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Let R and C be the fields of real and complex numbers respectively and
let G be a connected (but not necessarily simply connected) complex
semisimple Lie group and ¢ its Lie algebra over R. Let K be a maximal
compact subgroup of G and let £ be the corresponding subalgebra of go.
Define PBo, b, Hgp, and b as in a previous note.! Since G is a complex
group there exists a 1-1 linear mapping I" of £ on Py such that [X, T'(Y)] =
I'([X, Y]) and [T'(X), T'(Y)] = —[X, Y] (X, Ye®). Weextend I to a
linear mapping of go on itself by defining I'T'(X)) = —X(X ¢%). Let

—1 be a fixed square root of —1 in C. For any c ¢ C and X ¢ g put
c*X = aX + I'(X) where ¢ = a + V-=1b (g, beR). Under this
multiplication g, becomes a Lie algebra' over C. We shall denote this
complex algebra by g*. Similarly the algebra B, regarded as a (complex)
subalgebra of g* will be denoted by h*. Then h* is a Cartan subalgebra
of g*. Let X — ad X(X eg*) be the adjoint representation of g* and let
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B(X,Y) = splad X ad V) (X, Y € ¢g*). Given any linear function \ on
b* we denote by H, the unique element in h* such that \(H) = B(H, H,)
for all H e h*. Let H,, ..., H; be a base for by, over R. Then it is also
a base for h* over C. We shall say that Aisrealif Hy = ), c¢;Hy(c; €R)

15751
and furthermore that A > 0if X 0 and ¢; > 0 where j is the least index
(1 < j £ I) such that ¢; # 0. For every root « of g* (with respect to h*)
we choose an element X, > 0in g* such that [H, X,] = «(H) * X, (H € §*).
We can do this in such a way that B(X,, X_,) = 1land X, + X_,,
V1% (X, — X_,) arebothin §&. PutH,= 3 Ia‘H,.(a" ¢ R) and let

1s¢s

N* = Y C*X, where P is the set of all positive roots. Then N* is a
aeP

nilpotent subalgebra of g* to which there corresponds an analytic subgroup
N of G. .

Let C.,°(G) be the class of complex-valued functions on G which are
everywhere defined and indefinitely differentiable and which vanish
outside a compact set. For any complex number ¢ we denote by ¢ its
complex conjugate. Moreover if z2 = x + V-1 9 (%, ¥ € R) is a complex
variable and f a complex-valued differentiable function of x and y, we
write -

T PR (LY

We shall now first prove a formula which has been obtained by Gelfand
and Naimark? in the case when G is the n X 7z complex unimodular group.
Let X — exp X(X ego) denote the exponential mapping of g into G.

1
Put p = = D, « and let du and dn denote the elements of the invariant
ae P

Haar measures on K and N respectively. We assume that Jx du = 1.
TuEoREM 1. Put H, = Y, axHa;¢C) and

1751
.0 ~ e

= i 2 p, = 2 P).

D. 1szistaba,~ 152.':5 « 0a; (aeP)

T hen with a suitable normalization of dn we have

f) = lim I D,D,{erH + rHa p flu(exp H)ynu="] du dn}
He—>(0 aeP K XN
for any® f € C.°(G).

We give below a rapid sketch of the various steps leading to the proof
of this theorem. Let @ denote the automorphism of go over R given by
(X +Y)=X—Y (X e, YeB). LetNodenote the set N* regarded
as a vector space over R and let dX(X e ) be the element of the usual
Euclidean measure on 9.
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LemMA 1.  There exists a real constant ¢ > 0 such that

lim 4 {e""” - o|m ﬁf[(exp tH)n] dn}=

— o dt
o J A5 exnex + i) Lo een

for any f € C.”(G) and H e b,.

Since gy is a real Euclidean space it may be regarded as an analytic
manifold. Let C.”(go) be the class of all complex-valued functions on
go which are everywhere indefinitely differentiable and which vanish
outside a compact set. Put

X = Y axH;+ Zz*X+ 3 oz_axX
1<s7=1 acP
where a;, 2, 2_,(1 £ ¢ £ I, a € P) are independent complex variables.
For any complex variable 2z = x 4+ V —1 y (x, y ¢ R) let du(z) denote the
element dx dy of Euclidean measure on the corresponding complex plane.

Let x — Ad(x) (x e G) be the adjoint representation of G. Consider a
function F e C,%(go) such that F(4d(u)X) = F(X) (u e K). Put

g(Y) =
1 1, TR
,,fexp (‘ -1[B(X, Y) + B(X, Y)]) F(X) dX (Yeg). (1)
(2r) [ 2
Here n = é dimggoanddX = II du(a)) II du(z,)du(z_,). Then if
1 =i=1 aeP
we assume, as we may, that B(H;, H;) = §; (1= 14,7= 1) it follows
that '
1 -
F) = — / X) dX 2
O = G [ & @

and gAdw)X) = g(X) meK, X ego). Now it is known that
U Ad(w) (B + M) = go and from this we can deduce the following

ue K
lemma.

