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DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY
Communicated by Oscar Zariski, August 8, 1951

The present note is meant to be a continuation of the three earlier ones
of this series which have appeared in these PROCEEDINGS.! In order to
save space we shall adhere closely to the notation of RII and thus agree
that all symbols shall have the same meaning as there unless they are ex-
plicitly defined anew.? '

In RIT we have defined the notion of the infinitesimal equivalence of two
quasi-simple irreducible representations of G on two Hilbert spaces. This
definition may clearly be extended, without any change whatsoever, to the
case when the two representation spaces are Banach spaces. Let = be a
representation of G on a Hilbert space $. Let $;, . be two closed in-
variant subspaces of  such that ; > ;. We regard the factor space
1/ 9: as a Hilbert space in the usual way and consider the representation
#x' of G induced on it under . Any representation =’ obtained in this
fashion will be said to be deducible from =.

Let Z be the center of G. Put K* = K/Zn D. Then K*is compact.
Let v — 9* be the natural mapping of K on K* and dv* the element of Haar
measure on K* such that fx«dv* = 1. Let Ly(K*) be the Hilbert space
consisting of all measurable and square-integrable functions on K*. For
any x € G and v ¢ K we have defined v,, H(x, v) aud I'(x, v) in RII. Tt is
easily seen that for x fixed (v,)*, H(x, v) and I'(x, v) depend only on v*.



692 MATHEMATICS: HARISH-CHANDRA Proc. N. A. S.

Hence we may write them as v,*, H(x, v*) and I'(x, v*). Let u and » be
two linear functions on € and bhg respectively. We define a representation
x,, ,of G on Ly(K*) as follows:

T (B 0¥) = ¢TI DT ).

Here x € G, f € Ly(K*) and v* ¢ K* and =, ,(x)f(v*) denotes the value of
7, (x)f at v*. Let € denote the set of all irreducible representations of G
each of which is deducible from some m,,. It is easy to verify that every
representation in € is quasi-simple.

Let X be the subalgebra of B generated by (1, ®). Since there is a na-
tural 1-1 correspondence between finite-dimensional representations of
K and { (and therefore also of X), any D ¢ 2 may also be regarded as an
equivalence class of finite-dimensional irreducible representations of & (or
¥). Our first theorem may now be stated as follows:

THEOREM 1. Let R be a maximal left ideal in B with the following two
properties:

(1) There exists a homomorphism x of B into C such that z — x(z) e R
forallz e 3.

(2) The natural representation of X on X/R n X is finite-dimensional and
the equivalence class of at least one of its irreducible components lies in Q.

T'hen there exists a quasi-simple irreducible representation = of G on a Hil-
bert space © and a well-behaved element ¢ ¢ O suck that =(b)y =0 (b ¢ B)
ifand onlyif be R. Moreover = may be chosen in §.

COROLLARY. Let 7 be an irreducible quasi-simple representation of G
on a Banach space  such that some D e Qp occurs in w. Then = is infinitesi-
mally equivalent to some representation in §. v

Now let 7 be an irreducible quasi-simple representation of G on a Hilbert
9. For any D e 2 let Dy denote the set of all elefnents in  which trans-
form under #(K) according to ©. We know from Theorem 3 of RI that

“dim Pp < o forall D ¢ 2. Moreover we may suppose withotit loss of gen-
erality that the subspaces Pg are mutually orthogonal for different D. Let
Eg denote the orthogonal projection of § on Hp (D e2). Let u be alinear
function on € such that x(exp I') = ¢*®x(1) (I' ¢ €) whenever exp T ¢
D n Z. Define a representation * of K* on 9 as follows:

7*((u exp T)*) = e *Pr(uexp ) (u e K', T € Gy).

It is clear that for every D € @, g is invariant under 7*(K*). Let D* de-
note the equivalence class of any irreducible component of the representa-
tion of K* induced on $g under 7*. We choose an orthonormal base for
each §p. These bases all taken together form an orthonormal base for
9. Let M be the subgroup of K as defined in RII and let w be the set of all
equivalence classes of finite-dimensional irreducible representations of M.
For any & ¢ w we denote by A; the highest weight of 6.
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THEOREM 2. Suppose Op #= {0} for some D e Qp. Then there exists
a 6 e wand a linear function A on V) such that the following conditions are ful-
Sfilled: :

(I) x4 1s the infinitesimal character of =.

(2) A coincides with \s on bq.

(3)  Forany®DeQ

dim $p =< d(D)n(D, )

where d(D) is the degree of any representation o € D and n(D, ) is the num-
ber of times & occurs in the reduction of o (M).
(4) Let Dy, D, be two elements in Q such that

$o, = {0} i=1,2

Then the matrix coefficients of Ep w(x)Ez, (x € G) with respect to the above

base are finite linear combinations with constant coefficients of functions of the
form

ﬁ(* ggl*(vx*)gm,*(v* - l)eA(H(x. v*))en(l‘(x. v¥)) do*

where go,» and go .+ are some matrix coefficients of representations in ,* and
Do*  respectively.
In case D:*, Do* both correspond to the trivial representation of K* the
above result gives theorem 3 of RII.
THEOREM 3. Let w be a quasi-simple irreducible representation of G on a
Hilbert space ©. Put V = @Z Oz. Suppose it is possible to define a new
«Q :

scalar product (¢, V)’ (o, ¥ e V) tn V such that
@ X)e, ¥) = —(o, 7(X)¥)" (Xego).

Let ©' be the Hilbert space obtained by completing V with respect to the cor-
responding metric. Then there exists an irreducible unitary representation
7' of G on ' such that T

(X)y = Limtl{r’(exp tX) — ¢} (t e R, limit in ©’)
t—0 R

orall X egoand ¢ ¢ V. Moreover 7’ is uniquely determined.

In view of theorems 2 and 3 it is clear that the problem of constructing
all irreducible unitary representations of G is now largely reduced to that
of determining the irreducible representations of 8 which are “formally uni-
tary.” In fact it seems likely that all the above theorems actually remain
true if we replace 2 by @ everywhere even though our proofs are then no
longer applicable. In case G has a finite-dimensional representation which
is faithful on K’ it is easily seen that @ = Q and so the above theorems then
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hold in all generality. This is so in particular if G is a complex semisimple
Lie group.

1 Proc. NATL. Acabp. Scr., 37, 170-173, 362-365, 366-369 (1951), quoted hereafter as
RI, RII and RIII respectively.

2 ] take this opportunity of acknowledging the fact that one or two minor errors have
crept into the latter portion of RIII. Since they are of a rather computational nature
and do not, in any way, affect the general line of argument, it seems best to wait until
the publication of the full details of the proof. However, I should like to correct some
misprints in RII. On p. 363 in line 22 the last P should be P-. Also in lines 23 and 25
P should be replaced by P- everywhere, so that we now have

m = [)g+ ZCX¢+ Z CX_a

ae P . ae P



