REPRESENTATIONS OF SEMISIMPLE LIE GROUPS ON A
BANACH SPACE

BY HARISH-CHANDRA

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated by O. Zariski, January 26, 1951

Let G be a connected semisimple Lie group and \mathfrak{g} a Banach space. By a representation of G on \mathfrak{g} we mean a mapping π which assigns to every $x \in G$ a bounded linear operator $\pi(x)$ on \mathfrak{g} such that the following two conditions are fulfilled:

1. $\pi(xy) = \pi(x)\pi(y)$ and $\pi(1) = I$ (here 1 is the unit element of G and I the identity operator on \mathfrak{g}).
2. The mapping $(x, \psi) \rightarrow \pi(x)\psi(x \in G, \psi \in \mathfrak{g})$ is a continuous mapping of $G \times \mathfrak{g}$ into \mathfrak{g}.

The object of this note is to announce a few theorems on these representations. No attempt is made to give proofs here. A detailed account with complete proofs will appear elsewhere in another paper.

Let \mathbb{R} and \mathbb{C}, respectively, be the fields of real and complex numbers. Let \mathfrak{g}_0 be the Lie algebra of G and \mathfrak{g} the complexification of \mathfrak{g}_0. We denote the universal enveloping algebra of \mathfrak{g} by \mathcal{B}. Let $C_c^\infty(G)$ be the set of all complex-valued functions on G which are indefinitely differentiable everywhere and which vanish outside a compact set. Let π be a representation of G on \mathfrak{g} and V the set of all elements in \mathfrak{g} which can be written as finite linear combinations of elements of the form

$$\int_G f(x)\pi(x)\psi \, dx \quad (\psi \in \mathfrak{g}, f \in C_c^\infty(G))$$

where dx is the left invariant Haar measure on G. V is called the Gårding subspace of \mathfrak{g} (with respect to π). For every $X \in \mathfrak{g}_0$ we can define a linear transformation $\pi_v(X)$ of V into itself such that

$$\pi_v(x)\psi = \lim_{t \to 0} \frac{1}{t} \left\{ \pi(\exp tX) - I \right\} \psi \quad (\psi \in V, X \in \mathfrak{g}_0).$$
The mapping $X \rightarrow \pi(X)$ is a representation of \mathfrak{g}_0 and therefore it can be extended uniquely to a representation π of \mathfrak{g} on V. Let $\psi \in V$. Consider $\pi(\mathfrak{g})\psi$ where the bar denotes closure in $\hat{\mathfrak{g}}$. It turns out that in general $\pi(\mathfrak{g})\psi$ is not invariant under $\pi(G)$. In order to avoid this unpleasant state of affairs we replace the Gårding subspace V by the space of all well-behaved elements. This is defined as follows. Let U be a subspace of $\hat{\mathfrak{g}}$ (not necessarily closed). We say that U is well-behaved under π if the following conditions hold.

(1) There exists a representation π_U of \mathfrak{g}_0 on U such that

$$\pi_U(X)\psi = \lim_{t \to 0} \frac{1}{t} \left\{ \pi(\exp tX) - I \right\} \psi \quad (X \in \mathfrak{g}_0, \psi \in U).$$

(2) For any continuous linear function f on $\hat{\mathfrak{g}}$ and $\psi \in U$ the function

$$f(\pi(x)\psi) \quad (x \in G)$$

is an analytic function on G. It is clear that if U_1, U_2 are two well-behaved subspaces of $\hat{\mathfrak{g}}$ then $U_1 + U_2$ is also well-behaved. From this it follows that the union W of all well-behaved subspaces in $\hat{\mathfrak{g}}$ is itself a well-behaved subspace. An element $\psi \in \hat{\mathfrak{g}}$ will be called well-behaved if $\psi \in W$ and W is called the space of all well-behaved elements. It is clear that the mapping $X \rightarrow \pi_W(X) \quad (X \in \mathfrak{g}_0)$ can be extended uniquely to a representation π_W of \mathfrak{g} on W. The following theorem justifies the notion of well-behaved elements.

Theorem 1. Let ψ be a well-behaved element of $\hat{\mathfrak{g}}$. Then $\pi_W(\mathfrak{g})\psi$ is invariant under $\pi(G)$.

