REPRESENTATIONS OF SEMISIMPLE LIE GROUPS. II

By HARISH-CHANDRA

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated by P. A. Smith, April 23, 1951

The object of this note is to announce some further results on representations of a connected semisimple Lie group on a Hilbert space. We shall omit all proofs and assume that the reader is familiar with the contents of an earlier note¹ (quoted henceforward as RI).

Let R and C denote the fields of real and complex numbers, respectively, and let G be a connected, simply connected, semisimple Lie group and g_0 its Lie algebra over R. Let $x \to Ad(x)(x \in G)$ denote the adjoint representation of G and let K be the complete inverse image in G of some maxi-

mal compact subgroup of Ad(G). Then K is a closed connected subgroup of G. Let \mathfrak{X}_0 be the Lie algebra of K and let $X \to adX(X \in \mathfrak{g}_0)$ denote the adjoint representation of g_0 . Put $B(X, Y) = sp(adXadY)(X, Y \in g_0)$. Let \mathfrak{P}_0 be the set of all elements $Y \in \mathfrak{g}_0$ such that B(X, Y) = 0 for all $X \in \mathfrak{L}_0$. Then $g_0 = \mathfrak{L}_0 + \mathfrak{P}_0$, $\mathfrak{L}_0 \cap \mathfrak{P}_0 = \{0\}$ and there exists an automorphism θ of \mathfrak{g}_0 over R such that $\theta(X + Y) = X - Y$ for $X \in \mathfrak{L}_0$, $Y \in \mathfrak{P}_0$. Let $\mathfrak{h}_{\mathfrak{P}_0}$ be a maximal abelian subspace of \mathfrak{P}_0 . We extend $\mathfrak{h}_{\mathfrak{P}_0}$ to a maximal abelian subalgebra \mathfrak{h}_0 of \mathfrak{g}_0 . Then $\mathfrak{h}_0 = \mathfrak{h}_{\mathfrak{c}_0} + \mathfrak{h}_{\mathfrak{B}_0}$ where $\mathfrak{h}_{\mathfrak{c}_0} = \mathfrak{h}_0 \cap \mathfrak{L}_0$. Let g be the complexification of g_0 and let \mathfrak{P} , \mathfrak{L} , \mathfrak{h} , $\mathfrak{h}_{\mathfrak{P}}$, $\mathfrak{h}_{\mathfrak{P}}$ be the subspaces of g spanned by \mathfrak{P}_0 , \mathfrak{R}_0 , \mathfrak{h}_0 , $\mathfrak{h}_{\mathfrak{B}_0}$, $\mathfrak{h}_{\mathfrak{R}_0}$ respectively, over C. We extend the bilinear form B and the automorphism θ on g by linearity over C. Choose bases (H_1, \ldots, H_p) and (H_{p+1}, \ldots, H_l) , respectively, for $\mathfrak{h}_{\mathfrak{B}_0}$ and $\sqrt{-1} \mathfrak{h}_{\mathfrak{R}_0}$ over R. Let F be the space of all linear functions on h. Given $\lambda \in F$ we can find a unique element $H_{\lambda} \epsilon \mathfrak{h}$ such that $\lambda(H) = B(H, H_{\lambda})$ for all $H \epsilon$ h. We shall say that λ is real if $H_{\lambda} \in \mathfrak{h}_{\mathfrak{B}_0} + \sqrt{-1} \mathfrak{h}_{\mathfrak{E}_0}$. Moreover if λ is real and $H_{\lambda} = \sum_{1 \leq i \leq k} c_i H_i(c_i \in R)$ we say that $\lambda > 0$ if $\lambda \neq 0$ and $c_i > 0$ where j is the least index $(1 \leq j \leq l)$ such that $c_j \neq 0$. We know that h is a Cartan subalgebra of g and $\theta h = h$. For every root α of g with respect to \mathfrak{h} let $X_{\alpha} \neq 0$ denote an element in \mathfrak{g} such that $[H, X_{\alpha}] = \alpha(H)X_{\alpha}(H \in \mathfrak{h})$. Let P be the set of all roots $\alpha > 0$. For any $\lambda \in \mathcal{F}$ let $\theta \lambda$ denote the linear function given by $\theta \lambda(H) = \lambda(\theta H)(H \epsilon \mathfrak{h})$. Then if α is α root $\theta \alpha$ is also a

