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Introduction. The representation theory of semisimple Lie algebras over

the field of complex numbers has been developed by Cartan and Weyl. How-

ever some of Cartan's proofs (see [2])(2) make explicit use of the classifica-

tion of semisimple Lie algebras and in fact require a verification of the as-

serted statement in each case separately. Weyl [12 ] has given alternative

proofs of these results by making use of general arguments depending on the

theory of representations of compact groups and in particular on the Peter -

Weyl Theorem. His proofs therefore are necessarily of a nonalgebraic nature.

In the first part of this paper we propose to give "general" algebraic proofs of

some of these theorems. This work happens to overlap considerably with some

recent results of Chevalley [3]. In particular the formulation of Theorem 1

and some of the ideas in the proof are due to him. I shall mention them more

specifically later in due course.

Recently great interest has arisen in the theory of representations of a

Lie group in a Hubert space. Since every such representation defines a repre-

sentation of the corresponding Lie algebra (see Gârding [8]) it is natural to

study infinite-dimensional representations of a Lie algebra. Part II of this

paper contains a theorem (Theorem 4) concerning such representations of

complex semisimple Lie algebras. The desirability of proving such a result

was pointed out to me by Mautner. Also its significance for unitary repre-

sentations of complex semisimple Lie groups on a Hubert space will be

brought out by him in a separate paper.

In Part III we define and study the characters of the universal enveloping

algebra 33 of a semisimple Lie algebra ?. They are essentially homomorphisms

of the center of 33 into the field of complex numbers. We show that every

such homomorphism is determined by a linear function on a fixed Cartan

subalgebra of ?. Theorems 5 and 6 contain the principal results of Part III.

Part IV is devoted to a brief study of the representations of a complex

semisimple Lie group on a Hubert space. With certain representations of the

group (in particular with all those which are irreducible and unitary) we

associate in a natural way a character of 93. It follows from Theorem 6 that

in order that a character may be associated to some representation of the
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group it must satisfy certain conditions. By a method due to Gelfand and

Naimark [7] we show in Theorem 7 that these conditions are also sufficient.

I should like to thank Dr. F. I. Mautner for a number of very valuable

discussions and also for his help in some questions concerning operator theory

which arise in Part IV.

Part I. Representations of semisimple Lie algebras. Let 2 be a semi-

simple Lie algebra over an algebraically closed field K of characteristic zero.

For any X& let ad X denote the linear mapping (ad X) Y= [X, Y] ( FGS) of 8

into itself. Put B(X, Y) = sp (ad X ad Y). Then B(X, Y) is a nondegenerate

bilinear form defined on 2. Let f) be a Cartan subalgebra of £ and a a root of

S with respect to f). We denote by HJ the unique element in f) such that

B(H„', H)=a(H) for all HÇzfy, It is known that a(H¿) is a rational number

greater than 0. Put Ha = (2/a(HJ ))Há so that a{Ha) = 2 and let % be the set

of all linear functions on f) with values in K. Then % is a vector space over K

dual to f). The linear transformation sa in % defined by sa\=\ — \(H«)a (X£5)

is called the Weyl reflexion with respect to the root a. It is known that the

group W generated by the sa's for the various roots a is finite, and if a and ß

are any two roots then saß is also a root. W is called the Weyl group of ? (with

respect to f)).

Let 2 = {cti, 1 áí úl} (I = dim ï)) be a maximal set of linearly independent

roots. We shall say that S is a fundamental system of roots if every root a is

of the form a= 2_¿is»s¡ ^iai where di are integers which are either all non-

negative or all nonpositive. It is known that fundamental systems al-

ways exist. Further if 2= {a,-, l^i^l} is a fundamental system then

the Weyl reflexions sa¡, l^i^l, generate the whole group W and every

root a can be written in the form a = a<Xi (<tG.W, <X{Çz2). Put Si = sai and Hai

= Hi, l^i^l. Then 5,ay = aJ+aJ¿aí where a,¿= —ay(7J¿). Since s,«, is a root,

an is an integer such that »,-,= —2, o¡,-^0, Ít^J. It is clear that if the integers

o-ij, 1 á*, j^l, are given we can find out which linear combinations of a¡ are

roots since they are all of the form s^s^ • ■ ■ s,r, <Xj 1 ̂ i\, ■ ■ • , iT, JZ*1, r^.0.

Thus the matrix A = (a,-/), 1 á¿, jûl determines the root diagram of 8 com-

pletely. We shall call A the Weyl matrix of ? (with respect to f)). Notice that

A has the following three properties.

(1) an = — 2,        a,,- â 0,        i 7* j,

(2) au = an,

(3) det A 5¿ 0.

The last assertion follows from the fact that a,, Imitai, are linearly inde-

pendent. A natural question to ask is the following: Given a square matrix A

with integral coefficients what are the conditions which A must satisfy in

order that A be the Weyl matrix of some semisimple Lie algebra Ç? This is

one of the two questions considered in Theorem 1.
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Now we come to the second question. Let us call an element X£g rational

if \(Hi)ÇzKo, l^iél, where K0 is the prime field of characteristic zero con-

tained in K. It is clear that X = 2^iá«g¡ c<a< (c¿G-^o). We say that X>0 if

Xf^O and c¿>0, i being the least index such that Cj^O. Let go be the set of all

rational linear functions on f). For any X, p-Ggo we write X>p, or p.<X if

X— n>0. In this way go is completely ordered under the relation >. This

order is called the lexicographic order in go with respect to the ordered set

{«i, • • • , at}. We shall call an element X£g0 integral if X(i/¿) is an integer

for all 1 ;£áf ¿Ü/, and dominant integral if, in addition, X(ü<) ^0, l^i^l. Let p

be a representation of S on a finite-dimensional space V. Given any X£g we

define V\ to be the set of all ^£ V such that p(H)\p =\(H)rp for all JI£f). X is

called a weight of p if V\t¿ \o\. It is known that every weight A of p is an

integral linear function on f) and V= ^a ^a where the sum is direct and A

runs over all the weights of the representation, these being only finite in

number. Hence p has a highest weight Ao and it is known that Ao(-ff¿)^0,

1 =i=1, so that Ao is a dominant integral function. The second question can

now be phrased as follows: Given a dominant integral function A does

there exist a finite-dimensional representation p of 8 such that A is the highest

weight of p?

I should like to mention that in my original proof I had considered the

second question alone. The idea of dealing with both questions simultaneously

is due to Chevalley [3] who obtained independently a proof of the theorem

given below. I present here a modified version of my original proof so as to be

able to consider the two questions together. But in this modification I have

adopted several of Chevalley's ideas. In particular the construction of the

algebra 21 and the consideration of its representations on © is due to him.

Theorem 1. Let an, 1 ̂ i, j^l, be I2 integers such that:

(1) <z¿¿= —2, a;y2ï0, Í9*j, and a,-y = 0 whenever ay¿ = 0, 1 ̂ i, jjíl.

(2) det (al7)^0.

(3) The group Wgenerated by the linear transformations sit l^i^l, given by

SiXj = Xj-{-ajiXi (xí, i^i^l, being indeterminates) is finite.

Then there exists a semisimple Lie algebra 8 over K with a Cartan subalgebra f)

such that the following conditions are fulfilled. It is possible to find a set of linear

functions «i, i^i^l, on Í) such that a¡, l^i^l, is a fundamental system of

roots of S with respect to f) and ffiaj = aj-\-ajiai where a i is the Weyl reflexion

with respect to a,-. Finally ifXi, l^i^l, are any given integers greater than or

equal to 0 we can find an irreducible finite-dimensional representation p of 8

such that the highest weight A0 of p »5 given by(z) A.0(Hai) =X,-, l^i^l.

Before proceeding with the proof we make some remarks about terminol-

ogy. All vector spaces and algebras appearing in our discussion are under-

stood to be over K. A vector space V (or a representation) is not necessarily

(3) As before we define Ha for any root a of S in such a way that a(Ha) —2.
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assumed to be finite-dimensional unless it is explicitly stated to be so. Given

any collection { U¡; jŒl} of subspaces of V indexed by a set I (finite or

infinite) we denote by X)í£r U¡ the smallest subspace of V containing all

Uj. In fact 5Zj Uj consists of all finite sums of the form ipi-\- ■ ■ ■ +^r where

each \¡/i belongs to some Uj. The sum X^'G2" U¡ls sa¡d to be direct if for every

finite subset Jo of I the sum S,-gr0 U¡ is direct. If 2 is any set of linear map-

pings of V into itself we say that V is irreducible under 2 if there exists no

subspace U of V such that U is invariant under 2 and U^ V, Uy* {o}.

Given an associative algebra 21, we shall always write [z, w]=zw — wz for

any z, w£2í. We use a similar notation whenever z and w are matrices or

linear transformations on a vector space. If 3JÎ is a left ideal in 21 we define

the natural representation ir of 21 on the factor space 2l* = 2í/3Díf as follows.

Let 2—>s* denote the natural mapping of 21 on 21*. Then ir(z)w* = (zw)*,

z, w£2l. From the fact that 90? is a left ideal it is easily verified that ir is a

representation.

After these preliminary remarks we return to Theorem 1. The proof is

rather long but is otherwise not very complicated. It depends on the con-

sideration of the representations of a certain infinite-dimensional associative

algebra 21. We shall have to prove a series of lemmas about left ideals in this

algebra, some of which are very simple but are nevertheless essential. Let 21'

be the free associative algebra of all noncommutative polynomials in 31

independent variables x(, yl, Hi, l^i^l, with coefficients in K. Let Ï)' be

the subspace of 21' spanned by Hi, l^i^l. We define the linear functions

a» 1 á i á I, on f}' by <xí{H¡ ) = — fly, i ^ i, j g I. Since det (a,,) ^ 0, a¿ are linearly

independent. Let U' be the smallest ideal in 21' containing the set © consisting

of the following elements.

[Hi, HI],        [X!, Y! ] - El,        [XI, Y ¡I i* j,

[Hj ,Xi]~ ai(Hi )X!,        [Hi', Y i ] + o,-(H/ ) Y i, U », j ^ l

Let ® be the free associative algebra over K with / generators t?i, • • • , yi.

Given any linear function ¡x on f/ we define a representation ir^ of 21' on © as

follows. irli(l)=I where / is the identity mapping of & and

sr„' (Y/)rihr¡h ■ • ■ t\ir = ViVhVh ' ' ' Wr>

(2a)     iri(H')rihr)h ■ ■ ■ r¡jr

= - [ah(H') + ah{H') + ■■■+ ah(fl') - ß(H')}Vhr,h ■ ■ ■ ntr

where H'&f, lgi£l, lèju ■ • ■ , jr^l, r^O and «¿ • • • Vir = l if r = 0.