Let G^* be the adjoint group of G and let K^* be a maximal compact subgroup of G^*. Let K be the complete inverse image of K^* in G. Then K is connected though it is not necessarily compact. Let P be the set of all equivalence classes of finite-dimensional irreducible representations of K. Let $D \in P$ and $\psi \in \hat{\mathfrak{g}}$. We say that ψ transforms under $\pi(K)$ according to D if the space U spanned by $\pi(u)\psi$ for all $u \in K$ is finite-dimensional and the representation of K induced on U is fully reducible into a direct sum of irreducible components each of which lies in D. Let $\hat{\mathfrak{g}}_D$ be the set of all elements in $\hat{\mathfrak{g}}$ which transform under $\pi(K)$ according to D. Put $W_D = W \cap \hat{\mathfrak{g}}_D$. Let Z be the center of G and \mathfrak{z} the center of \mathfrak{g}. Let V be the Gårding subspace of $\hat{\mathfrak{g}}$ and π_V the representation of \mathfrak{g} on V as defined above. We shall say that π is a quasi-simple representation of G if there exist homomorphisms c and χ of Z and \mathfrak{z} respectively, into C such that the following two conditions hold:

1. $\pi(d) = c(d)I \quad (d \in Z)$.
2. $\pi_V(z)\psi = \chi(z)\psi \quad (z \in \mathfrak{z}, \psi \in V)$.

In case condition (2) is satisfied we say that \(\pi \) has the character \(\chi \).

Theorem 2. Let \(\pi \) be a quasi-simple representation of \(G \) on \(\mathcal{H} \). Then
\[
\sum_{\mathcal{D} \in \mathcal{P}} W_{\mathcal{D}} \text{ is dense in } \mathcal{H} \text{ and } \mathcal{H}_{\mathcal{D}} = W_{\mathcal{D}} \langle \mathcal{B} \in \mathcal{P} \rangle.
\]

Here \(\sum_{\mathcal{D} \in \mathcal{P}} W_{\mathcal{D}} \) is the space consisting of all finite linear combinations of elements in \(\bigcup_{\mathcal{D} \in \mathcal{P}} W_{\mathcal{D}} \).

Theorem 3. Let \(\pi \) be quasi-simple and let \(\psi \in \sum_{\mathcal{D} \in \mathcal{P}} W_{\mathcal{D}} \). Put
\[
U = \pi_w(\mathcal{B})\psi \quad \text{and} \quad U_{\mathcal{D}} = U \cap \mathcal{H}_{\mathcal{D}}(\mathcal{D} \in \mathcal{P}).
\]
Then \(\pi_w(\mathcal{B})\psi = \sum_{\mathcal{D} \in \mathcal{P}} U_{\mathcal{D}} \) and
\[
dim U_{\mathcal{D}} < \infty \text{ for every } \mathcal{D} \in \mathcal{P}.
\]

Let \(U, V \) be two subspaces of \(\mathcal{H} \). We write \(U > V \) or \(V < U \) if \(U \supset V \) and \(U \neq V \). Let \(U \) and \(V \) be two closed subspaces of \(\mathcal{H} \) invariant under \(\pi(G) \). We shall say that \(V \) is maximal in \(U \) if \(U > V \) and there exists no closed invariant subspace \(U_1 \) such that \(U > U_1 > V \).

Theorem 4. Let \(\pi \) be a quasi-simple representation of \(G \) on a Banach space \(\mathcal{H} \neq \{0\} \). Then there exist two closed invariant subspaces \(U \) and \(V \) in \(\mathcal{H} \) such that \(V \) is maximal in \(U \).

Now we shall consider the special case when \(\mathcal{H} \) is a Hilbert space and \(\pi \) is a unitary representation. From Theorem 4 we deduce the following result.

Theorem 5. Let \(\pi \) be a quasi-simple unitary representation of \(G \) on a Hilbert space \(\mathcal{H} \neq \{0\} \). Then there exists a closed invariant subspace \(U \) of \(\mathcal{H} \) such that \(\{0\} \) is maximal in \(U \) (i.e., \(U > \{0\} \)) and \(U \) is irreducible under \(\pi(G) \).