root. Let P_+ be the set of all $\alpha \in P$ such that $\theta \alpha < 0$ and P the remaining set of positive roots. Iwasawa² has shown that X_{α} , $X_{-\alpha} \in \mathfrak{L}$ for $\alpha \in P$. Put

$$\mathfrak{M} = \sum_{\alpha \in P_+} CX_{\alpha}, \ \mathfrak{M} = \mathfrak{h}_{\mathfrak{R}} + \sum_{\alpha \in P} CX_{\alpha} + \sum_{\alpha \in P} CX_{-\alpha}.$$

Then \mathfrak{N} is a nilpotent subalgebra of \mathfrak{g} and \mathfrak{M} is a subalgebra of \mathfrak{X} . Put $\mathfrak{N}_0 = \mathfrak{N} \cap \mathfrak{g}_0, \mathfrak{M}_0 = \mathfrak{M} \cap \mathfrak{X}_0$. Then $\mathfrak{g}_0 = \mathfrak{X}_0 + \mathfrak{h}_{\mathfrak{R}_0} + \mathfrak{N}_0$ where the sum is direct² and $[\mathfrak{M}, \mathfrak{N}] \subset \mathfrak{N}, [\mathfrak{M}, \mathfrak{h}_{\mathfrak{P}}] = \{0\}$. Moreover \mathfrak{X} and \mathfrak{M} are reductive algebras, i.e., they are the direct sums of their centers and their derived algebras which are semisimple. Let \mathfrak{C} be the center of \mathfrak{X} . Put $\mathfrak{C}_0 = \mathfrak{C} \cap \mathfrak{g}_0$ and $\mathfrak{X}_0' = [\mathfrak{X}_0, \mathfrak{X}_0]$. Let D, K', A_+, M and N, respectively, be the analytic subgroups of G corresponding to $\mathfrak{C}_0, \mathfrak{X}_0', \mathfrak{h}_{\mathfrak{R}_0}, \mathfrak{M}_0$ and \mathfrak{N}_0 . Then M is closed and the mappings $(\gamma, u) \to \gamma u(\gamma \in D, u \in K')$ and $(v, h, n) \to vhn(v \in K, h \in A_+, n \in N)$ are analytic isomorphisms of DXK'with K and $K \times A_+ \times N$ with G, respectively.

Let Ω , Ω' and ω , respectively, be the set of all equivalence classes of finite-dimensional irreducible representations of K, K' and M. Then if $\mathfrak{D} \in \Omega$ and $\sigma \in \mathfrak{D}$ it is easily seen that $\sigma(K')$ is irreducible and $\sigma(M)$ is fully reducible. We denote by \mathfrak{D}' the equivalence class of the irreducible representation of K' defined by σ . Also if $\delta \in \omega$ we say that $\delta < \mathfrak{D}$ if δ occurs in the reduction of $\sigma(M)$. Let $\alpha \in \delta \in \omega$. Then α defines α repre-

sentation β of \mathfrak{M}_0 and therefore of \mathfrak{M} . Let λ and μ be any two weights of β with respect to b₂. We extend λ and μ on b by defining them to be zero on $\mathfrak{h}_{\mathfrak{B}}$. Then it is easily seen that $\lambda - \mu$ is a real linear function on \mathfrak{h} . Hence β has a weight λ such that $\lambda - \mu > 0$ for every other weight μ . Clearly λ depends on δ alone and we shall call it the highest weight of δ .