Finally 7t/ {XI) is defined by induction on r in the following way.

xM'(A7)l = 0,

(2b) xM' (X'i)r¡h ■ ■ ■ i)ir = &ihv¿ (H/)r¡Jt ■ ■ ■ r¡jr

+ riiÁ*ií(Xí)i)i,. • • • Vi)
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where StJ- is the usual Kronecker symbol. Since 21' is a free algebra and

Vh ' ' " Vir< 1 áji. • ■ • , jrúh r^O, form a base for ® it is clear that 7r„' is

uniquely defined by the above equations. It is easily verified that the kernel

of irj! contains the set© and therefore IF. Now suppose H' G £)' and ir¿ (IT) = 0.

Then

ah(W) + ah(H') + ■■■ + au(II') - „(#') = 0

for all 1 áji, • • • ,jr=il- This implies that <Xj{H') = 0 for all 1 &j&l. Since a,

are linearly independent, H' = 0. Hence it is clear that f)T\\X' = {0}.

Let 21 be the factor algebra 2l'/U' and let X,-, Ft-, Hi respectively be the

images of XI, Y<, HI in 21, t£i£l. Since £/fW = {o}, ft' is mapped iso-

morphically under the natural mapping of 21' on 21, on the linear subspace f) of

21 spanned by Hi, l^i^l. Hence dim h = dim 1/ = / and every linear function

X on f)' can also be regarded as a linear function on f) if we put X(iJ¿) =\(Hi),

l^i^l. In particular this holds for a¡ and therefore a¡(Hi) = —a¡i. Since the

kernel of 7rM' contains U', ttJ! defines in the obvious way a representation w,,

of 21 on 05.
Consider the representation t' of 21' on 21 defined as follows:

jr'(l)a = o,        ir'(X/)a = [X!, a],       v'(Yl)a = [F<, a],

*-'(///)« = [Hi' ,a], 1 á i á l, a G i.

It is easily seen that ir' maps every element of the set © into zero. Hence the

kernel of it' contains IF. Therefore it' actually determines a representation tt

of 2Í = 2I'/U'. ir is called the adjoint representation of 21 and we shall write

ad z instead of ir(z) for any 2G21.

The subspace I) of 2Í is an abelian Lie algebra under the bracket operation.

Given a representation 6 of this Lie algebra on a vector space V and a linear

function X on f) we denote by V\ the subspace of V consisting of all elements

^£7 such that 6(H)t = \(H)\¡> (ÜGÍ)).

Lemma 1. The sum 2jx F\, where X runs over all linear functions on f), is

direct. If U is any subspace of V which is invariant under 6(f)) then

un(^v¿\ = E(^hfx).

Let^Gi/n(2x Fx). Then ^=^+ ■ ■ ■ +$r where tiGV^ and X.-^Xy,

1 Sat'i júr, i^j. We claim that i/'.-G U, i^i^r. If r = 1 this is true trivially.

Hence we may assume r>\ and use induction on r. We can find an £?Gf)

such thatXiCfO^X^tf), 2£i£r. Then

0(JW -  £ M#)*< G EA.
lg.ár

Hence
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e(H)yp -m (H)t = Z {MH) - HH)\h e u.

Therefore by induction hypothesis {X»(iï) — Xi(ií) }^,-G U, 2^i^r. But

\i(H)-MH)^0 for lúiúr. Hence ¿¡EU, 2£i£r and therefore \piEU,

If we take U= {o} above it follows that the sum 23\ V\ is direct. Also

the above proof shows that UC\( Xa Fx) = £x (Fxnt/).

Let 7T be a representation of 2Í on a vector space V. X being any linear func-

tion on f) we define V\ as above to be the set of all i^G V such that ir(H)\(/

= \(H)\p (HÇzf)). \p is said to be homogeneous of weight X (or to have weight X,

or to belong to the weight X) if ̂ G V\ and X is called a weight of ir if V\¿¿ {o}.

It is clear that if \p has the weight X and X is not a weight then \p = 0. We shall

call the dimension of V\ the multiplicity of X in ir. Now in particular we may

take ir to be the adjoint representation of 21 and define the subspaces 2lx- A

weight of the adjoint representation will be called a rank and an element z

will be said to be homogeneous of rank X (or to have rank X) if z£2Ix.

Lemma 2. 21 = J^x 2lx and every rank is a linear combination of a,-, l^i^l,

with integral coefficients.

Let P, Q, M denote any ordered set of integers as follows:

P = {h, *'î, • • • , ip], 1 á H, • • • , H á l, P à 0,

(3) Q - [jn h ■ ■ • ,},}, 1 ,£ii, ••-,/, á l, qè 0,

M =  jmi, ■ • ■ , nii], »í¡ ^ 0, 1 I « ^ i,

where P or Ç is empty if p or g is zero. Put |-P| =p, \Q\ =q, rank P = ai1

+«¿2+ • • • +«ip, rank Q = a,-l-\-ajt-\- ■ ■ ■ +«/, the rank being understood

to be zero in case the set is empty. We denote by <p the empty set and by 0

the set M all of whose elements are zero. Put

(4) s(Q, M, P) = YhYh ■ ■ ■ YhE?H? ■ ■ ■ H7'XhXh ■ ■ ■ Xip

where Hf=\ if m = 0. Making use of the relations

[Hi, Hj\ = 0,        [Xi, Yj] = Hi,        [Xi, Yj] = 0, i * j,

[H, Xi] = ai(H)Xi,        [H, Yi] = -«,-(//)Yi,

1 gt, j^l, if£i), which hold in 21 it follows easily that 21 is spanned by the

elements z(Q, M, P) taken together for all Q, M, and P. Clearly z(Q, M, P)

has the rank rank P — rank Q. Let P denote the set of all linear functions on t)

of the form rank P — rank Q for all P and Q. Then since z(Q, M, P) span 2Í,

2IC]Cxep ^x- Hence 21= Xagp Six = 2^x 9I\. But from Lemma 1 the sum
^x 2Ix is direct. Hence Six = {0} if X(£P. This proves the lemma.

Given z£2I and a linear function Xo on t) it follows from Lemmas 1 and 2
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that we can find a unique element zx0G2tx0 such that z — Zx0G £x*x0 A\. Zx0

will be called the homogeneous component of z of rank Xo. Clearly Z\ = 0 for all

linear functions X except a finite number and z = £x z\.

Exactly as before we call a linear function X on f) rational if \(Hî)ÇzK0

for all i^i^l. We order rational functions lexicographically with respect to

the ordered set {«i, • • • , a¡}. Let !q be the subalgebra of 21 generated by

Hi, 1 é*'á/, and 1 and let $ be the left ideal Eiá«! 2IX<.

Lemma 3. $ coincides with the subspace spanned by all elements of the

form z(Q, M, P), \P\ >0. Further SßZ) £x>o 2Ix where X runs over all rational

functions on f) which are greater than 0.

It is clear from the definition of $ that z(Q, M, P)E¥> if \P\ >0. Con-

versely let zG-P- Then z= X^is»s* z.X,- (z,G2i). Since z< is a linear combina-

tion of z(Q, M,.P') and since z(Q, M, P')Xi = z(Q, M, P) with |P| >0, the

first assertion follows.

Let zG2ix where X is a rational function greater than 0. We know that z

is a linear combination of z(Q, M, P). Since z(Q, M, P) has rank rank P — rank

Q, we may, in view of Lemma 1, assume that only such elements z(Q, M, P)

appear in this linear combination for which rank P — rank Q=X. Since X>0

it follows that rank P>0 and therefore | P| >0. Hence zEty-

Lemma 4. $n£= {o}.

Let zG^ng». Then z= £«„...,«, a(mlt • • ■ , mi) HT1 • • • H?' where

a(mu • • • , mi)ÇzK and the sum is finite. Let p. be any linear function on f)

and let x,, be the representation of 21 on ® corresponding to (2). Then if

»i=»(iii), i¡s»áí,

*v(z)l =      X      a(mu ' - • . w;Vi ' • • • Ml  •
mi, ■ * • ,mi

But since zG*^ and ir^Xi)! —0 it follows that

X)      a(mu • • • . »*¡)pi ' • • ■ m   =0.
mi, • • • ,ni

This is true for every p and therefore for every choice of pi, p2, • • • , ßi£zK.

Since .ST is an infinite field it follows that all the coefficients a(m\, • • • , m{)

are zero. Hence z = 0.

Let A be any linear function on f). Put

Oa =   £ »(Hi - A(Hi)), £a =   £ ©(H,- - A(Hi)).

Lemma 5. ^+QA^2l.

It is sufficient to show that IG'Ç + Qa. Suppose contrary to the assertion



1951] UNIVERSAL ENVELOPING ALGEBRA OF A LIE ALGEBRA 35

IG^ + Oa- Then we can find z¿, Wi£2I such that

i = 22 zíXí + 22 «<(#< - HHÙ).

Since elements having different ranks are linearly independent we may as-

sume that z< has rank — a,- and w¿ is of rank zero. Now

1 s   22 «¿Hi - A(Hi)) mod ̂ 3

and since w< is of rank zero, Uí(Hí—A(Hí)) = (Hí—A(Hí))uí. Further

*,• = 22 di{Q, M, P)z{Q, M, P) (ai(Q, M, P) G K)

where the sum is only over such (Q, M, P) for which rank Q = rank P

since Ui is of rank zero and z(Q, M, P) has the rank rank P — rank Q. There-

fore from Lemma 3,

Ui = 22 <*>■(#> M, <t>)z{4>, M, </>) mod %

Since z(4>, M, </>)G§ it follows that

22  tti(Hi - A(Hi)) -   22  (Hi - A(Hi))ui G ̂ 3 + £a-

Hence 1G^P + £>a. Therefore l=z+A where zG*?, AG€>a- Hence 1— A = z

G ^3^$ = {o} from Lemma 4. Therefore 1 = AG€>a- Now consider the repre-

sentation 7Ta of 21 on © corresponding to the linear function A on Í). Since

AG§a it follows from the definition of tta that 7Ta(A)1=0. But since 1=A,

7Ta(A) • 1 =7ta(1) -1 = 1. Since 1 ̂ 0 in ® we get a contradiction. The lemma is

therefore proved.

Lemma 6. Let m be any integer greater than or equal to 0. Then

[Xi, Y?] = mYTl(Hi -m+ 1), lúiúh

where by definition Yf=l if p^ 0.

The assertion is clearly true for m = 0, 1. Hence we may assume m^2 and

use induction. Then

[Xi, Y?] = [Xi, Yi]YTl + Yi[Xi, Y?-1]

- HiY?"1 +(m- i)YT\Hi -m+2)

by induction hypothesis. But [Hi, Yi] = — ccí(Hí) F<= — 2F¿. Therefore

HiYi=Yi(Hi-2) and

[Xi, Y?] = Y?~\Hi - 2m + 2) + (m - 1)YÍ~\Hí -m + 2)

= mY7~\Hi - m + 1).
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Now put 6u = 0 and

$ij = (ad Y7+1)Yh i * j,

la», júl- This is well defined since ay¿^0 for i^j.

