REPRESENTATIONS OF SEMISIMPLE LIE GROUPS ON A BANACH SPÀCE

By HARISH-CHANDRA

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated by O. Zariski, January 26, 1951

Let G be a connected semisimple Lie group and \mathfrak{S} a Banach space. By a representation of G on \mathfrak{S} we mean a mapping π which assigns to every $x \in G$ a bounded linear operator $\pi(x)$ on \mathfrak{S} such that the following two conditions are fulfilled:

(1) $\pi(xy) = \pi(x)\pi(y)$ and $\pi(1) = I$ (here 1 is the unit element of G and I the identity operator on \mathfrak{H}).

(2) The mapping $(x, \psi) \to \pi(x)\psi(x \in G, \psi \in \mathfrak{H})$ is a continuous mapping of $G \times \mathfrak{H}$ into \mathfrak{H} .

The object of this note is to announce a few theorems on these representations. No attempt is made to give proofs here. A detailed account with complete proofs will appear elsewhere in another paper.

Let R and C, respectively, be the fields of real and complex numbers. Let g_0 be the Lie algebra of G and g the complexification of g_0 . We denote the universal enveloping¹ algebra of g by \mathfrak{B} . Let $C_c^{\infty}(G)$ be the set of all complex-valued functions on G which are indefinitely differentiable everywhere and which vanish outside a compact set. Let π be a representation of G on \mathfrak{F} and V the set of all elements in \mathfrak{F} which can be written as finite linear combinations of elements of the form

$$\int_G f(x) \pi(x) \psi \, dx \qquad (\psi \in \mathfrak{H}, f \in C_c^{\infty}(G))$$

where dx is the left invariant Haar measure on G. V is called the Gårding subspace² of \mathfrak{G} (with respect to π). For every $X \in \mathfrak{g}_0$ we can define a linear transformation $\pi_V(X)$ of V into itself such that

$$\pi_{\mathbf{v}}(\mathbf{x})\psi = \lim_{t\to 0} \frac{1}{t} \left\{ \pi(\exp tX) - I \right\} \psi \qquad (\psi \in V, t \in R).$$

The mapping $X \to \pi_V(X)$ is a representation of \mathfrak{g}_0 and therefore it can be extended uniquely to a representation π_V of \mathfrak{B} on V. Let $\psi \in V$. Consider $\overline{\pi_V(\mathfrak{B})\psi}$ where the bar denotes closure in \mathfrak{F} . It turns out that in general $\overline{\pi_V(\mathfrak{B})\psi}$ is not invariant under $\pi(G)$. In order to avoid this unpleasant state of affairs we replace the Gårding subspace V by the space of all well-behaved elements. This is defined as follows. Let U be a subspace of \mathfrak{F} (not necessarily closed). We say that U is well-behaved under π if the following conditions hold.

(1) There exists a representation π_U of g_0 on U such that

$$\pi_U(X)\psi = \lim_{t\to 0} \frac{1}{t} \{\pi(\exp tX) - I\} \psi \qquad (X \in \mathfrak{g}_0, \psi \in U).$$

(2) For any continuous linear function f on \mathfrak{H} and $\psi \in U$ the function

$$f(\boldsymbol{\pi}(\boldsymbol{x})\boldsymbol{\psi}) \qquad (\boldsymbol{x} \in G)$$

is an analytic function on G. It is clear that if U_1 , U_2 are two well-behaved subspaces of \mathfrak{F} then $U_1 + U_2$ is also well-behaved. From this it follows that the union W of all well-behaved subspaces in \mathfrak{F} is itself a well-behaved subspace. An element $\psi \in \mathfrak{F}$ will be called well-behaved if $\psi \in W$ and W is called the space of all well-behaved elements. It is clear that the mapping $X \to \pi_W(X)$ ($X \in \mathfrak{g}_0$) can be extended uniquely to a representation π_W of \mathfrak{B} on W. The following theorem justifies the notion of well-behaved elements.

THEOREM 1. Let ψ be a well-behaved element of \mathfrak{F} . Then $\pi_{W}(\mathfrak{B})\psi$ is invariant under $\pi(G)$.