Let \mathfrak{B} be the universal enveloping algebra of \mathfrak{g} and let \mathfrak{Z} be the center of \mathfrak{B} . Let C[x] denote the ring of all commutative polynomials in lindependent variables x_1, \ldots, x_l with coefficients in C. We denote by β the isomorphic mapping of C[x] into \mathfrak{B} given by $\beta(x_1^{m_1}x_2^{m_2}\dots x_l^{m_l}) =$ $H_1^{m_1} \ldots H_l^{m_l}$. For any $z \in \mathfrak{Z}$ there exists a unique element³ $\chi_z(z) \in C[x]$ such that $z - \beta(\chi_z(z)) \in \sum_{\alpha \in P} \mathfrak{B}X_{\alpha}$. A being any linear function on \mathfrak{h} we denote by $\chi_{\Lambda}(z)$ the value of the polynomial $\chi_{x}(z)$ at $x_{i} = \Lambda(H_{i}) | \leq i \leq l$. Then the mapping $\chi_{\Lambda}: z \to \chi_{\Lambda}(z)(z \in \mathcal{B})$ is a homomorphism of \mathcal{B} into C and conversely every homomorphism of 3 into C is of the form³ χ_{Δ} for some A ϵ \mathfrak{F} . Let $\rho = 1/2 \sum_{\alpha \in P} \alpha$ and let W be the Weyl group of \mathfrak{g} with respect to h. Then if Λ_1 , $\Lambda_2 \in \mathfrak{F}$, $\chi_{\Lambda_1} = \chi_{\Lambda_2}$ if and only if $s(\Lambda_1 + \rho) = \Lambda_2 + \rho$ for some $s \in W$.

We denote by Ω_F the set of all $\mathfrak{D} \in \Omega$ for which there exists a finitedimensional representation π of G such that \mathfrak{D}' occurs in the reduction of $\pi(K').$

THEOREM 1. Let π be a quasisimple¹ representation of G on a Banach space with the infinitesimal character⁴ χ . Suppose \mathfrak{D} is an element in $\Omega_{\mathbf{F}}$ such that \mathfrak{D} occurs⁵ in π . Then there exists a linear function Λ on \mathfrak{h} and a $\delta \in \omega$ such that $\delta < \mathfrak{D}$ and $\chi = \chi_{\Delta}$ and $\Lambda(H) = \lambda_{\delta}(H)(H \in \mathfrak{h}_{\mathfrak{R}})$, where λ_{δ} is the highest weight of δ . Conversely suppose we are given a linear function Λ on \mathfrak{h} and $\mathfrak{D} \in \Omega$ such that Λ coincides on $\mathfrak{h}_{\mathfrak{F}}$ with the highest weight $\lambda_{\mathfrak{F}}$ of some $\delta < \mathfrak{D}$ ($\delta \in \omega$). Then there exists a quasisimple irreducible representation π of G on a Hilbert space with the infinitesimal character χ_{Λ} such that \mathfrak{D} occurs in π .

Remarks .-- It seems likely that the first part of the above theorem is actually true for all $\mathfrak{D} \in \Omega$ and not merely for $\mathfrak{D} \in \Omega_{F}$, but so far it has not been possible to prove this. Notice that if G is a complex semisimple group $\Omega = \Omega_F$ and so in this case the theorem holds without any restriction on D.

Let π_1 and π_2 be two quasissimple representations of G on the Hilbert spaces \mathfrak{H}_1 and \mathfrak{H}_2 , respectively. For any $\mathfrak{D} \in \Omega$ let $\mathfrak{H}_{i,\mathfrak{D}}$ denote the set of all elements in \mathfrak{H}_i which transform¹ under $\pi_i(K)$ according to $\mathfrak{D}(i =$ 1, 2). Put $\mathfrak{F}_{i}^{0} = \sum_{\mathfrak{D}_{i} \in \mathfrak{D}} \mathfrak{F}_{i,\mathfrak{D}}$. Then we get a representation π_{i}^{0} of \mathfrak{B} on \mathfrak{H}_i^0 such that

$$\pi_i^{0}(X)\psi = \lim_{t\to 0} \frac{1}{t} \left\{ \pi_i(\operatorname{expt} X)\psi - \psi \right\} \qquad (\psi \in \mathfrak{F}_i^{0}, X \in \mathfrak{g}_0, t \in \mathbb{R}).$$

We say that π_1 and π_2 are infinitesimally equivalent if the representations π_1^0 and π_2^0 are algebraically equivalent, i.e., if there exists an isomorphism α of \mathfrak{H}_1^0 onto \mathfrak{H}_2^0 such that $\pi_2^0(b)\alpha\psi = \alpha\pi_1^0(b)\psi(b\ \epsilon\ \mathfrak{B},\ \psi\ \epsilon\ \mathfrak{H}_1^0)$. Clearly if π_1 and π_2 are equivalent they are also infinitesimally equivalent. Conversely it can be shown that if π_1 and π_2 are both unitary, their infinitesimal equivalence implies their equivalence in the usual sense.