Lemma 7 (4). [Xk, Oij]=0for all là», J, *á¿

We may assume that *»*;. First suppose k^i. Then [A-*, F,] =0 and there-

fore [ad Xk, ad F,-]=0. Hence

(ad Xk)dij = ad X4(ad 7tY**lrt

= (adF()^([lip F,]).

If fc^j, [Xk, Yj] = 0 and we get our result. If k—j, we get

[Xk, 6a] = (ad YiY^Hj

- (ad F«)*[rft #,]

= Oi(ffi)(ad F.O^Ti.

If ayi>0, (ad Fi)o'iF¿ = 0. On the other hand if ayi = 0, it follows from as-

sumption (1) of Theorem 1 that ce ,•(//,-) = — a,-y = 0. Hence in either case

[Zk,*«,]-0.
Finally suppose & = i. Then [A¿, 0,y]=ad (X<F?í<+1)F,-. From Lemma 6,

XiF^+^ay.+ lW (Hi-aH). Hence

[X„ 9fi] = (a* + 1)|ad yT*A (Hi - aii)\Yj.

But

{ad (Hi - «i.OJF,- = [Hi, Yj] - ajiYj = - a/(#«)F, - »„F, - 0.

Hence [Xt-, 0tJ] =0 and the lemma is proved.

Let X,-, i^i^l, be any given set of non-negative integers and let Ao be

the linear function on f) defined by Ao(Hi) =X,\ We consider the left ideal

33a0 = $ + Qaq+    £    2Wi3-2i+  £    2IF-'+1
lái.jSl lSiél

in 21, where $ and Qa, are defined as in Lemma 5.

Lemma 8. 93a„^ St.

Suppose the assertion is false. Then 1G93a0. Hence

1 = z + w mod (<ß + QAo)

where zE £is.á¡ 31F?<+1 and wG £iá«„si 2l0l72l. Notice that 0i;- has the

rank — (a;-<+l)a< — ay. By considering components of different ranks we can

(4) This lemma is due to Chevalley.
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show, as in the proof of Lemma 5, that z can be chosen to be a linear com-

bination of elements of the form z(Q, M, P)Y\i+l where rank P — rank Q

— (X,-+l)a,- = 0. Similarly we may assume that w is a linear combination of

elements of the form z(Q, M, P)6i,z{Q', M', P') where rank P+rank P'

— rank Q — rank Q'—(aJi+l)ai — aJ- = 0 (i^j). Now consider a term

z(Q, M, P)Y$<+1 such that rank P-rank ¿= (X¿+l)a¡. If rank Q>0, rank

P>(Xi+l)a¿. Hence z{4>, M, P)Y\'+l has rank P-(Xi+l)a<>0. There-

fore by Lemma 3, it is contained in 93. Since 93 is a left ideal, z(Q, M, P) Y*i+1

G93- Hence the term corresponding to z(Q, M, P) Yfi+1 can be dropped from

the above congruence. Therefore we may assume that z is a linear combina-

tion of elements of the form z(<j>, M, P)Y$i+1 with rank P=(X, + l)a:¿. But

since dj, ItèjSil, are linearly independent rank P= (X,-+l)a:¿ implies that

z(4>, 0, P)=X$i+1. Hence z is a linear combination of elements of the form

HT1 ■ ■ ■ HTlXÎ<+1YÎ<+\ But from Lemma 6,

Xi+l    Xi+l X, r X,+l-i xrX'T   *«+1
Xi     Y i      = Xi [Xi, Y i     J + Xi Y i     Xi

= (X< + l)X$tfXHt - X«) mod $.

Since ÍÍí-X.GOao, X^+1 F?*+1s0 mod (93 + Qa0). This shows that z can be

replaced by zero in our congruence. Hence

1 = w mod ($ + Qa0)

where w is a linear combination of terms of the form z(Q, M, P)daz(Q', M', P')

with rank P + rank P' —rank Q — rank Q' = (ojí+1)o:,+a¡ (i^j). Since we

are considering a congruence mod (93 + QaJ we may clearly assume in addi-

tion that P'=<j) and M' = 0. Hence we have only terms of the form

z(Q, M, P)6isz(Q', 0, <t>) with rank P -rank Q-rank Q'= (ayi+l)a4+a/. From

Lemma 7, A^ commutes with 0,> Hence

2(0, Af, P)eijz(Q', 0, 0) = 2(0, A/, 4>)eijz(4>, 0, P)2(Ö', 0, 0).

But rank P —rank Q' = rank Q+(aji+l)oti+aj>0 (*Vj) and therefore by

Lemma 3, z(0, 0, P)2(Ç', 0, 0)G93. Therefore wG93 and we have 1G93 + Oa„.

But by Lemma 5 this is impossible. Hence 33a0?í2I.

As usual we call a left ideal 9Î in 21 maximal if 9^21 and if there exists no

left ideal 9T in 21 such that 9i'D9c, 91 VSR, and 9ÎV2I.

Lemma 9. Let A be any linear function on I). Then there exists at most one

maximal ideal 9Í in 21 such that 91393 + Qa-

For suppose 9îi, 9Í2 are two distinct maximal left ideals containing 93 + Qa.

Then 9ci+9?2 = 2I. Hence l=Z!+z2 where z,G9c,-, *«1, 2. Notice that if

wG9ci, and ífGÍ), then

[H, w] = Hw- w(H - A(H)) - A(H)w G iRi
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since SÎOOa. Therefore 9îi is invariant under ad f) and from Lemmas 1

and 2, 9ît= £x (SîiPiîIx). Similarly for 9?2. Hence if z¿,0 is the homogeneous

component of z< of rank zero z.-.oGÍJÍ» (» = 1, 2) and 1 =zi,o+z2,o- Therefore

we may assume that Z\, Zi are both of rank zero. But then they can be written

as linear combinations of z(Q, M, P) with rank P — rank Q = 0. If \P\ >0,

z(Q, M, P)Ety. On the other hand if P=<£ then Q = <j> since rank P = rank Q

and z(4>, M,<f>)=c mod Oa (cÇzK) because Hi-A(Hi) GQa, 1 ¿ii^l. Hence it

follows that Zi — c.-G^ + Oa (t=l, 2) for some Ci, c^CLK. Since ZiGSii and

^O^P + Oa, CiG%. But 9ii is maximal and therefore lG^i- Hence Ci = 0.

Similarly c2 = 0. Hence Zi, z2G$ + £U and therefore 1G^5 + Oa. But, in view

of Lemma 5, this is false. Thus the lemma is established.

Remark. Since ^-f-G a 5*= 21 it follows from Zorn's lemma that there exists

at least one maximal left ideal in 21 containing 'Ç + Qa- The above lemma

then shows that it is unique. However we shall not have to invoke Zorn's

lemma for our purpose.

Lemma 10. Let ir be a representation of 2Í on V. If\ and p are linear func-

tions on f) and zG2ix, ^G F,, then ir(z)\j/(E. Fx+„.

Let HGf). Then

*(H)ir(z)t = tt([H, z])4> + tt(z)tt(H)ï

= \(H)ir(z)í + ix(H)ir(z)t

= (\(H) + p(B)M*)t-

Hence 7r(z)t/<G Vx+Il.

We now define a linear transformation <r,-, l^i^l, in the space of all

linear functions on f) as follows:

<r,-X = X — \(Hi)a¡.

Since a\ is the identity, o-,-, lá*á¿. generate a group W. Further, we recall

that a linear function X is called integral if \(Hi), l^i^l, are all integers.

Lemma 11. Let tt be a representation of 2t on V. Suppose for every \pCzV we

can find an integer v>,0 such that w(X¡)\¡/=Tr(Yi)ip = 0, l^i^l. Then every

weight of iv is an integral function. Also if A is a weight of it then for any i,

1 :S i g /, A — k<Xi is also a weight of tt for every integer k such that

min (0, A(Hi)) g k g max (0, A(H{)).

In particular a A is a weight of w for every aÇ^W.

Let A be any weight of tt. Consider any fixed i and choose an element

^G Fa, i/'^O. Let ko be the least integer greater than or equal to 0 such that

Tr(XÏ°+1)yy = 0. Put^o = T(AÎ°)i/'^0. Define & = jr(Ff)ih, ifel. Then by hy-
pothesis \p, = 0 for some integer v ̂  0. Let J be the least integer greater than
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or equal to 0 such that 1/7+1 = 0. Put iA_i = 1. From Lemma 10 it is clear that

^lÊFi+tio-««^ Using this fact together with the relation [Xi, Yi]=Hi we

easily prove by induction on k that

t(-XW* - k[A(Hi) + (2A0 - k+ 1)]^-!, A ̂  0.

On substituting k = 7+1 and remembering that \pJ+i = 0, fa 5*0, 7+1^0 we

get

J = A(Hi) + 2A0.

This shows that A(ift) is an integer. This being true for every i, lgiíf/, it

follows that A is integral. Further ^G Fi+^j-ijjj and faj¿0 for O^k^J.

Hence A —Aa,- is a weight of ir for

-Ao=A = .7-Ao = A(Hi) + ko.

Similarly let kó be the least integer greater than or equal to 0 such that

ir( Fj°'+1)^ = 0. Put 0O = tt( F?°')0 ?¿0 and 0* = 7r(X*)0o, k è 1, and 0_i = 0. Again
we prove by induction on A that

tt(F<)0a. = A { - A(ff<) + (2A0' - A + 1) }0i_!, A è 0.

Let /' be the least integer greater than or equal to 0 such that <¡>y+í = 0. Sub-

stituting A = J' in the above equation we get, as before,

/' = - A(Hi) + 2k¿.

Now 0/.G Fa — (Ao' — A)«,- and 0*^0 for 0 = Ag/'. Hence A —Aa,- is a weight of

7T for

Ao' - /' = - Ao' + A(#<) g A á Ao'.

Combining this with the earlier result we find that A —Ao;,- is a weight of ir

for all integers A such that

min {- Ao, - k0' + A(Hi)} ^ A g max {A0', A(ff,-) + A0}.

Since the integer k=A(Hî) always lies in this range, tr¡A=A— A(7í<)o:¡ is a

weight. This being true for any i and any weight A of ir it follows immediately

that oA is a weight for every a G IF. Finally since A0^0, A0' ̂ 0,

min { - Ao, - Ao' + A(H¡)} á min (0, A(/7¿)) g max (0, A(P,))

^max {k0',A(Hi) + A0}.

Therefore the lemma is proved.

We now return to the left ¡deal 33a„ of Lemma 8.

Lemma 12. Let w be the natural representation of 21 on 2I/33a0 = 2I*. Then A0

is a weight of ir, and every weight of w is of the form A = Ao — (¿i«i+ • • • +á¡a¡)

where di are integers greater than or equal to 0. Further 21* = 22a 2IÎ where the
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sum is direct and is over all weights A of t. Finally, given any z*G2I* we can

find an integer v^O such that

tt(X-)z* = t(Y"í)z* = 0, láiáí.

