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REPRESENTATIONS OF SEMISIMPLE LIE GROUPS. II
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Communicated by P. A. Smith, April 23, 1951

The object of this note is to announce some further results on repre-
sentations of a connected semisimple Lie group on a Hilbert space. We
shall omit all proofs and assume that the reader is familiar with the con-
tents of an earlier note! (quoted henceforward as RI).

Let R dnd C denote the fields of real and complex numbers, respectively,
and let G be a connected, simply connected, semisimple Lie group and
go its Lie algebra over R. Let x — Ad(x)(x ¢ G) denote the adjoint repre-
sentation of G and let K be the complete inverse image in G of some maxi-
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mal compact subgroup of Ad(G). Then K is a closed connected subgroup
of G. Let ®, be the Lie algebra of K and let X — adX (X e go) denote the
adjoint representation of go. Put B(X, ¥Y) = sp(adXadY)(X, Y € go).
Let P, be the set of all elements ¥ e go such that B(X, ¥) = Oforall X ¢ &.
Then go = % + Bo, & N Po = {0} and there exists an automorphism 6
of ggover Rsuchthat 6(X + V) = X — Yfor X e &, YV e Po. Let by,
be a maximal abelian subspace of B,. We extend b3, to a maximal abelian
subalgebra B of go. Then h = by, + bp, where B, = ho N L. Let
g be the complexification of go and let B, &, b, by, He be the subspaces of
g spanned by PBo, R, bo, Dp, De, respectively, over C. We extend the
bilinear form B and the automorphism 6 on g by linearity over C. Choose
bases (H, ..., H,) and (Hpy, ..., H), respectively, for hp, and v/ —1 be,
over R. Let § be the space of all linear functions on ). Given A e¢ §
we can find a unique element H, e §) such that \(H) = B(H, H,) forall H e
h. We shall say that A is real if Hy € hp, + v/ —1 bg,. Moreover if A is real
andH, = lc,H,(c, € R) we say that A > 0if A £ 0 and ¢; > 0 where

1< i<
j is the least index (1 < j < J) such that ¢; ¥ 0. We know that hisa
Cartan subalgebra of g and 6) = §. For every root a of g with respect to
hlet X, > 0 denote an element in g such that [H, X,] = a(H)X(H € }).
Let P be the set of all roots @ > 0. For any X ¢ {§ let O\ denote the linear
function given by ON(H) = N0H)(H € ). Then if o is a root fa is also a
root. Let P, be the set of all @ € P such that fa < 0 and P the remaining
set of positive roots. Iwasawa? has shown that X, X_, ¢ & for a ¢ P.
Put
N = EP CXp M= be + EPCXG, + EPCX_Q.

Then RN is a nilpotent subalgebra of g and I is a subalgebra of L. Put
No=NnNn go, Vo =M n L Then g = L + hg, + No where the sum
is direct? and [, N] c N, [M, hs] = {0}. Moreover L and M a-e re-
ductive algebras, i.e., they are the direct sums of their centers and their
derived algebras which are semisimple. Let € be the center of . Put
G =€ n goand &' = [R, K]. Let D, K’, A4, M and N, respectively,
be the analytic subgroups of G corresponding to G, %, by, Do and N,.
Then M is closed and the mappings (v, #) — yu(y ¢ D, u ¢ K’) and (v,
h, n) — vhn(v e K, h ¢ A4, n ¢ N) are analytic isomorphisms of DXK'
with K and K X 44 X N with G, respectively.

Let Q, @’ and w, respectively, be the set of all equivalence classes of
finite-dimensional irreducible representations of K, K’ and M. Then
if D eQand o eD it is easily seen that ¢(K’) is irreducible and ¢(M) is
fully reducible. We denote by ®’ the equivalence class of the irreducible
representation of K’ defined by ¢. Also if € w we say that § < D if &
occurs in the reduction of ¢(M). Let a €8 ¢ w. Then a defines a repre-
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sentation B of Mo and therefore of M. Let A and u be any two weights of
B with respect to hg. We extend A and u on §) by defining them to be zero
on hg. Then it is easily seen that A — pu is a real linear function on §.
Hence B has a weight A such that A — u > 0 for every other weight u.
Clearly A depends on é alone and we shall call it the highest weight of &.
Let B be the universal enveloping algebra of g and let 3 be the center
of B. Let C[x] denote the ring of all commutative polynomials in I
independent variables xy, ..., x; with coefficients in C. We denote by
B the isomorphic mapping of C[x] into B given by B(x,™'x.™...x™) =
H™...H™. For any 2 ¢ 3 there exists a unique element?® x.(2) ¢ Clx]
such that z2 — B(x:(2)) ¢ Z;, BX, A being any linear function on §) we

denote by x,(2) the value of the polynomial x.(2) at x;, = A(H ,)l <i <L
Then the mapping x,:2 — xa(2)(2 € B) is a homomorphism of 3 into C and
conversely every homomorphism of 3 into C is of the form?® x, for some
Aef. Letp =1/, Z;) a and let W be the Weyl group of g with respect to

h. Then if Ay, As € §, xa, = Xa, if and only if? s(A; + p) = Ay + p for
some s ¢ W.