LEMMA 2. Let g(X) be a measurable function on gy such that
glA4dw)X] = g(X) (u e K, X ego) and Jfy, |g(X)| dX < .
Then
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where dZ and dH are the elements of the (suitably normalized) Euclidean
measures on No and by respectively.
Applying this lemma to equation (2) we get

F(0) = lim {c / 1 D,D,F(Z + H,) dZ}
Ha—0 ZeNo ae P
where ¢ is a positive real constant depending only on the normalization of
dZ. The assertion of the theorem now follows without much difficulty
if we take into account lemma 1.
Now we assume that the base H,, ..., H; is so chosen that exp H, = 1

if and only if V-1 -;—‘ 1 = 7 = | are all rational integers. Let 4, A+ and
w

A- be the analytic subgroups of G corresponding to b, by, and b, re-
spectively. Then A- is compact while 4+ is simply connected. For
any h e/l we denote by k+ and k- the unique elements in 4+ and 4-
respectively such that 2 = h+h—. Also let log h+ denote the unique
element H e by, such that -+ = exp H. Let {+ be the set of all linear
functions » on §* such that »(H) is real for all H ¢ g, Moreover let F-
denote the set of all linear functions A on §* such that A(H;)1 < ¢ < lare
all integers. Given any » ¢ §+ and A ¢ - put

B a(h) = eV rtoxiaghloE i) (h ¢ 4)
log h— being any element in by, such that exp (log -—~) = h—. It is known
that the mapping (%, h, n) — uhn(u ¢ K, b ¢ A+, n ¢ N) is a topological
mapping of K X A+ X N on G. We may normalize the Haar measure
on G in such a way that :

de = e*"*" dydhdn (x = uhbn,u e K, he A+, n e N)

dh being the Haar measure on 4+. Moreover we assume that the normali-
zation of the various Haar measures is such that Theorem 1 holds and

Jx du =1, fu_dh- = 1,dh = dh+dh- (heA).
For any x ¢ G and « € K define u, ¢ K and H(x, u) ¢ by, by the relation
xu = u,[exp H(x, u)]n (neN).

Given any A € §- let §,” denote the set of all continuous functions ¥ on K
such that

Y(uexp H) = e “®y(u) (u ¢ K, H e by,).

Let Ly(K) be the Hilbert space consisting of all measurable and square-
integrable functions on K, taken with the usual norm. Then the closure
4 of O’ in Ly(K) is a Hilbert space. For any » ¢ §+ we define a unitary
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representation «, , of Gon O, as follows. If ¥ € 9, its transform =, ,(x) ¥
= ¢ is given by

p(u) = e~ VTG e~ HEE Dy ) (u e K).
It is easily proved that if f e C.”(G), the operator
JG fx)m,, s(x) dx
has a trace T, ,(f) which is given by
T, a(f) = JS fuhnu=¢, s(B)e*" ™ du dh dn

where the integral extendsoverall u e K, h ¢ A, n ¢ N. Now §+ is clearly
a vector space over R of finite dimension. Let dv denote the element of
Euclidean measure in §+. Then the following result is easily obtained
from Theorem 1.

THEOREM 2. Put

m, A) = I |V —1y(H,) + AH)|? (v eF+, AeF).
aeP
Then if dv is suitably normalized we have the formula

f =% /m(v, MT, A(f) dv [f € C.7(G)]
AeF- S+

the. series being absolutely comvergent.
Now suppose f ¢ C.”(G) and

Fx) = J&fO)f(yx) dy.

Then FeC,”(G) and the operator Jfg; F(x)r, s(x) dx is self-adjoint and
positive semidefinite. Hence T, ,(F) is real and non-negative. In fact

T’xA(F) = -/;,ueK va,A(v) u)lzdv du

where
fo a0 w) = San fohnu=)g, y(h)e* %™ dh dn.
Therefore
[rwla=rn = = [ mona [ 1500
G AeF- JEs K X K

from Theorem 2. Since m(», A) is real and non-negative the following
analogue of the Plancherel theorem is now easily obtained.
THEOREM 3. Let f be a measurable function on G such that

Je If(x)l"dx< © and fg |f(x)| dx < .
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Then

f |f@)| 2 dx =
G

> f m(v, A) dv f dv du| f fwhnu=1) &, ,(h)e*°% ™) dhdn|?
Ae o T+ K X K AN

! Haris1-Chandra, Proc. NATL. Acap. Scr., 37, 362-365 (1951).
2 Gelfand and Naimark, Trud: Mat. Inst. Steklova, 36, 198 (1950).
3 We denote the unit element of G by 1.