Let z-^-z* denote the natural mapping of 21 on 2Í*. Since from Lemma 8,

1G93a„, 1*5^0. Also 33a0DOa0 and therefore it is clear that l*G2i*Ao. Hence

Ao is a weight of tt.

Given any zG2l we can write it as a linear combination of z(Q, M, P).

But clearly z(Q, M, P)E.^ if |P| >0 or is congruent to cz(Q, 0, <j>) mod

Qa„ (cElK) if \P\ =0. Hence z is congruent mod ^P + Qa0 to a linear com-

bination of z(Q, 0, 4>). Therefore (z(Q, 0, 0))* taken together for all Çspan 21*.

Since z(Q, 0, <¡>) has the rank-rank Q and (z(Q, 0, <¡>))*=w(z(Q, 0, 0))1* it

follows from Lemma 10 that (z(Q, 0, <£))*G2ÍA0-rank «• Hence

2t     =  ¿-j SlA„-rank Q-
Q

We now deduce from Lemma 1 that this sum is direct and every weight A of

7T is of the form A0—rank Q. The first part of the lemma is therefore proved.

Since (z(Q, 0, </>))* span 21* we may, in proving the second part, assume

that z* = (z(Q, 0, </>))*. Hence z*G2t*0-rank q- For a fixed i consider 7r(A,")z*.

From Lemma 10, 7r(A-)z*G2tAo-rank Q+yai- Now suppose tt(X¡)z*9¿0. Then

A0 —rank Q-t-vcíí is a weight and therefore is of the form Ao —rank Q' for some

Q'. Therefore rank Q — ra, = rank Q'. Let

rank Q = dicti + • • • + ¿¡«¡,

rank Q' = d{ ai + ■ • • + d{ ai.

Then d¡, dj, lSÍ/á¿i are all integers greater than or equal to 0. Since

«i, • ■ • , cti are linearly independent it follows that di — v = d[. Hence v=di

-d[ ^di. Therefore if v>di, 7r(X*)z* = 0.

Now we consider tt( Y¡)z*. Let R,, Li, and Z>¿ denote the linear mappings

of 2Í defined as follows:

RiW = wYi,       LiW = YiW,       DiW = [F,-, w] (w G 21).

Clearly L{ = Dt-\-i?< and L,, Rit Di all commute with each other. Hence for

any integer tw ̂  0

(6) Li  = (Di + Ri)    =     £    -Ri   PD-
oâpSm m — p\p\

(where Lf = R\ = D\ is the identity mapping if p = 0). Notice that Datii+1 Y¡ = 6tj

if i?¿j and DiYi = 0. Hence we can find an integer v0 such that if p>vo,

DÏYjG®, lújÚh where 33 is the ideal  £iáy,*s¡ 2t(?^2t. We claim that if
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P>vo\ Q\, DfZ(Q, 0, 0)GS3. This is easily proved by induction on \q\ if we
make use of the rule

d'(uv) - 22 —-—Dri(u)Dr\v) (u,ven).
oârSp p — rlrl

Let ^=^o| Q\ +maxisys¡ Xy where \3=Ao(Hj) and let m>v. Then from (6),

y7z(Q, 0, 0) =    22-—- [DPi(.z(Q, 0, 0)} Y?'P.
OájSm   ?»  —  pipi

Now if ¿>>*<o|<2¡> £>?(z(<2, 0, 0))G23and if p^v0\Q\, m-p^\i+i and

{AP(2(e,O,0))}FrPG2lFii+1  CSa„.

Therefore Fmz(Ç, 0, 0)G93ao and

7r(Fr)(2(Ö,O,0))*   =   O.

Thus the lemma is proved.

Let ir be as above. We shall call a weight A of ir extreme if it is impossible

to find an a,-, i^i^l, and <rGIF such that A+acti and A — (rcti are both

weights of ir. Obviously Ao is the highest weight of ir and therefore it is also

extreme. From Lemmas 11 and 12 it is clear that if A is a weight of ir then crA

is also a weight of ir for all a(EW.

Lemma 13. Let ir be as in Lemma 12 and let A be an extreme weight of ir.

Then for any <rGJF, crA is also an extreme weight of ir.

Suppose crA is not extreme. Then for some au and coGlF, oA+Coa, and

oA — coo^are both weights of ir. But it follows from Lemmas 11 and 12 that er-1

(<rA+<r0û!i) =A+(r_1(Toa;¿ and (r_1((rA —<r0a<) =A — a~1aocn are also weights of ir.

Since (7-1(ToGIF this contradicts the hypothesis that A is extreme. Hence a A

must be extreme.

Lemma 14. Let ir be as above and let A be an extreme weight of ir such that

o-jA^A for all l^i^l. Then A—a,- is not a weight for any <Ti, í^i^l.

Suppose A —a,- is a weight. Since ét,A=A—A(H¿)a,^A, A(7í,)¿0. From

Lemma 11, A — ra¡ is a weight for A(íf¿) =p = 0. Hence if A(ií¿) <0, A+a¿ is

a weight. On the other hand if A(Hi) =0, <r¿(A — ai) =A+a¿ is again a weight.

Therefore in either case both A+a< and A —a,- are weights, thus contradicting

our hypothesis that A is extreme.

Notice that <r,«,■ = «— av,(i7¿)a:i = a'j+ay¿a'¿. Since a,, i^i^l, form a base

for the space of all linear functions on Í) it follows that the group W gen-

erated by a i is exactly the same as that appearing in the statement of Theorem

1. So far we have made no use of the hypothesis that IF is a finite group.

But now it will enter in an essential way in the proof.
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Lemma 15. If W is a finite group the space 2t* = 2I/33a0 is finite-dimensional.

Let 7T be the natural representation of 2t on 2Í* and let © denote the set

of all weights of tt of the form crA0 (crG W). Since W is finite, © is a finite set.

Also since Ao is extreme it follows from Lemma 13 that every weight in © is

extreme. Let Ai be the lowest weight in ©. Then «TíAi^Ai for all l^i^l and

Ai is an extreme weight. Hence from Lemma 14, Ai —ce,- is not a weight of tt

for any ce,-, l£i£l. Choose any z*G2IAl (z*^0) and put 9c*=7r(2t)z*. Then

9Î* is an invariant subspace of 2t*. We claim that 9Î* is finite-dimensional.

Corresponding to any P, M, Q put

w(P, M, Q) = XhXi2 ■ ■ ■ XivH? ■ ■ ■ H?YhYh ■ ■ ■ Yu

where P= {iu ■ ■ ■ , iv), M= {mu ■ ■ ■ ,mx\, and Q= {ju ■ ■ ■ , jq} as in

(3). Then exactly as in the case of z(Q, M, P) we prove that w(P, M, Q)

taken together for all P, M, Q span 21. From Lemma 10, 7r(Fi)z*G2ÍA1-o¡-

But since Ai —a,- is not a weight of w, tt(F¿)z* = 0. Hence w(w(P, M, Q))z*

= 0 if | Q\ >0. Also tt(H)z*=A1(H)z* (H<Et)). Hence it is obvious that 9Î* is

spanned by elements of the form ir(w(P, 0, <£))z*. But again by Lemma 10,

w(w(P, 0, 0))G2tî1+rankp. Hence if tt(w(P, 0, <¿))z*;¿0, A^rank P is a weight.

Therefore from Lemma 12,

Ai + rank P = A0 — rank Q

for some Q. Also Ai=A0 —rank Q' for a suitable Q'. Therefore

rank P = rank Q' — rank Q.

Let rank P = eicei+ • • • +e¡ce¡, rank Q = d1a1+ ■ ■ • +dtai, rank Q' = d{oti

+ • • • +¿/ce¡. Then e,-, di, d' ^0, l^i^l, and again from the linear inde-

pendence of ce,- we deduce that ei = d' —di, l^i^l. Hence e^dl. Therefore

\P\ = £e,i= £¿,' = | Ç'| • Thus it is clear that there are only a finite number

of possibilities for P. Since 9Î* is spanned by w(w(P, 0, <£))z* with \P\ ^ | Q'\,

it follows that dim 9Î* is finite. Also since z* G9Î*, z* ̂ 0, 9Î* ¿¿ {0 j.

Since ÏÏÎ* is invariant under tt, it follows from Lemmas 1 and 12 that

9Î*= £a 9ÎÏ where 9c* = 21*^91* and A runs over all the weights of tt. Since

the sum £a 21Î is direct and dim 9Î* is finite, ÍJÍa^ {o} for only a finite num-

ber of weights A. Let it* denote the representation of 2t induced on 9Î*. Then

it is obvious from the above remark that it* has only a finite number of

weights. Let A be a weight of tt* and let w*G9(Ca. Then by Lemma 10,

Tr*(X¡)w*G.ytl+vai- Since ce¿^0, the linear functions A+ra,-, v = \, 2, • ■ -, are

all distinct. Hence they cannot all be weights of w*. Hence for sufficiently

large v, tt*(X¡)w* = 0. Similarly we prove that ir*( Y¡)w* = 0 for v sufficiently

large. Since 9?*= £a 9Î* it follows that for any w*G9î* we can find an

integer v^0 such that ir*(X[)w* =ir*(Y¡)w* = 0, lg,i^l. Hence Lemma 11

is applicable. Since z*G9ci\ (2*^0) it follows that Ai is a weight of it*. But
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AiG© and therefore Ai = oAo((rGW). Therefore from Lemma 11, cr_1A1=Ao

is also a weight of tt*. Now (z(Q, 0, (/>))* has the weight A0 — rank Q. Hence

(z(Q, 0, <A))*G2lA'0 and (z(Q, 0, 0))*?¿O implies that rank Q = 0, that is,
Q = 4>. Since the elements (z(Q, 0, <£))* span 2Í*, it follows from Lemma 1 that

2IA„ = iM*. Since 9îî0^{oj it follows that l*G9c*. Hence

21* = 7r(2I)l*C9î*.

Therefore 21* is finite-dimensional.

Let 9JÎ* be an invariant subspace of 21* of the maximum possible dimen-

sion such that 9Jc*7i2t*. Let 9Jca„ be the complete inverse image of W* in 21.

Clearly 3)Îa0 is a maximal left ideal containing 33a0- Since SSacD^ + Oa», it

follows from Lemma 9 that 9JÎa0 is the unique maximal left ideal containing

33a0- The natural representation 7Ta0 on 2í/9Jca0=2I*/9Jc* is then irreducible and

finite-dimensional. We note for later use that if A0 = 0 then tta^(Xí) =7Ta0(F,-)

= ir-A0(Hi)=0, 1-ái-el. This follows from the fact that Xu Yi, í?¿G33a„ and

therefore 2t/33A„ = i<:-l*.

Let tt be any representation of 21 on a vector space V. We shall say that X

is the highest weight of tt if X is a weight of tt and for any weight p of tt (p ¿¿X),

X—p is a rational function greater than 0. Given any linear function A on f),

let Wa be the unique maximal ideal containing(6) ip + QA. We denote by 7Ta

the natural representation of 21 on 2t/9JÎA. Since 9JÎa is maximal, tta is ir-

reducible. It is easily seen that A is the highest weight of 7Ta.