We denote by @ the set of all D e Q@ for which there exists a finite-
dimensional representation 7 of G such that D’ occurs in the reduction of
=(K').

THEOREM 1. Let w be a quasisimple' representation of G on a Banach
space with the infinitesimal character* x. Suppose D is an element in Qp
such that D occurs® in w. Then there exists a linear function A on Y and a
Sewsuchthat § < D and x = xs and A(H) = N(H)(H € be), where \; is
the highest weight of 8. Conversely suppose we are given a linear function
Aon §hand D e Q such that A coincides on Yy with the highest weight \s of
somed <D (dew). Then there exists a quasisimple irreducible representation
w of G on a Hilbert space with the infinitesimal character x, such that © occurs
n .

Remarks.—It seems likely that the first part of the above theorem is
actually true for all D e @ and not merely for D e Qr, but so far it has not
been possible to prove this. Notice that if G is a complex semisimple
group @ = Q and so in this case the theorem holds without any restriction
on D.

Let m and m; be two quasisimple representations of G on the Hilbert
spaces 1 and $,, respectively. For any D e @ let 9; p denote the set
of all elements in §; which transform! under 7(K) according to D(z =
1, 2). Put L = DE 9: . Then we get a representation = of B on

e

9 such that

m(X)¢ = Lim t} {rexpt X)¥ — ¢} (W eDO XegyteR).
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We say that m and m are infinitesimally equivalent if the representations
m° and m° are algebraically equivalent, i.e., if there exists an isomorphism
a of §,° onto :° such that 7°(B)ay = am®O)Y(d € B, ¢ ¢ H°). Clearly
if m and . are equivalent they are also infinitesimally equivalent. Con-
versely it can be shown that if m, and . are both unitary, their infinitesimal
equivalence implies their equivalence in the usual sense.

Let 7 be a quasisimple irreducible representation of G on a Hilbert space.
We know (see Theorem 3 of RI) that dim §p < « forall D ¢ 2. More-
over, we may assume without loss of generality that the subspaces $3 are
all mutually orthogonal for distinct ©. Let Egp denote the orthogonal
projection on $ on Hp. Put

¢p (¥) = sp(Epm(x)Ep)  (xeG).

Then we can restate Theorem 7 of RI in a slightly improved form as
follows.

THEOREM 2. Let m, m be irreducible gquasisimple representations of G
on two Hilbert spaces. Suppose that for some D eQLand ce C, pp™ = cop™ #=
0. Then m and m: are infinitesimally equivalent. Conversely if m and
are infinitesimally equivalent o™ = o™ for all D € Q.

We have seen above that every element x ¢ G can be written uniquely
in the form x = vhn(v e K, h e Ay, n ¢ N). Forany ve K and x ¢ G let
v, and H(x, v) denote the unique elements in K and bg,, respectively, such
that xv = v,(exp H(x, v))n for some n ¢ N. Moreover let I'(v) denote the
element in € such that ¥ = (exp I'(v))u for some # ¢ K. Put I'(x, v) =
T'(z;) — T'(v). Let Z be the center of G and let z — z* denote the adjoint
representation of G. Then K 2 Z and K* is compact. It is easily seen
that (va); = v.a, H(x, va) = H(x, v), I'(x, va) = T'(x, v)(a ¢ Z). Hence
we may write H(x, v) = H(x, v*), T'(x, v) = I'(x, v*). Let dv* denote the
Haar measure on K* such that fx* dv* = 1. For any D €Q let up denote
the linear function on € such that

o(expT) = 2Tg(1)  (T'eGy)

for o e D. Also let d(D) denote the degree of o.

THEOREM 3. Let n be a quasisimple irreducible representation of G on
a Hilbert space © and let D be an element in Q such that d(D) = 1 and D
occurs® in =. Then dim o = 1 and there exists a linear function A on b
such that x, is the infinitesimal* character of = and

op"(x) = S+ @DTETNAHEE) gox (4 ¢ G).
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