We shall adhere strictly to the notation of the preceding note. Making use of an unpublished result of Chevalley one can prove the following theorem.

Theorem 1. Let \(\pi \) be a quasisimple irreducible representation of \(G \) on a Hilbert space \(\mathcal{H} \). Then there exists an integer \(N \) such that

\[
\dim \mathcal{H}_D \leq N(d(D))^2
\]

for any \(D \in \Omega \).

Moreover if \(\mathcal{H}_D \neq \{0\} \) for some \(D \in \Omega \) then it can be shown that we may take \(N \) equal to the order of the Weyl group \(W \).

Let \(\pi \) be as above and let \(C^\infty_c(G) \) denote the class of all complex-valued functions on \(G \) which are indefinitely differentiable everywhere and which vanish outside a compact set. Let \(A \) be a bounded operator on \(\mathcal{H} \). We say that \(A \) has a trace if for every complete orthonormal set \(\{\psi_1, \psi_2, \ldots, \psi_n, \ldots\} \) in \(\mathcal{H} \) the series \(\sum_{i \geq 1} (\psi_i, A\psi_i) \) converges to a finite number independent of the choice of this orthonormal set. We denote this number by \(spA \). Let \(A^* \) be the adjoint of \(A \). We say that \(A \) is of the Hilbert-Schmidt class if \(AA^* \) has a trace.

Theorem 2. Let \(\pi \) be a quasisimple irreducible representation of \(G \) on a Hilbert space \(\mathcal{H} \). Then for any \(f \in C^\infty_c(G) \) the operator \(\int_G f(x)\pi(x) \, dx \) has a trace. Put

\[
T_\pi(f) = sp(\int_G f(x)\pi(x) \, dx)
\]

and for any \(a \in G \) let \(af_a \) denote the function \(af_a(x) = f(a^{-1}x) \) \((x \in G) \). Then \(T_\pi \) is a distribution in the sense of L. Schwartz and

\[
T_\pi(af_a) = T_\pi(f) \quad (f \in C^\infty_c(G), a \in G).
\]

We shall call the distribution \(T_\pi \) the character of the representation \(\pi \).

Theorem 3. Let \(\pi_1 \) and \(\pi_2 \) be quasisimple irreducible representations of \(G \) on two Hilbert spaces. If \(T_\pi_1 = cT_\pi_2 (c \in C) \) then \(\pi_1 \) and \(\pi_2 \) are infinitesimally equivalent. Conversely if \(\pi_1 \) and \(\pi_2 \) are infinitesimally equivalent \(T_{\pi_1} = T_{\pi_2} \).

Since for irreducible unitary representations infinitesimal equivalence is the same as ordinary equivalence, such a representation is completely determined within equivalence by its character.
Theorem 4. Let \(\pi \) be a quasisimple irreducible representation of \(G \) and let \(f \) be any measurable function on \(G \) such that \(f \) vanishes outside a compact set and \(\int_{G} |f(x)|^{4} \, dx < \infty \). Then the operator \(\int_{G} f(x) \pi(x) \, dx \) is of the Hilbert-Schmidt class.

For any \(X \in \mathfrak{g}_0 \) and \(f \in C_c^{\infty}(G) \) put
\[
(*Xf)(x) = \left\{ \frac{d}{dt} f(\exp(-tX)x) \right\}_{t=0}.
\]

Then the mapping \(X \mapsto *X \) is a representation of \(\mathfrak{g}_0 \) on \(C_c^{\infty}(G) \) which can be extended to a representation \(b \mapsto *b \) (\(b \in \mathfrak{B} \)) of \(\mathfrak{B} \). Let \(\varphi \) be the anti-automorphism of \(\mathfrak{B} \) such that \(\varphi(X) = -X \) (\(X \in \mathfrak{g} \)). If \(T \) is any distribution on \(G \) we define \(bT \) (\(b \in \mathfrak{B} \)) as follows:
\[
bT(f) = T(\varphi(b)f) \quad (f \in C_c^{\infty}(G)).
\]

Moreover for any function \(f \) on \(G \) we denote by \(yf, f_1, f_2 \) (\(y, z, e G \)) the functions
\[
yf(z) = f(y^{-1}x), \quad f_1(x) = f(xz), \quad f_2(x) = f(y^{-1}xz) \quad (z \in G).
\]