Lemma 16. Let tt be an irreducible representation of % on V such that A is

the highest weight of tt. Then tt is equivalent^) to 7Ta. Also dim Fa = 1.

Let ^GFa, <M0. Since tt is irreducible, ir(2t)^= V. Let 9)c be the left

ideal in 21 consisting of all elements z such that Tr(z)\p = 0. Put 2l* = 2t/9)c and

let z-^z* denote the natural mapping of 21 on 21*. Let 6 be the linear mapping

of 2t* into F defined as follows. For any zG2i put 6z* = ir(z)ip. It is easily seen

that this mapping is well defined. Since F=7r(2l)i/', 6 maps 21* onto V. If

6z* = 0 then w(z)\{/ = 0. Hence zÇ.'îïïl and so z* = 0. Therefore 6 is an iso-

morphism of 2t* on V. Let w* be the natural representation of 21 on 21*.

Then if w, zG2t,

dir*(w)z* — d(wz)* = ir(wz)\p = t(w)/k(z)4'

= t(w)8z*.

This shows that tt and tt* are equivalent. Since tt is irreducible the same

(6) We have assumed the existence of 3)ÎA here and therefore made use of Zorn's lemma.

This is done only for convenience. It would be sufficient for our purpose to define 7rA whenever

SD?A exists.

(6) 21 being any associative algebra and ir, t' two representations of 21 on V, V respectively

we say that -ir and t' are equivalent if there exists an isomorphism 6 of V onto V such that

Tr'(z)ty = 0ir(z)t for every iAG V and zG2l.
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holds for ir* and therefore 3R is a maximal left ideal. Now it follows from

Lemma 10 that

*(XiW G FA+ai.

Since A is the highest weight of ir, A+a.is not a weight of ir. Hence ir{Xi)\¡/ = 0.

Also since 0G Fa,

{ir(H) - A(tf)}0 = 0 Off G I)).

Since 3R is a left ideal these relations imply that 9JO93 + 0a- Since 3R is

maximal it must coincide with SD?A. Hence 7r* = 7rA. Finally, since 3RD93 + CU

it is clear that (z(Q, 0, 0))* span 21*. Since z(Q, 0, 0) is of rank rank Q,

(z(Q, 0, 0))*G2IA-ra,lk q. Therefore 21Ï is spanned by 1*. Since l£3R, dim 2IÏ
= 1. Since ir and ir* are equivalent dim Fa = dim 21* = 1 • The lemma is there-

fore proved.

We recall that an integral function A on b is called dominant if A(H.) 2j0

for all l£i£l.

Lemma 17. Let ir be an irreducible representation of 21 on a finite-dimensional

space Vt¿ [ 0}. Then ir has a highest weight A which is a dominant integral

function. Also V= 22x V\ where X runs over all the weights of ir.

Since K is algebraically closed and ir{Hi), l=i'^/, commute with each

other it follows that we can find an element 0G F (0^0) such that 0 is a

common eigenvector of ir(Hi), l^i^l. Therefore there exists a linear func-

tion X on b such that ir(H)fa=\{H)xP (.HGÏ)). Since Fis irreducible, F = 7r(2I)0.

Hence F is spanned by 7r(z(P, M, Q))\p for all P, M, and Q. But from Lemma

10, ir(z(P, M, Q))xp has the weight X+rankP-rank Q. Therefore F= 22m V„
where p runs over all the weights of ir. Since dim F is finite it follows from

Lemma 1 that ir has only a finite number of weights. Now if <pGF„ then

"^(AT;)^^ F^+TO;. Since /z+ra<, p = 1, 2, • • -, are all distinct linear functions on

b they cannot all be weights of ir. Hence ir(X¡)(p = 0 for some v. Similarly we

show that ir(Y¡)<f> = 0 for some v. Since F= 22m V„ it is clear that the hy-

potheses of Lemma 11 are fulfilled. Hence every weight of ir is an integral

function. Since ir has only a finite number of weights it has a highest weight

A. From Lemma 11, a,A is also a weight for every i, 1 ̂ i^l. Since A is highest,

A^o-fA=A— A(Hi)ai. Hence A(Hi)^0, and A is dominant.

Corollary. Every finite-dimensional irreducible representation of 21 is

equivalent to some tta. where A is a dominant integral function on b-

This is an immediate consequence of Lemmas 16 and 17.

Let g be the smallest subspace of 21 which contains Xit F¡, Hi, l^i^l,

and which is invariant under the adjoint representation of 21. Let H be the

smallest subspace which contains Xi, l^i^l, and which is invariant under

ad A',-,  l^i^l. Similarly let g) be the smallest subspace containing   Yt,
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i^i^l, and invariant under ad  F¿, I ¿¡i¿I.

Lemma 18. 8 = ^ + ^+2) o-nd (ad z)w=[z, w] for any zGg and t£>G2I.

Further if z, wE& then [z, w]Gg-

It is obvious that tj + ï+SJCfl. Hence in order to prove the equality it is

sufficient to show that f) + ï+2) is invariant under ad 2o where 8o is the

linear space spanned by Xi, Yi, Hi, i^i^l. It is clear from its definition that

•£ is spanned by all elements of the form {ad z(4>, 0, P) }Xt. Put zP = z(<j>, 0, P)

and z=(ad zP)Xi for brevity. Then if HEf),

(ad H)z = (ad [H, zP])Xi + (ad zP) [H, Xi]

= \(H)z

where X(/i) =rank P+oa. This shows that % is invariant under ad H. Now

consider

(ad Yi)z = (ad [Yi, zP])X{ + (ad zP) [Yh Xi].

Since [Yj, Xi] = — bllHi, it is clear that (ad zP)[Y¡, A";]GÏ) + X- We claim

further that (ad [Yj, zp])A,GÏ) + ï. If |P| =0 this is true. Hence we may

assume \P\ ^1 and use induction on |P|. Then

zP = Xkz(4>, 0, P')

for some k and P' such that | P' | = | P \ - 1 and 1 ̂  k è I. Put z(4>, 0, P') = zP,.

Then

[Fy, zp] = [Yjt Xk]zP, + Xk[Yj, zp.] = - ¡>¡kHkzp. + Xk[Yh zP,].

Therefore

(ad [Yi, zP])Xi = - Sy4(ad £T,)(ad s/»)^ + (ad **)(ad [F,, a*» ])*,-.

Clearly (ad Zp')-^»GÏ and (ad [Yjt zP'])XiEf)+X by induction hypothesis.

Since f)+£ is invariant under ad Hk and ad Xk the assertion follows.

Hence (ad F,-)zG£)+ï. Since ï is invariant under ad X¡ we have shown

that (ad w)zGf) + X for any wG8o and zG£- Similarly we prove that (ad w)z

Gf)+§) for any wG8o and zG2J. Finally it is clear that if wG8o and HE.fl
then (ad w)iiG£+§). Hence it follows that h+ï+g) is invariant under ad 8o

and therefore g = f) + ï+2).

Keeping to the above notation, let z=(ad zP)Xt and wG2l. We claim

that (ad z)w= [z, w]. If \P\ =0, z = X, and this is true. Hence again we may

assume |P| ^1 and use induction on |P|. Then as above zP = XkzP' with

\P'\ = \P\ -1. Put z'= (ad zP.)Xi. Then

z = (ad zP)Xi = (ad X* ad zp<)X¡ = [Xk, z'].

Hence
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(ad z)w = (ad [Xt, z'])w = [Xk, (ad z')w] - (ad 2') [Xk, w]

= [Xk, [2', w]] — [z' [Xj;, w]]   (by the induction hypothesis)

=  [[Xk, 2'], w] -  [2, w].

Our assertion is therefore proved. Hence by linearity (ad z)w= [z, w] for

any zE%. Similarly we prove that (ad z)w— [z, w] for any zG§) and wG2l.

Finally if i2Gb> (ad H)w= [H, w]. Hence (ad z)w= [z, w] for all zGb + #+§)

= g and wG2I. Since g is invariant under the adjoint representation it follows

that (ad z)zt>Gg for any zG2l and wGg. Therefore if zGg, [z, w] = (ad z)wGg.

This completes the proof of the lemma.

LetAj, l^i^l, be the dominant integral functions on b defined by Ai(Hj)

= 5y, 1 ^j = /. Ao being any given dominant integral function on b, let ir de-

note the direct sum of the finite-dimensional representations ita,-, OSi^l.

Then 7r(2I) is a finite-dimensional associative algebra and therefore from

Lemma 18, ir(g) is a linear(7) Lie algebra.

Lemma 19. ir maps b isomorphically on ir(f)). Further x(g) is a semisimple

Lie algebra and ir(í)) is a Cartan subalgebra of 7r(g).

Let F be the representation space of ir and let iîGb (H?¿0). Since Ai,

1 = ¿?5¿, are linearly independent, Ai(H) ¿¿0 for some i. Since A< is the highest

weight of 7Ta,- it is also a weight of ir. Hence we can choose 0GFa< (0^0).

Then Tr{H)\p=Ai{Hi)\p9iQ. Hence ir(H) ?¿Q and this shows that ir maps b iso-

morphically.

Let S3 be the kernel of ir and S the set of all elements zGg such that

[H, z]G33 for all iJGb- Clearly g is invariant under ad H (H&Ù- Let zGG.

From Lemma 1 every homogeneous component of z belongs to E. Let z\ be

such a component of rank X. Then [H, zx] = X(ii)zxG23. If X^O, \(H)^0

for some iïGï). Hence zxGSS and 7r(zx) =0. On the other hand let us now sup-

pose that X = 0. We have seen above that ï is spanned by suitable homo-

geneous elements of rank greater than 0 and 2) by similar elements of rank

less than 0. Since ZxGg = b + ï+§) it follows that Z\En)- Therefore since

z= 22x zx, 7r(z) =7r(zo)G7r(b) and so ir(Ê)Cir(b). This shows that 7r(b) is a

maximal abelian subalgebra of 7r(g). In particular the center of ir(g) is con-

tained in 7r(b). Let ir(H) (ÄGb) belong to the center of x(g). Then

[ir(H), ir(Xi)]=T([H, Xi]) =ai(H)ir(Xi) =0. But [ir(Xi), 7r(F,)] =7r(7i<) ̂ 0

as we saw above. Hence ir(Xi) ^0. Therefore (Xi(H) =0, l^i^l. Since a» are

linearly independent this implies that H = 0. Hence the center of x(g) is {O}.