Let π be a quasisimple irreducible representation of G on a Hilbert space. We know (see Theorem 3 of RI) that dim $\mathfrak{F}_{\mathfrak{D}} < \infty$ for all $\mathfrak{D} \in \Omega$. Moreover, we may assume without loss of generality that the subspaces $\mathfrak{F}_{\mathfrak{D}}$ are all mutually orthogonal for distinct \mathfrak{D} . Let $E_{\mathfrak{D}}$ denote the orthogonal projection on \mathfrak{F} on $\mathfrak{F}_{\mathfrak{D}}$. Put

$$\varphi_{\mathfrak{D}}^{\pi}(x) = sp(E_{\mathfrak{D}}\pi(x)E_{\mathfrak{D}}) \qquad (x \in G).$$

Then we can restate Theorem 7 of RI in a slightly improved form as follows.

THEOREM 2. Let π_1 , π_2 be irreducible quasisimple representations of G on two Hilbert spaces. Suppose that for some $\mathfrak{D} \in \Omega$ and $c \in C$, $\varphi_{\mathfrak{D}}^{\pi_1} = c\varphi_{\mathfrak{D}}^{\pi_2} \neq 0$. Then π_1 and π_2 are infinitesimally equivalent. Conversely if π_1 and π_2 are infinitesimally equivalent $\varphi_{\mathfrak{D}}^{\pi_1} = \varphi_{\mathfrak{D}}^{\pi_2}$ for all $\mathfrak{D} \in \Omega$.

We have seen above that every element $x \in G$ can be written uniquely in the form $x = vhn(v \in K, h \in A_+, n \in N)$. For any $v \in K$ and $x \in G$ let v_x and H(x, v) denote the unique elements in K and $\mathfrak{h}_{\mathfrak{P}_0}$, respectively, such that $xv = v_2(\exp H(x, v))n$ for some $n \in N$. Moreover let $\Gamma(v)$ denote the element in \mathfrak{E}_0 such that $v = (\exp \Gamma(v))u$ for some $u \in K'$. Put $\Gamma(x, v) =$ $\Gamma(v_x) - \Gamma(v)$. Let Z be the center of G and let $z \to z^*$ denote the adjoint representation of G. Then $K \supset Z$ and K^* is compact. It is easily seen that $(va)_x = v_x a, H(x, va) = H(x, v), \Gamma(x, va) = \Gamma(x, v)(a \in Z)$. Hence we may write $H(x, v) = H(x, v^*), \Gamma(x, v) = \Gamma(x, v^*)$. Let dv^* denote the Haar measure on K^* such that $\int_K^* dv^* = 1$. For any $\mathfrak{D} \in \Omega$ let $\mu_{\mathfrak{D}}$ denote the linear function on \mathfrak{E} such that

$$\sigma(\exp \Gamma) = e^{\mu_{\mathfrak{D}}(\Gamma)}\sigma(1) \qquad (\Gamma \in \mathfrak{C}_0)$$

for $\sigma \in \mathfrak{D}$. Also let $d(\mathfrak{D})$ denote the degree of σ .

THEOREM 3. Let π be a quasisimple irreducible representation of G on a Hilbert space \mathfrak{H} and let \mathfrak{D} be an element in \mathfrak{A} such that $d(\mathfrak{D}) = 1$ and \mathfrak{D} occurs⁵ in π . Then dim $\mathfrak{H}_{\mathfrak{D}} = 1$ and there exists a linear function Λ on \mathfrak{h} such that χ_{Λ} is the infinitesimal⁴ character of π and

$$\varphi_{\mathfrak{D}}^{\pi}(x) = \int_{K^*} e^{\mu_{\mathfrak{D}}(\Gamma(x, v^*))} e^{\Lambda(H(x, v^*))} dv^* \qquad (x \in G).$$

¹ Harish-Chandra, PROC. NATL. ACAD. SCI., 37, 170-173 (1951).

- ⁴ The infinitesimal character of π was called simply the character of π in RI.
- ⁵ This means that \mathfrak{D} occurs in the reduction of $\pi(K)$.

² Iwasawa, K., Ann. Math., 50, 507-558 (1949).

³ Harish-Chandra, Trans. Am. Math. Soc., 70, 28-96 (1951).