Let G^* be the adjoint group of G and let K^* be a maximal compact subgroup of G^* . Let K be the complete inverse image of K^* in G. Then Kis connected though it is not necessarily compact. Let P be the set of all equivalence classes of finite-dimensional irreducible representations of K. Let $\mathfrak{D} \in P$ and $\psi \in \mathfrak{G}$. We say that ψ transforms under $\pi(K)$ according to \mathfrak{D} if the space U spanned by $\pi(u)\psi$ for all $u \in K$ is finite-dimensional and the representation of K induced on U is fully reducible into a direct sum of irreducible components each of which lies in \mathfrak{D} . Let $\mathfrak{G}_{\mathfrak{D}}$ be the set of all elements in \mathfrak{H} which transform under $\pi(K)$ according to \mathfrak{D} . Put $W_{\mathfrak{D}} =$ $W \cap \mathfrak{G}_{\mathfrak{D}}$. Let Z be the center of G and \mathfrak{Z} the center of \mathfrak{B} . Let V be the Gårding subspace of \mathfrak{H} and π_V the representation of \mathfrak{B} on V as defined above. We shall say that π is a quasi-simple representation of G if there exist homomorphisms c and χ of Z and \mathfrak{Z} respectively, into C such that the following two conditions hold:

(1)
$$\pi(d) = c(d)I$$
 $(d \in Z).$
(2) $\pi_V(z)\psi = \chi(z)\psi$ $(z \in \mathfrak{Z}, \psi \in V)$

In case condition (2) is satisfied we say that π has the character χ .

THEOREM 2. Let π be a quasi-simple representation of G on \mathfrak{G} . Then $\sum_{\mathfrak{D} \in \mathbf{P}} W_{\mathfrak{D}}$ is dense in \mathfrak{H} and $\mathfrak{H}_{\mathfrak{D}} = \overline{W_{\mathfrak{D}}} (\mathfrak{B} \in \mathbf{P})$.

Here $\sum_{\mathfrak{D} \in \mathbf{P}} W_{\mathfrak{D}}$ is the space consisting of all finite linear combinations of elements in $U = W_{\mathfrak{D}}$

elements in $\bigcup_{\mathfrak{D} \in \mathbf{P}} W_{\mathfrak{D}}$. THEOREM 3. Let π be quasi-simple and let $\psi \in \sum_{\mathfrak{D} \in \mathbf{P}} W_{\mathfrak{D}}$. Put $U = \overline{\pi_{W}(\mathfrak{B})\psi}$ and $U_{\mathfrak{D}} = U \cap \mathfrak{H}_{\mathfrak{D}}(\mathfrak{D} \in \mathbf{P})$. Then $\pi_{W}(\mathfrak{B})\psi = \sum_{\mathfrak{D} \in \mathbf{P}} U_{\mathfrak{D}}$ and

dim $U_{\mathfrak{D}} < \infty$ for every $\mathfrak{D} \in \mathbf{P}$.

Let U, V be two subspaces of \mathfrak{F} . We write U > V or V < U if $U \supseteq V$ and $U \neq V$. Let U and V be two closed subspaces of \mathfrak{F} invariant under $\pi(G)$. We shall say that V is maximal in U if U > V and there exists no closed invariant subspace U_1 such that $U > U_1 > V$.

THEOREM 4. Let π be a quasi-simple representation of G on a Banach space $\mathfrak{H} \neq \{0\}$. Then there exist two closed invariant subspaces U and V in \mathfrak{H} such that V is maximal in U.

Now we shall consider the special case when \mathfrak{H} is a Hilbert space and π is a unitary representation. From Theorem 4 we deduce the following result.

THEOREM 5. Let π be a quasi-simple unitary representation of G on a Hilbert space $\mathfrak{H} \neq \{0\}$. Then there exists a closed invariant subspace U of \mathfrak{H} such that $\{0\}$ is maximal in U (i.e., $U > \{0\}$ and U is irreducible under $\pi(G)$).

The above theorem has the following significance in relation to the theory of factors of Murray and von Neumann.³ Let π be a unitary representation of G on a Hilbert space \mathfrak{H} . Let \mathfrak{A} be the smallest weakly closed algebra of bounded operators on \mathfrak{H} containing $\pi(G)$. It is known⁴ that if \mathfrak{A} is a factor, i.e., if the center of \mathfrak{A} consists of scalar multiples of I, then π is quasi-simple. Therefore in this case Theorem 5 is applicable and so it follows from the results of Murray and von Neumann³ that \mathfrak{A} must be a factor of type I_n or I_∞ . This shows that factors of Type II and Type III cannot arise from a unitary representation of a semisimple Lie group on a Hilbert space. For the consequences of this result we refer the reader to the above-quoted paper of Mautner.