Now for each i, 0^i:S/, ita¡ is an irreducible representation of 21. Since

1, Xj, Yj, Hj, 1 újúl, generate 21 it follows that 7TA,(g) is an irreducible set of

linear transformations, O^i^l. Since ir is the direct sum of 7ta;, O^i^l,

C) A Lie algebra consisting of endomorphisms of a finite-dimensional vector space with the

usual bracket operation [A, B] =AB—BA is called a linear Lie algebra.
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7r(g) is a fully reducible set of endomorphisms of V. Since the center of

7r(g) is {0} it follows (see Chevalley [5]) that 7r(g) is a semisimple Lie algebra.

Since tt maps f) isomorphically we can regard every linear function X on

f) also as a linear function on ir(f)) by setting \(tt(H)) =\(H) (HEf))- In particu-

lar therefore ce¿, l^i^l, are now linear functions also on Tr(t)). We shall now

show that ir(f)) is a Cartan subalgebra of 7r(g) and ce,-, l^i^l, is a funda-

mental system of roots of ir(g) with respect to 7r(fj).

For a fixed zG2i consider the linear mapping w—>7r((ad z)w) of 2Í into

7r(2l). Since the kernel 33 of tt is an ideal, it is invariant under the adjoint

representation of 21. Hence tt(w)=0 implies 7r((ad z)w)=0. Therefore we

get a linear mapping tt(w)—»7r((ad z)w) of ir(2I) into itself, which we denote by

p'(z). Now

p'(ziZï)tt(w) = ir(ad (ziZi)w) = 7r((ad zi)(ad z2)w)

= p'(zi)p'(z2)tt(w) (zi, z2, w G 21).

Hence p' is a representation of 21. Since g is invariant under the adjoint repre-

sentation of 2Í, (ad z) wGg if wEq, and zG2l. Hence 7r(g) is invariant under

p'(2t). Let p be the representation of 2Í induced by p' on Tr(g). Then

p(z)tt(w) = x((ad z)w) = ir([z, w]) =  [tt(z), tt(w)] (z, w E g)

from Lemma 18. Since 7r(g) is semisimple its adjoint representation is fully

reducible. Hence p(g) is a fully reducible set of endomorphisms of 7r(g).

Since p(2t) is generated by p(g) and 1, it follows that p is a fully reducible

representation. Let î/ = ir(g). Applying Lemma 17 to each irreducible com-

ponent of p we immediately get U= £x U\ where X runs over all weights of

p. This shows that p(H) is semisimple(8) for each HEf). But p(H) =ad tt(H)

where 7r(z)—>ad 7r(z) (zGg) denotes the adjoint representation of 7r(g). Hence

we have shown that 7r(fj) is a maximal abelian algebra of 7r(g) every element

of which is mapped on a semisimple endomorphism under the adjoint repre-

sentation of ir(g). This proves that 7r(h) is a Cartan subalgebra of 7r(g).

Lemma 20. ce,-, í^i^l, is a fundamental system of roots of 7r(g) with re-

spect to Tr(ff). Also dim 7r(g) =l-\-g where g is the number of distinct functions of

the form o-a{ (aEW, l^i^l).

We keep to the above notation. We have seen that U— £x U\ where X

runs over all weights of p. Notice that a nonzero weight of p is exactly the

same thing as a root of 7r(g). X being a weight of p choose a zGg such that

tt(z)EUx (tt(z)^O). Then p(H)tt(z)=[tt(H), tt(z)]=\(H)tt(z). Hence [H, z]

—\(H)zE^& for all HEf). Let z^ be the homogeneous component of z of rank

p. Then the corresponding component of [H, z]—\(H)z is [H, zß]—\(H)zß

(8) An endomorphism A of a finite-dimensional vector space V is called semisimple if V is

fully reducible under A.
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= {//(-ff) — X(íf) \Zp. Since S3 is invariant under ad b it follows from Lemma 1

that {n(H)-\(H)}zßE% for all HE.% If M^X we can find an #Gb such

that n(H) ^X(iï). Hence zMG53- Therefore 7r(z) =7r(zx) 5^0. Since g is invariant

under ad b and z G g it follows again by Lemma 1 that Zx G g. Since g = b + ï+§)

it is clear that g^2lx = {o} unless X = ¿i«i+ • • • +a,¡a¡ where ¿¿ are integers

which are either all greater than or equal to 0 or all less than or equal to 0.

But 2xGg and zx^O. Hence X must be of the above form. Finally ir(Xi) G Ua¿

and we have already seen in the proof of Lemma 19 that 7r(A\V0. Hence

oti, 1 úi~eh are roots of 7r(g). This proves that a,-, 1 ¿i£l, is a fundamental

system of roots of 7r(g).

Since ir(Xi)^0 and similarly ir{Yi)9£0, they are the root elements in

7r(g) corresponding to the roots a, and —a, respectively. Since [ir(Xi),

7r(F¿)] =ir(Hi) it follows that if <r/ is the Weyl reflexion in 7r(g) with respect

to <Xj,

„ «¿Hi)
<T; at = a¿ — I-a,- = <jjch

<*ÁHj)

since o>j(Hj) =2. Hence the Weyl matrix of 7r(g) with respect to the funda-

mental system ¡ai, ■ • • , a¡} is (an), ltHi, jt$l, and the Weyl group of

7r(g) is IF. Therefore 7r(g) has exactly g distinct roots. Since dim 7r(b)=/,

dim7r(g)=/+g.

Now consider the special case when Ao = 0. As remarked earlier (cf. p. 43),

in this case 7TA0(g) = {o}. Let t be the direct sum of ir^, l^i^l. Then clearly

7r(g) is isomorphic to #(g) under the mapping 7r(z)<->7f(z) (zGg). We put

8 = *(fl)- Again we may regard a,- as linear functions on #(b) in the obvious

way. Then 2 is a semisimple Lie algebra with the fundamental system of

roots m, l=î'^/, with respect to the Cartan subalgebra x(b) and dim 2

= dim 7r(g) =/+g. Returning to the general case when A0 is arbitrary, it is

obvious that 7r(z)—>x(z) (zGg) is a homomorphism of 7r(g) onto 2. But since

both 7r(g) and 2 have the same dimension l-\-g, this must be an isomorphism.

Also 7r(z)—»7ta0(z) (zGg) is evidently a representation of 7r(g). Therefore

7f(z)—>7ta0(z) (zGg) is a representation of 2 whose highest weight is A0. The

proof of Theorem 1 is therefore complete.

We now consider the question of the uniqueness of the Lie algebra whose

existence is asserted in Theorem 1. Let 2 be any semisimple Lie algebra with

a Cartan subalgebra b satisfying the requirements of the theorem. Let

Xi, Y i be the root elements of 2 corresponding to the roots a¿ and —a,-,

1 &i&L Put [Xi, Yi] = Hi. Since a¿ is a fundamental system of roots, a<—a¡

(iy^j) is not a root. Hence [X,, Fy]=0. By multiplying Xt with an element

c(£K (c?¿0) we may arrange that a¿(i/¡)=2, li¿i¿l. Then it follows that

2«,( Hi)
GiOij = ctj-—— ai = a j + a,¿a,.

a,-( Hi)
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Hence aj(Hi)=ccj(Hi), l^ij^l. Let p' denote the representation of the

free algebra 2F on 8 defined uniquely by the equations

p'(l) = /,   p'(A7) = ad Xi,  p'(Y{) - ad F,-,  P'(H{) = ad Hu    1 S * £ I,

where I is the identity mapping of 8 and X—>ad X (XE2) denotes the ad-

joint representation of 8- It is easily seen that the kernel of p' contains the

ideal IF and so p' actually defines a representation p of 21 on 8- Since 8 is semi-

simple its adjoint representation is fully reducible. Hence p is also fully re-

ducible. From the corollary to Lemma 17, every finite-dimensional irre-

ducible representation of 2t is equivalent to it a for some dominant integral

function A. But we have seen above that tt(z)—^tta(z) (zGg) is a representa-

tion of 8. Hence it is clear that it(z)—>jo(z) (z^g) is also a representation of 8.

We denote this representation by 6. Then 0(8) is a linear Lie algebra and

since dim 8 = /+g, dim 6(%)^l+g. But clearly 0(8)Dad 8 and dim (ad 8)
= dim 8 = ¿+g since g depends only on the group W which is the same for

both 8 and 8. Hence 0(8) =ad 8 and 6 must be an isomorphism. Therefore

8=ad 8=8- This shows that 8 is uniquely determined up to an isomorphism.

Also notice that if 6 is any representation of 8 on F then 6 defines uniquely

a representation <p of 21 by the rule

*>(1) = /,        <p(z) = 8(t(z))

where I is the identity mapping of V and z is any one of the elements Xi, F<,

Hi, l^i^l.We claim that

v(z) - e(it(z))

for all zGß- This is obvious if zEf)- Now suppose zGX- It is sufficient to con-

sider the case when z=(ad zP)Xi where zp = z(<j>, 0, P). Again if \P\ =0 the

statement is true. Hence we may assume that | P\ Sï 1 and use induction on

\P\.  Let zP = Xkzpi where zP.=z(cp, 0, P'),  |P'| =|P| -1, l^k^l. Then

z -  [Xk, z']

where z' = (ad zP>)Xi. Hence

v{z) = v([Xk, z']) = [<p(Xk),<p(z')]

-    [6(Tt(Xk)),e(TT(z'))]

by induction hypothesis. Therefore

v{z) = 6([Tt(Xk), Tf(z')]) = 6(it([Xk, z']))

= »(*(«)).

Similarly if zG§). Since g = fj + 3;+§) the assertion follows. In particular if 6

is irreducible the same is true of <p and the weights of <p are the same as those

of 6. Hence if 6 is irreducible and finite-dimensional and A is the highest weight
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of 6 then it follows from Lemma 16 that ¡p is equivalent to tta. Hence <p and

therefore 9 is uniquely determined up to equivalence, and the multiplicity of

A in d is 1. Thus we have proved the following theorem.

Theorem 2. The Lie algebra 2 of Theorem 1 is unique within isomorphism.

Also the irreducible representation p of 2 with the highest weight A0 is uniquely

determined within equivalence and the multiplicity of Ao in p is 1.

Another way of stating the first part of Theorem 2 is to say that two

semisimple Lie algebras with isomorphic root diagrams are isomorphic. In

this form this result was first proved by Weyl [12]. The uniqueness of the

representation p is due to Cartan [2].

Finally we shall prove a result on the degree of the representation p.

The exact formula for this degree has been obtained by Weyl [12] by using

transcendental methods.

Theorem 3. Let 2, b> «<, lâ*aï> and p be as in Theorems 1 and 2 and let

dp be the degree of the representation p. Then

íS.-ái \ ai{Hai) / a>o \ oc(Ha) •/

where a denotes any root of 2 with respect to b.