Let \(Z \) denote the center of \(G \) and let \(\pi \) be a quasisimple irreducible representation of \(G \) on a Hilbert space. Let \(x \) be the infinitesimal character of \(\pi \) and let \(\eta \) be the homomorphism of \(Z \) into \(\mathbb{C} \) such that \(\pi(a) = \eta(a) \pi(1) \) (\(a \in Z \)). Then if \(T_\pi \) is the character of \(\pi \) it is easily seen that
\[
zT_\pi = \chi(z)T_\pi \quad (z \in Z).
\]

Now put \(M_1 = MZ \) and let \(x \mapsto x^* \) denote the adjoint representation of \(G \). Put \((x)^{y*} = yxy^{-1}(x) \) (\(y \in G \)) and let \(C_c(G) \) denote the class of all continuous functions on \(G \) which vanish outside a compact set. Let \(\alpha \) and \(g \) be continuous functions on \(A_+ \) and \(M_1 \), respectively. Put
\[
T(f) = \int f((n^{-1}h^{-1}m^{-1})^*) \alpha(h)g(m) \, dm \, dh \, dn \, dm^* \quad (f \in C_c(G)).
\]

Here \(dm, dh, dn, dm^* \) are the left invariant Haar measures on \(M_1, A_+, N, K^* \), respectively, and the integral extends over \(K^* \times M_1 \times A_+ \times N \). It can be shown that \(T(f) = T((yf_\sigma)(y \in G) \). Let \(\sigma \) be an irreducible representation of \(M_1 \) on a finite-dimensional Hilbert space \(U \). Let \(\delta \) be the equivalence class of the representation \(\sigma_0 \) of \(M \) defined by \(\sigma \). Let \(\psi_0 \neq 0 \) be an element in \(U \) belonging to the highest weight \(\lambda_\delta \) of \(\sigma_0 \) and let \(\eta \) be the homomorphism of \(Z \) into \(\mathbb{C} \) such that \(\sigma(a) = \eta(a) \sigma(1) \) (\(a \in Z \)). Put \(g(m) = \langle \psi_0, \sigma(m^{-1})\psi_0 \rangle (m \in M_1) \) and \(\alpha(h) = e^{-1(1+2\rho) \log h} \) where \(\nu \) is a linear function on \(\hbar \) and \(\log h \) is the unique element in \(\hbar \) such that \(\exp(\log h) = h \). If we regard \(T \) as a distribution it is easily seen that
\[
zT = \chi_A(z)T \quad (z \in Z).
where \(\Lambda(H_1 + H_2) = \nu(H_1) + \lambda_\delta(H_2) \) \((H_1 \in \mathfrak{h}_1, H_2 \in \mathfrak{h}_2)\). Moreover

\[
T(f_a) = \eta(a)T(f) \quad (a \in \mathbb{Z}, f \in C_c(G))
\]

and it is easy to check that

\[
T(f) = \int f((n^{-1} - h^{-1}m^{-1})^*)e^{-(n+2\rho)(\log h)} \xi(m) \, mh \, dn \, du^* \quad (f \in C_c(G))
\]

where

\[
\xi(m) = \frac{1}{d(\delta)} |\psi_0|^2 \, sp\sigma(m)
\]

and \(d(\delta)\) is the degree of \(\sigma\). Let \(A_-\) be the analytic subgroup of \(M\) corresponding to \(\mathfrak{h}_0\). Put \(A = A_1A_-\) and \(A_1 = AZ\). Let \(V\) be the set of all elements in \(G\) which can be written in the form \(xxyx^{-1}\) with \(x \in G\) and \(y \in A_1N\). We shall say that an element \(y \in V\) is regular if \(y = xhx^{-1}\) for some \(x \in G\) and \(h \in \mathfrak{h}_1\) and \(y^*\) has exactly 5 eigen-values equal to 1. Let \(V_0\) be the set of all elements in \(V\) which are regular. Then \(V_0\) is open in \(G\) and \(V\) is the closure of \(V_0\). Let \(W_0\) be the subgroup of the Weyl group \(W\) consisting of those elements \(s \in W\) for which there exists an \(x \in G\) such that \(sH = x^*H\) for all \(H \in \mathfrak{h}\). It is easily seen that every \(s \in W_0\) leaves both \(\mathfrak{h}_0\) and \(\mathfrak{h}_1\) invariant. Put