Let $\mathfrak{D} \in \mathbb{P}$. We say that \mathfrak{D} occurs in π if $\mathfrak{H}_{\mathfrak{D}} \neq \{0\}$. It is known that all unitary irreducible representations of G are quasi-simple.

THEOREM 6. Let χ be a homomorphism of 3 into C such that $\chi(1) = 1$ and let $\mathfrak{D} \in \mathbb{P}$. Let $\mathfrak{E}(\chi, \mathfrak{D})$ denote the set of all representations π of G which have the following properties:

- (1) π is an irreducible unitary representation of G on some Hilbert space.
- (2) \mathfrak{D} occurs in π .

Then $\mathfrak{E}(\chi, \mathfrak{D})$ contains only a finite number of inequivalent representations. Let $d(\mathfrak{D})$ denote the degree of any representation in \mathfrak{D} . Suppose $d(\mathfrak{D}) = 1$, $\pi \in \mathfrak{E}(\chi, \mathfrak{D})$ and \mathfrak{H} is the representation space of π . Then it can be shown that dim $\mathfrak{G}_{\mathfrak{D}} = 1$ and the maximum number of inequivalent representations in $\mathfrak{E}(\chi, \mathfrak{D})$ is not greater than the order of the Weyl group of \mathfrak{g} with respect to some Cartan subalgebra. Moreover if G is a complex semi-simple Lie group all representations in $\mathfrak{E}(\chi, \mathfrak{D})$ are equivalent (provided $d(\mathfrak{D}) = 1$).

Let π be an irreducible unitary representation of G on a Hilbert space \mathfrak{H} . For any $\mathfrak{D} \in P$ let $E_{\mathfrak{D}}$ denote the orthogonal projection of \mathfrak{H} on $\mathfrak{D}_{\mathfrak{D}}$. Since π is irreducible and unitary it is quasi-simple and therefore it follows from Theorem 4 that dim $\mathfrak{H}_{\mathfrak{D}} < \infty$. Hence the function $\varphi_{\mathfrak{D}}^{\pi}(x) = sp(E_{\mathfrak{D}} \pi(x)E_{\mathfrak{D}})(x \in G)$ is well defined. It is an analytic function on Gand $\varphi_{\mathfrak{D}}^{\pi}(u \times u^{-1}) = \varphi_{\mathfrak{D}}^{\pi}(x) (u \in K)$.

THEOREM 7. Let π_1 and π_2 be irreducible unitary representations of G on two Hilbert spaces. Let P_{π_1} be the set of all elements in P which occur in π_1 . Suppose that for some $\mathfrak{D} \in P_{\pi_1}$ and $c \in C$,

$$\varphi_{\mathfrak{D}}^{\pi_1} = c \varphi_{\mathfrak{D}}^{\pi_2}$$

Then π_1 and π_2 are equivalent. Conversely if π_1 and π_2 are equivalent

$$\varphi_{\mathfrak{D}}^{\pi_1} = \varphi_{\mathfrak{D}}^{\pi_2}$$

for all $\mathfrak{D} \in \mathbf{P}$.

In case $d(\mathfrak{D}) = 1$ the function $\varphi_{\mathfrak{D}}^{\pi}$ is the same as the spherical function introduced by Gelfand and Naimark.⁵ Now suppose G is a complex semisimple Lie group and $d(\mathfrak{D}) = 1$. Then we have seen above that the representation π is completely determined within equivalence by its character χ . Actually in this case an explicit formula for $\varphi_{\mathfrak{D}}^{\pi}$ in terms of χ can be obtained quite easily. This formula is very similar to the one given by Gelfand and Naimark⁵ for representations of the principal series.

¹ See, for example, Harish-Chandra, Ann. Math., 50, 900-915 (1949).

² Garding, L., PROC. NATL. ACAD. SCI., 33, 331-332 (1947).

³ Murray, F. J., and von Neumann, J., Ann. Math., 37, 116-229 (1936).

⁴ See Mautner, F. I., Ann. Math., 52, 528-556 (1950).

⁶ Gelfand, I. M., and Naimark, M. A., *Doklady Akad. Nauk SSR (N. S.)*, **63**, 225-228 (1948).