathfrak{h}_{\mathfrak{p}_0}$). For any $f \in$ $I_c(G/K)$ put $f_0(H) = f(\exp H)$ ($H \in \mathfrak{h}_{\mathfrak{p}_0}$). Since G = KA + K it is easy to show that $f \to f_0$ is a 1-1 mapping of $I_c(G/K)$ onto $I_c(\mathfrak{h}_{\mathfrak{p}_0})$ and

$$\int |f(x)|^2 dx = \int \mathfrak{h}_{\mathfrak{p}_0} |f_0(H)|^2 \Delta_+(H) dH$$

where $\Delta_+(H) = \prod_{\alpha \in P\lambda} |e^{\alpha(H)} - e^{-\alpha(H)}|$ and dH is the Euclidean measure on \mathfrak{h}_{p_0} .

Let $L_2(\mathfrak{h}_{\mathfrak{p}_0})$ denote the Hilbert space of all functions on $\mathfrak{h}_{\mathfrak{M}}$ which are squareintegrable with respect to the measure $\Delta_+(H) dH$. Let $I_2(\mathfrak{h}_{\mathfrak{p}_0})$ denote the closure of $I_c(\mathfrak{h}_{\mathfrak{p}_0})$ in $L_2(\mathfrak{h}_{\mathfrak{p}_0})$. Then the above mapping $f \to f_0$ can be extended uniquely to a unitary isomorphism of $I_2(G/K)$ with $I_2(\mathfrak{h}_{\mathfrak{p}_0})$. Under this isomorphism the operators $\tau(z_i)$ $1 \leq i \leq l_+$ go over into certain differential operators D_i whose coefficients are meromorphic functions on $\mathfrak{h}_{\mathfrak{p}_0}$. F and dP_{λ} of our theorem may now, respectively, be interpreted as the spectrum and the spectral measure of the family D_i $1 \leq i \leq l_+$ and the above Plancherel formula then becomes the "Parseval formula" corresponding to the problem of expanding a given function in $I_2(\mathfrak{h}_{\mathfrak{p}_0})$, in terms of eigen-functions of the family D_i $1 \leq i \leq l_+$ of differential operators.

¹ Trans. Am. Math. Soc., 75, 185-243 (1953). See especially §2 and §12 for notation. We shall refer to this paper as RI.

² See *RI*, p. 193.

³ See §4 of *RI* for the definition of the Garding subspace.

⁴ A C*-algebra is an algebra \mathfrak{A} of bounded operators on a Hilbert space such that (i) the unit operator is in \mathfrak{A} (ii) the adjoint of any operator in \mathfrak{A} is also in \mathfrak{A} (iii) \mathfrak{A} is closed under uniform topology.

⁵ I. Gelfand and D. Raikov, Recueil Math. (Moscow), 13, 316 (1943).

⁶ See Theorem 6, §11 of RI.

⁷ See PROC. NATL. ACAD. SCI., 37, 170-173 (1951); Theorem 7.