Let a,-, 1 úiúr, be the set of all roots of 2 which are greater than 0 and

let Xi^O and 3^ 5^0 be root elements in 2 corresponding to the roots «< and

— ai respectively, 1=¿=>. Also let Hi= [x{, yi], i^i^r. (Notice that H¡

corresponds to ir(Hi), l^i^l, in our earlier notation.) Then xit yit Hit l^i

= r, 1 =j = U form a base for 2. Let U be the universal enveloping algebra(9)

of 2 and let V be the representation space of p. Then p defines a representa-

tion 7T of U on F by the rule

tt(1) = /,        t(x) = p(x) (xG2)

where 7 is the identity mapping of F. Let 05^0 be an element in F which be-

longs to the weight A0. Let 9JÎ be the left ideal in U consisting of all elements

zGU such that 7r(z)0 = O. Since F is irreducible under p and therefore under

ir, Wl is a maximal left ideal. Let 7r* denote the natural representation and

z-+z* the natural mapping of U on U* = U/9J?. It is easily verified that tt*

is equivalent to 7r under the isomorphism z*<->7r(z)0 (zGU) of U* with F.

Hence instead of p we may consider the representation 7r*. Notice that since

Ao is the highest weight of p, A0+«i is not a weight for any i, i^i^r. Hence

ir(xi)fa=0 and XiGSW, 1=î'=>. Also since ir(H)xp=A0(H)yp, i2-Ao(iï)G2R

for all TfGb-

(9) This concept is due to Birkhoff [l] and Witt [14]. However we follow the definition

given in [9]. We shall always assume that the Lie algebra is naturally imbedded in its universal

enveloping algebra.
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We now introduce the notion of a rank in U exactly as we did it in 2t. X

being any linear function on f¡ we say that an element zGU is of rank X if

[H,z]=\(H)z(HEf)).

By multiplying x,- by an element CiEK (c.-^O) we can arrange that

oLi(Hi) =2, 1 ;£¿:S2. We shall suppose that this has been done. Now we assert

that the elements yT'y? ■ ■ ■ yf, 0^m¡gA0(Hi), láí'g/, are linearly

independent^) mod 90Î. Notice that y7lyT ' ■ ■ yf is of rank

— (wicei-f- • • • -\-m¡ai). Since ce,-, lgí^í, are linearly independent, all these

linear functions are distinct. S'mceH—A0(H)ETl (HEf))< 9J? is invariant under

ad f). Hence in view of Lemma 1 it is sufficient to prove that yT^yZ* • • • yf

G9tt for O^mi^Ao(Hi), l£igl. Let M = m1 + m2+ ■ ■ ■ +mt. If M=0,
y?1 • • • yf = 1 and the assertion is true since 1G9W. Hence we may assume

M"^l and use induction on M. Let i be the largest index such that m^O.

Put z= 1 if i= 1 or z = yT1y2n* ■ ■ ■ yft? if i> 1. Then we have to consider the

term zy™\ Notice that [xit y,]=0 if ir*j, lá*, j^l- This follows from the

fact that ce,-, l^i^l, is a fundamental system and so cti — otj is not a root,

l^i,j^l (íVj). Hence from Lemma 6,

x.-zy,-    = zx¿y¿    = z[:k,-, y¿  J + zyi x¡
Wlj—1 ÍWf

= niizyi     (Hi — mi + 1) + zy¿ x¿

= niizyi '   (Ao(Hi) — w¿ + 1) mod W.

Now 0<mi^Ao(Hi). Henee w¿(A0(ií,) — w,-f-l)^0. Also by induction hy-

pothesis zy^GSD?. Hence XiZ^GSÏÏ- Since W is a left ideal, it follows that

zyT'G9J?- Therefore our assertion is proved. Since the elements yfyl? • • • yf,

O^mi^Ao(Hi), l¿i¿¡l, are ITis.gi (A0(.ff,-) + l) in number and since they

are linearly independent mod 9J?, it follows that

dim U* ̂    II   (Ao(ffO + 1).

Hence the first inequality of the theorem is proved.

Now we come to the second inequality. For brevity write

/ .v 51    32 SrrT»H,V»J „ml    VI Vr
z(q, m, p) = yx y2   ■ ■ ■ yr Hi  Hi    • • • Si *i   • • • X,

where g¿, pi, m,^0, l¿¡i^r, l^j^l, and q, m, p denote the corresponding

sets of integers. Also put \q\ =çi+ • • • +qr, \p\ =pi+p2+ • ■ •+ pr, \m\

= mi+ • • • -\-rni and í = | q\ +1 m\ -f | p\. We shall write 0 for the set p all

of whose elements are zero. Similarly for q and m. It is known (see for example

[9]) that the elements z(q, m, p) for all q, m, and p span It. Let U be the sub-

space of It spanned by all elements of the form yl'yf ■ ■ ■ yf, Ogg,-gA0(H,-),

lgj'^r.We shall prove that II = 9JÎ+ U. First we claim that if qj>A0(Hj) then

(10) We use the convention that z*" = l for any zGU if m = 0.
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yfGäR, 1 èjèr. For otherwise (yf) VO. Since y'/ has the rank — aya,- it fol-

lows that (yj')* is homogeneous of weight Ao —g,«;. Since (yy)*9£0, Ao — g>a/

is a weight of 7r* and therefore of p. Let 07 denote the Weyl reflexion with

respect to the root a,-. Then(n) ov(Ao — g,«,-) must also be a weight of p. But

<7,-(Ao — q¡a¡) = Ao — Ao(Hj)a¡ + g,a,- > A0

since q¡>Aü(H¡). This contradicts our hypothesis that Ao is the highest

weight of p. Hence yJ'EäR-
In order to prove that U = 3R+ £/ it is sufficient to show that z(q, m, p)

G3R+Í/ for all g, m, p. If s= |g| +|m| +|/>| =0 this is true since 1GÍ7.

Hence we may assume s 5; 1 and use induction on 5. Now if | p | > 0 it is clear that

z(q, m, ¿>)G9R since x<G2R, l&i&r. Similarly since Hi— A0(ií¿)G2R, it fol-

lows that z(g, m, 0)=cz(g, 0, 0) mod 9JÎ (c(EK). Hence we need consider

only elements of the form z(q, 0, 0) with \q\ =s. If qj¿A0(Hj) for all j, it is

obvious from the definition of U that z(q, 0, 0) G U. Hence we may assume

that q¡>Ao(H¿) for some j. Choose the greatest such j. If j = r then z(q, 0, 0)

G9JÎ since 9R is a left ideal and we have seen above that ;y*rG2R if qr>Ao(Hr).

Hence we may suppose that j <r. Put z0 = l if j = l and zo = yïl • • • yf-¡ if

j>\. Then since #£2»,

z(q, 0, 0) =; z0[y/, y/+î ■••>'] mod 3R.

But it is known (see [9]) that z0[yy, y]^\ • ■ ■ y,rr]=z' can be written as a

linear combination of z(q', m, p) with |g'( +|?w| -\-\p\ <s. Hence it follows

by induction hypothesis that z'GSR+ U. Therefore z(q, 0, 0)GSR+ Uand our

assertion is proved.

Since 9R+t/=U it is clear that dim U*^dim U. Since U is spanned by

the ILáiár (Ao(i7.-) + l) elements y?y? • • • f;, 0ág<£A„(.ff<), lá*'ár, it
follows that

dim U* á dim U =   YL  (Aa(H{) + 1).

The theorem is now proved completely.

Part II. Infinite-dimensional representations of complex semisimple Lie

algebras. Let R and C be the fields of real and complex numbers respectively.

Let So be a Lie algebra over R with a semisimple subalgebra 2k,o such that

there exists a linear mapping V of 2k,0 into 80 with the following properties:

(1) 80 = 2k.o + r(8jt.,),       2k,0 r\ T(2k.o) = {0},

(2) [xu r(x2)] = r([zlt xt]),      [r(x1), r(x2)] = - [xu x,]

for any Xi, X2Ç.2k.o-

(") This follows either from well known results on finite-dimensional representations of

semisimple Lie algebras or from Lemma 11.
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Let 8 denote the complexification(12) of 8o and let 8k be the smallest sub-

space of 8 containing 8k,o- Then clearly 8k is a Lie algebra which is the

complexification of 8k,o. We extend V on 8k by linearity and put(13)

7(A) = è(A + (- l)"2r(A)),       y+(X) = \(X - (- 1)*"F(X))      (X E 8k).

Let g=7(8K), g+ = T+(8K). Then g and g+ are ideals in 8 and 8 = g + g+,

gHg+ = [g, g+] = {o}. Also y and y+ are isomorphisms of 8k on g and g+ re-

spectively. Since 8k,o is semisimple, 2k, g, g+, and 8 are all semisimple.

Let 33 denote the universal enveloping algebra(9) of 8. Let 21, Ï, and 2t+

be the subalgebras of 33 generated by the sets (1, g), (1, 8k), and (1, g+) re-

spectively. We claim that 21, ï, and 2t+ are the universal enveloping alge-

bras of g, 8k, and g+ respectively. This follows from the following lemma.

Lemma 21. Let W be a Lie algebra over afield k of characteristic zero and let

9Î be a subalgebra of 9JÎ. Let U be the universal enveloping algebra of M and 33

the subalgebra of VL generated by 9Í and 1. Then 33 is isomorphic to the universal

enveloping algebra of 9Î.

Choose a base x,-, l^i^m, for 932 such that x<, 1 ¿i^n, n^m, is a base

for 9Î. Let 33' be the universal enveloping algebra of 9Î. Then clearly there is a

homomorphism <p of 33' onto 33 such that <p leaves every element of 9Í fixed and

<p(l') = l, 1' being the unit element of 33'. We define as in [9] the basic

canonical elements in U and 33' with respect to the bases x<, l^i^m, and x,-,

l^i^n, for 93? and 9Î respectively. Then it is clear from their definition that

if z¡, 1 ûj^r, are any distinct basic canonical elements in 33', <p(z¡), 1 íkjúr,

are also distinct basic canonical elements in U. Now let z'G33'. Since the basic

canonical elements form a base for 33', z'= £iá,-grc,z/ where CiEk and z[,

l^i^r, are distinct basic canonical elements in 33'. Hence ¡p(z')= £iá¿gr

d<p(z'). Since distinct basic canonical elements are linearly independent in

U it follows that if <p(z') =0, c,= 0, l^i^r, and therefore z' = 0. Hence <p is an

isomorphism.

We make the convention that whenever we speak of a representation of

the universal enveloping algebra It of a Lie algebra 9JÎ on a vector space V

it will always be assumed implicitly that ir(l)=Z where I is the identity

mapping of V. Then it is clear that there is a 1-1 correspondence between

representations of U and those of 9JÎ such that corresponding representations

coincide on ffl. We shall usually denote these corresponding representations

by the same symbol. In particular if 93? is semisimple every finite-dimensional

representation of 9JÎ (and therefore of U) is fully reducible.

Choose a fixed Cartan subalgebra f)K of 8k and a fundamental system of

roots {«i, •• -, ce ¡} of 8k with respect to f)K- Let Pk be the set of all dominant

C2) This means that S is a Lie algebra obtained from ?o by extending the ground field from

R to C.