The above theorem has the following significance in relation to the theory of factors of Murray and von Neumann.\(^3\) Let \(\pi \) be a unitary representation of \(G \) on a Hilbert space \(\mathcal{H} \). Let \(\mathfrak{A} \) be the smallest weakly closed algebra of bounded operators on \(\mathcal{H} \) containing \(\pi(G) \). It is known\(^4\) that if \(\mathfrak{A} \) is a factor, i.e., if the center of \(\mathfrak{A} \) consists of scalar multiples of \(I \), then \(\pi \) is quasi-simple. Therefore in this case Theorem 5 is applicable and so it follows from the results of Murray and von Neumann\(^5\) that \(\mathfrak{A} \) must be a factor of type \(I_\infty \) or \(I_\infty \). This shows that factors of Type II and Type III cannot arise from a unitary representation of a semisimple Lie group on a Hilbert space. For the consequences of this result we refer the reader to the above-quoted paper of Mautner.

Let \(\mathcal{D} \in \mathcal{P} \). We say that \(\mathcal{D} \) occurs in \(\pi \) if \(\mathcal{H}_{\mathcal{D}} \neq \{0\} \). It is known that all unitary irreducible representations of \(G \) are quasi-simple.

Theorem 6. Let \(\chi \) be a homomorphism of \(\mathfrak{B} \) into \(C \) such that \(\chi(1) = 1 \) and let \(\mathcal{D} \in \mathcal{P} \). Let \(\mathcal{C}(\chi, \mathcal{D}) \) denote the set of all representations \(\pi \) of \(G \) which have the following properties:

1. \(\pi \) is an irreducible unitary representation of \(G \) on some Hilbert space.
2. \(\mathcal{D} \) occurs in \(\pi \).
\(\pi \text{ has the character } \chi. \)

Then \(\mathcal{E}(\chi, D) \) contains only a finite number of inequivalent representations.

Let \(d(D) \) denote the degree of any representation in \(D \). Suppose \(d(D) = 1 \), \(\pi \in \mathcal{E}(\chi, D) \) and \(S \) is the representation space of \(\pi \). Then it can be shown that \(\dim S_D = 1 \) and the maximum number of inequivalent representations in \(\mathcal{E}(\chi, D) \) is not greater than the order of the Weyl group of \(g \) with respect to some Cartan subalgebra. Moreover if \(G \) is a complex semi-simple Lie group all representations in \(\mathcal{E}(\chi, D) \) are equivalent (provided \(d(D) = 1 \)).

Let \(\pi \) be an irreducible unitary representation of \(G \) on a Hilbert space \(\mathfrak{H} \). For any \(D \in P \) let \(E_D \) denote the orthogonal projection of \(\mathfrak{H} \) on \(D_D \).

Since \(\pi \) is irreducible and unitary it is quasi-simple and therefore it follows from Theorem 4 that \(\dim S_D < \infty \). Hence the function \(\phi_D^\pi(x) = sp(E_D \pi(x)E_D)(x \in G) \) is well defined. It is an analytic function on \(G \) and \(\phi_D^\pi(u x u^{-1}) = \phi_D^\pi(x) \) \((u \in K)\).

Theorem 7. Let \(\pi_1 \) and \(\pi_2 \) be irreducible unitary representations of \(G \) on two Hilbert spaces. Let \(P_{\pi_1} \) be the set of all elements in \(P \) which occur in \(\pi_1 \). Suppose that for some \(D \in P_{\pi_1} \) and \(c \in C \),

\[
\phi_D^{\pi_1} = c \phi_D^{\pi_2}.
\]

Then \(\pi_1 \) and \(\pi_2 \) are equivalent. Conversely if \(\pi_1 \) and \(\pi_2 \) are equivalent

\[
\phi_D^{\pi_1} = \phi_D^{\pi_2},
\]

for all \(D \in P \).

In case \(d(D) = 1 \) the function \(\phi_D^\pi \) is the same as the spherical function introduced by Gelfand and Naimark.\(^5\) Now suppose \(G \) is a complex semi-simple Lie group and \(d(D) = 1 \). Then we have seen above that the representation \(\pi \) is completely determined within equivalence by its character \(\chi \). Actually in this case an explicit formula for \(\phi_D^\pi \) in terms of \(\chi \) can be obtained quite easily. This formula is very similar to the one given by Gelfand and Naimark\(^6\) for representations of the principal series.