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Let G be a connected semisimple Lie group and § a Banach space. By
a representation of G on § we mean a mapping = which assigns to every
x ¢ G a bounded linear operator x(x) on P such that the following two con-
ditions are fulfilled:

(1) =(xy) = x(x)x(y) and x(1) = I (here 1 is the unit element of G
and I the identity operator on ). '

(2) The mapping (x, ¥) = 7(x)¥(x € G, ¥ € D) is a continuous mapping
of G X Dinto $.

The object of this note is to announce a few theorems on these representa-
tions. No attempt is made to give proofs here. A detailed account with
complete proofs will appear elsewhere in another paper.

Let R and C, respectively, be the fields of real and complex numbers.
Let go be the Lie algebra of G and g the complexification of go. We denote
the universal enveloping! algebra of g by 8. Let C,”(G) be the set of all
complex-valued functions on G which are indefinitely differentiable every-
where and which vanish outside a compact set. Let x be a representation
of G on  and V the set of all elements in  which can be written as finite
linear combinations of elements of the form

Jef@r@Wdx e, feC7(G)
where dx is the left invariant Haar measure on G. V is called the Gérding
subspace? of § (with respect to ). For every X e gy we can define a
linear transformation 7y(X) of V into itself such that

xv(x)y =‘ll_l’nozl- {r(exp tX) — I}nl/ WeV,teR).
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The mapping X — xy(X) is a representation of go and therefore it can be
extended uniquely to a representation xy of Bon V. Lety e V. Consider
xv(B)Y where the bar denotes closure in §. It turns out that in general
xv(B)Y is not invariant under x(G). In order to avoid this unpleasant
state of affairs we replace the Garding subspace V by the space of all well-
behaved elements. This is defined as follows. Let U be a subspace of
(not necessarily closed). We say that U is well-behaved under « if the
following conditions hold.
(1) There exists a representation =y of go on U such that

*y(X)¢ = Lim % {rexptX) — I} ¥ (Xegnvel)

(2) For any continuous linear function f on § and ¢ ¢ U the function

fx@W)  (xeG)

is an analytic function on G. Itis clear that if U,, U, are two well-behaved
subspaces of § then U; 4+ U, is also well-behaved. From this it follows
that the union W of all well-behaved subspacesin @ is itself a well-behaved
subspace. An element ¢ ¢  will be called well-behaved if ¢ W and W
is called the space of all well-behaved elements. It is clear that the map-
ping X — xw(X) (X € o) can be extended uniquely to a representation
xw of Bon W. The following theorem justifies the notion of well-behaved
elements.

THEOREM 1. Let ¢ be a well-behaved element of ©. Then xw(B)Y is in-

“variant under x(G).

Let G* be the adjoint group of G and let K* be a maximal compact sub-
group of G*. Let K be the complete inverse image of K* in G. Then K
is connected though it is not necessarily compact. Let P be the set of all
equivalence classes of finite-dimensional irreducible representations of K.
Let DePand ¢ ¢ . We say that ¢ transforms under x(K) according to D
if the space U spanned by »(u)y for all 4 ¢ K is finite-dimensional and the
representation of K induced on U is fully reducible into a direct sum of ir-
reducible components each of which lies in . Let $p be the set of all
elements in § which transform under »(K) according to D. Put Wp =
W n 9p. Let Z be the center of G and 3 the center of 8. Let V be the
Gérding subspace of § and xy the representation of B on V as defined
above. We shall say that «x is a quasi-simple representation of G if there
exist homomorphisms ¢ and x of Z and 3 respectively, into C such that the
following two conditions hold:

1) x@ =c@I (@e2).
(2) wv(eyY = x(e (2eB,¥eV).
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In case condition (2) is satisfied we say that = has the character x.
THEOREM 2. Let x be a quasi-simple representation of G on . Then
> Wy isdensein  and Hp = Wy (B € P).