\[
\Delta^-(H) = \prod_{\alpha \in P_-} (e^{4\alpha(H)} - e^{-4\alpha(H)}), \quad \Delta^+(H) = \prod_{\alpha \in P_+} (e^{4\alpha(H)} - e^{-4\alpha(H)})
\]

and define \(\epsilon(s) = \pm 1 \quad (s \in W_0)\) in such a way that

\[
\Delta^-(sH) = \epsilon(s)\Delta^-(H)
\]

for all \(H \in \mathfrak{h}_2\). In particular if \(P_-\) is empty \(\epsilon(s) = 1 \quad \forall s \in W_0\). Consider the function \(\Theta_{\Lambda, \eta}\) on \(V_0\) defined as follows:

\[
\Theta_{\Lambda, \eta}(y) = \eta(\gamma) \frac{\sum_{s \in W_0} \epsilon(s)e^{s(H_1 + H_2)}}{\Delta^-(H_1)\Delta^+(H_1 + H_2)} \quad (y \in V_0)
\]

where \(y = x(\gamma \exp(H_1 + H_2))x^{-1}\) for some \(x \in G, \gamma \in Z, H_1 \in \mathfrak{h}_2\) and \(H_2 \in \mathfrak{h}_0\). It can be shown that in spite of the ambiguity in the choice of \(\gamma, H_1\) and \(H_2, \Theta_{\Lambda, \eta}\) is well defined on \(V_0\). We extend \(\Theta_{\Lambda, \eta}\) on \(G\) by defining it to be zero outside \(V_0\). Then it can be proved that

\[
T(f) = \int_G f(x) \Theta_{\Lambda, \eta}(x) \, dx \quad (f \in C_c(G))
\]

provided the Haar measure \(dx\) on \(G\) is suitably normalized. Let \(s_1, s_2, \ldots, s_r\) be a maximal set of distinct elements in the Weyl group \(W\) with the following properties:

(I) Let \(\Lambda_i = s_i(\Lambda + \rho) - \rho \quad 1 \leq i \leq r\). Then \(\Lambda_i + \rho \neq s(\Lambda_j + \rho)\) if \(i \neq j\) \((1 \leq i, j \leq r)\) and \(s \in W_0\).

(II) For each \(i\) \((1 \leq i \leq r)\) there exists a \(\delta_i \in \omega\) such that \(\Lambda_i\) coincides on
with the highest weight \(\lambda_i \) of \(\Delta_i \). Moreover if \(\sigma \in \Delta_i \) and \(\gamma \in M \cap Z \)

\[
\sigma(\gamma) = \eta(\gamma)\sigma(1).
\]

Put \(\Theta_i = \Theta_{\lambda_i, \eta} \) \(1 \leq i \leq r \) and \(T_i(f) = \int_G f(x)\Theta_i(x) \, dx \) \(f \in C_\alpha(G) \).

Then we see that the distributions \(T_i \) \(1 \leq i \leq r \) are solutions of the equations,

\[
sT = \chi_\lambda(\varepsilon)T \quad (s \in S)
\]

\[
T(yf) = T(f), \quad T(fd) = \eta(a)T(f) \quad (f \in C_\alpha(G), y \in G, a \in Z).
\]

We have seen above that if \(\pi \) is any quasisimple irreducible representation of \(G \) such that \(\chi_\lambda \) is the infinitesimal character of \(\pi \) and \(\pi(a) = \eta(a)\pi(1) \) \(a \in Z \), then its character \(T_{\pi} \) is also a solution of the above equations. Hence one might hope that in most cases \(T_{\pi} \) would be a linear combination of \(T_i \) \(1 \leq i \leq r \).

In conclusion I should like to thank Professor C. Chevalley for his help and advice on several questions connected with the results of this note.

2 Since \(\pi \) is irreducible it follows easily that \(\mathcal{H} \) is separable.

3 Here \(dx \) denotes the left invariant Haar measure on \(G \).

5 See RII for the meaning of the various symbols.