DeP
Here soz W is the space consisting of all finite linear combinations of
eP

elementsin VU Wy,
' DeP
THEOREM 3. Let w be quasi-simple and let y ¢ Y, Wgp. Put U =
DeP

rw @)Y and Up = U N (D eP). Then @)y = T Upond
eP

dim Up < « for every D e P.

Let U, V be two subspacesof . Wewrite U> Vor V< Uif US> V
and U # V. Let Uand V be two closed subspaces of  invariant under
7(G). We shall say that V is maximal in U if U > V and there exists no
closed invariant subspace Uy such that U > U, > V.

THEOREM 4. Let  be a quasi-simple representation of G on a Banach
space © = {0}. Then there exist two closed invariant subspaces U and V
in O such that V is maximal in U.

Now we shall consider the special case when  is a Hilbert space and =
is a unitary representation. From Theorem 4 we deduce the following
result. '

THEOREM 5. Let w be a quasi-simple unitary representation of G on a
Hilbert space O # {O} Then there exists a closed invariant subspace U of
$ such that {0} is maximal in U (i.e., U > {0} and U is irreducible under
7(G)).

The above theorem has the following significance in relation to the theory
of factors of Murray and von Neumann.? Let 7 be a unitary representa-
tion of G on a Hilbert space . Let % be the smallest weakly closed alge-
bra of bounded operators on § containing #(G). It is known* that if %
is a factor, i.e., if the center of ¥ consists of scalar multiples of I, then =
is quasi-simple. Therefore in this case Theorem 5 is applicable and so it
follows from the results of Murray and von Neumann? that % must be a
factor of type I, or I,. This shows that factors of Type IT and Type III
cannot arise from a unitary representation of a semisimple Lie group on a
Hilbert space. For the consequences of this result we refer the reader to
the above-quoted paper of Mautner.

Let D ¢ P. We say that D occurs in x if $p > {0}. It is known that
all unitary irreducible representations of G are quasi-simple.

THEOREM 6. Let x be a homomorphism of 8 into C such that x(1) = 1
and let D e P. Let €(x, D) denote the set of all representations x of G which
have the following properties:

(1) = 4s an irreducible unitary representation of G on some Hilbert space.

2) D occurs in .
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(3) = hasthe character x.

Then G(x, D) contains only a finite number of inequivalent representations.

Let d(D) denote the degree of any representation in . Suppose d(D) =
1, 7 ¢ E(x, D) and H is the representation space of . Then it can be shown
that dim $p = 1 and the maximum number of inequivalent representations
in G(x, D) is not greater than the order of the Weyl group of g with respect
to some Cartan subalgebra. Moreover if G is a complex semi-simple Lie
group all representations in €(x, D) are equivalent (provided d(D) = 1).

Let = be an irreducible unitary representation of G on a Hilbert space
9. For any D € P let Eg denote the orthogonal projection of $ on Dyp.
Since = is irreducible and unitary it is quasi-simple and therefore it follows
from Theorem 4 that dim $p < . Hence the function ¢p"(x) =
sp(Ep m(x)Ep)(x ¢ G) is well defined. It is an analytic function on G
and op" (4 x 4~') = g™ (x) (4 € K).

THEOREM 7. Let m and =, be irreducible unitary representations of G on
two Hilbert spaces. Let P, be the set of all elements in P which occur in ..

Suppose that for some D e P, and c € C,

P = Cop
Then m and =, are equivalent. Conversely if m, and =, are equivalent -
. op = ppr
for all D e P.

In case d(D) = 1 the function ¢g” is the same as the spherical function
introduced by Gelfand and Naimark.® Now suppose G is a complex semi-
simple Lie group and d(®) = 1. Then we have seen above that the repre-
sentation = is completely determined within equivalence by its character x.
Actually in this case an explicit formula for ¢p” in terms of x can be ob-

tained quite easily. This formula is very similar to the one given by Gel-
fand and Naimark® for representations of the principal series.
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