(13) We fix once for all an element (-1)1'1 in C such that ((-1)I/2)S= -1.
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integral linear functions on bx- Then from Theorems 1 and 2 we know that

there is a 1-1 correspondence between equivalence classes of finite-dimen-

sional representations of 2k (and therefore of X) and dominant integral func-

tions A on t)K such that if 33a is the class corresponding to A then A is the

highest weight of any representation in 33a- Let 7tG33a- Then every weight

of ir will be called a weight of 3)a- In particular A is the highest weight of 33 a-

Let ir be any representation £ on a vector space F (not necessarily finite-

dimensional). For any fixed 0G F put £/ = 7r(ï)0. Let ir' be the representation

of ï induced on U. Given any AGPx we say that 0 transforms under ir ac-

cording to 33a if either 0 = 0 or ir' is finite-dimensional (and therefore full}'

reducible) and every irreducible component of ir' belongs to 3)a- Let FA be

the set of all elements of F which transform according to 3)a- It is clear from

its definition that Fa is an invariant subspace of F.

Lemma 22. The sum 22agpk Fa is direct and if U is any invariant subspace

of V then

ur\( 22 ^)= 22 (uc\Va).
\ AGP* / AgPjf

The proof is similar to that of Lemma 1. Let 0G UC\( 22a£Pjc Fa). Then

0=01+ . . - +0r where faEVAi and A^Ay, Igi, j^r (tVj) (A.GPx).
Choose some representation 7rA¡ of X in 33 a¿, l£»f¿£r. Then 7Ta¡ are all in-

equivalent representations. Hence given any j, 1 ¿j^r, we can, from Lemma

4 of [9], find an element xG# such that irAj(x) = 7^,(1), 7ta,(x)=0 (Vj).

But then it is clear that ir{x)fa=fa. Since U is invariant under ir, fa — ir(x)\p

EU. Hence UC\(J2a&k Va) = ¿aGp* (U^Va). Now, if we take £/ = {o}
we find that if 0 = 0 then fa = 0, 1 ̂ j^r. Hence the sum ~^2a^vk Fa is direct.

Since Fa is invariant under ir we can, for any linear function X on b, de-

fine Fa,x just as in Lemma 1.

Lemma 23. FA= 22x Va,\.

Let0GFA. Put [/ = 7r(ï)0. Then by the definition of Fa, U is finite-di-

mensional. But from the theory of finite-dimensional representations it is

known that U= 22x U\. Since clearly U\(Z Fa,x, it follows that 0G 22x Fa,x-
This being true for every 0G Fa, Fa= 22x Va.\. Notice that Fa,x= (0J if X
is not a weight of 33a.

Let ir be any representation of $8 on V. Then ir defines a representation of

ï on F and for each AGPx we can construct the subspace Fa of Lemma 22

with respect to tt(X). Given any AoGPx we say that 33a0 occurs in ir if Fa0

9e {0}. Also we shall say that 33a0 occurs a finite or an infinite number of

times according as dim Fa0 is finite or infinite. Let S be the center of 21 and

X a homomorphic mapping of (S into C. Our object is to prove the following

theorem.
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Theorem 4. Given Ao and % there exist only a finite number of inequivalent

irreducible representations tt of 33 such that 2)a0 occurs in tt and(u) tt(z — x(z)) = 0

for all zG®. Further if it is such a representation then 3) a occurs only a finite

number of times in tt for every AE^k and ,3 being the center of 33 we can find a

homomorphism Í- of g, into C such that x(z —£(z)) =0 for all zE3-

First we need some lemmas. Since g is isomorphic to 2k under the mapping

y every representation of 2k determines a representation of g and conversely.

Hence for anyAGPK, SDAcan also be regarded as a class of representations of

g. If it is any representation of 2Í on F we can define exactly as before the sub-

space Fa of F consisting of all elements which transform under 7r(2I) according

to S5a. In particular let tt be the adjoint representation of 21 on itself given by

tt(Z)w = [Z, w] (ZE<A, wG2l).

Then for every AGPk we can define 21a-

Lemma 24. 21 = £aep/¡; 2Ía and for every A, 2Ía is a finite module over 6,

We shall derive this lemma from a well known result in the theory of in-

variants. Let p and a be any two matrix representations of g of degree p

and q respectively. Let x,-, l^i^p, and yj, fújúq, be two sets of inde-

pendent indeterminates. Let C[x, y] denote the (commutative) ring of all

polynomials in (x) and (y) with coefficients in C. For every ZGg we define

a C-derivation(15) Dz of C[x, y] which is uniquely determined by the relations

DzXj =   £  Xipu(Z),    1 ^ j g p;        Dzyi =   £  yi<n,{Z),    1 g j ^ q,

The mapping Z-^DZ (ZGg) is easily seen to be a representation of g on

C[x, y]. An element fEC[x, y] is said to be an invariant if Dzf = 0 for all

ZGg. Since g is semisimple the main theorem of the theory of invariants is

applicable in this case (see Weyl [13, p. 274]). It may be stated as follows.

Theorem. There exist a finite number of invariants, J„ i^v^N, such that

the ring C[Ji, ■ ■ ■ , Jn] contains all invariants.

We shall now use this theorem to prove Lemma 25. f(i\, • ■ ■ , ir) being

any function of r indices (all running from 1 to n) with values in a vector space

over C, we denote by 5(,-1,...,,r)/(i1, • • • ,ir) 1/r! times the sum of f(ji, • ■ • ,jr)

for all permutations (j\, • ■ • , jT) of (i\, ■ ■ • , ir)- Such a function will be

called symmetric if f(ii, ■ • ■ , i,) =5(¡1,...,,-ri f(ii, • • • , ir) for all l^ii, ■ ■ ■ ,

ir Ï3 n.

Choose a base Z,-, lát'é», for g. Then Syt,...,^ Z^Z^ ■ • • Zit is a basic

(") We shall assume throughout that x(l) = l. For the only other possibility is x(l)=0-

But in this case ir(l) =0 and so in accordance with our convention ir is not a representation.

(15) This means that Dz is a linear mapping of C[x, y] such that Dz (fg) = (Dzf)g+f(Dz g)

for any/, gEC[x, y].
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canonical element in 2Í with respect to this base. Let V, be the subspace of 2Í

spanned by all such elements for a fixed value of r 2:0. Also put F_i = {0}.

Clearly Fr is invariant under the adjoint representation ir of 21. Since Fr is

finite-dimensional it is fully reducible under ir and therefore FrC 22a 21a-

But since the basic canonical elements span 2Í, 21= 22>-ëo FrC 22a 21a- Hence

21= 22a 21a. But then from Lemma 22, Fr= 22a (F/ïSIa). Hence

Eau = 2t = 22 Fr = 22 22 (^ ^ 21a) = 22E(^n2iA) = 2X
A riO rêO    A A    rèO A

where 2IA= 22rào (Frn2ÍA). Since 21ÁC2ÍA and since, by Lemma 22, the

sum  22a 21a is direct it follows that 2IA = 21a- Hence

21a = 22(F,naA).
rfeO

The sum on the right-hand side is direct since distinct basic canonical elements

are linearly independent.

Now let p be the adjoint representation of g and <r* any irreducible repre-

sentation of g on a vector space U* such that j*G33a. Let U be the space

dual to U* and a the representation of g induced on U. Let e¡, 1 úiúq, be a

base for U. Then <t can be regarded as a matrix representation with respect to

this base, so that

<r(Z)ei =   22 emAZ) (Z G g, 1 á j á q).

Similarly

p(z)Zj = [z, Zj] = 22 ¿ma®    (z e a, i â j s »).

Now we apply the above theorem to the pair (p, a). It is clear that if a poly-

nomial fÇzC[x, y] is an invariant then all the doubly homogeneous com-

ponents(16) of/are also invariants. Hence we may assume that J%, • • • , Jg

are all themselves doubly homogeneous. Among these let Gi(x), ■ ■ ■, Gm(x) be

all those which are independent of (y) and H,(x, y), i^v^s, all those which

are linear in (y). Then it is evident that any invariant/(x, y) which is homo-

geneous and linear in (y) must belong to 22iá»Ss QHr(x, y) where Í2

= C[Gi, ■ • ■ , Gm]. Let rv be the degree of H,(x, y) in x. Then

H,(x, y) = 22 */'        ' «il** ■ ■ ■ xiryyi

where ^-VgC and we may assume that tift'"t,*i are symmetric with

respect to i\, ■ ■ ■ , ir„. Put

C6) By doubly homogeneous we mean homogeneous in each of the two sets of variables

(x) and (y) separately.
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hI(Z) =      £      hT" *"%&, ■ ■ ■ zirr, lúj-a <?•

We shall prove that H'V(Z), i^v^s, l^j^q, form a 6-basis for 21a- Con-

sider the element £is,-g5 H{(Z) Xey. If we extend p to a representation of

g on 21 by setting p(Z)w= [Z, w] (ZE% wG2t) we get the representation

p+o- of g on the Kronecker product 2t X U. Since Hv(x, y) is an invariant it is

clear that £isjá5 HÍ(Z)Xej is invariant under p+cr. Therefore it follows

that the space IF spanned by H[(Z), f^júq ,is invariant under p and the

representation induced on it by p must be dual to a unless IF= {o}. Hence

in any case H{(Z)E^.a, 1 ̂ .jûq- Therefore in order to show that

2Ía = £ dHÍ(Z)
i.'

it is sufficient to prove that

«a H VrC T,&HÍ(Z), rè -1,
i,'

since 21a = £rèo (2Ía^ Vr). We shall prove this by induction on r. For r = — 1

this is true trivially. Hence suppose r^O. Let zG21a^ Fr. We have to prove

that zG £j> QiHl(Z). Since 21a^ Vr is finite-dimensional it is completely

reducible under p. Hence it is sufficient to consider the case when zy^O and

IF=7r(2l)z is irreducible under tt. (tt is the adjoint representation of 2Í.)

Since z transforms according to 2) a we can choose a base wj, 1 ̂ j^q, such

that £iâjSi( WjY.ej is invariant under p-\-cr. Let

u>i = £        a '        " ZijZii ■ • • Zir< 1 = j = 9-
lái'i. ■ • -,t,Sn

where the coefficients a*1**'"*-' are symmetric in í'i, • ■ ■ , v Then it is easily

verified that the form

f(x< y) =        1^        a xhxh • • • xiryi

is invariant with respect to (p, cr). Hence

/(*. y) =   £ M,(*)ff„(*, t)

where Af»(x) is either zero or an invariant form of degree r — r,. We may

assume that M,(x) 5¿0 for 1 ̂ v^s' and Af,(x) =0 for i>>s'. Then if sr = r — r„

My(x) =       £ bliH    %°"xix%u • • -Xi,,, 1 Ú v ^ s',
lSi'i, ■ • ■,i,,S»
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where the coefficients are again symmetric with respect to t'i, i2, ■ ■ ■ , iSt.

Hence comparing coefficients we have

a =     ¿j S     (b, hy ).
le xas'   (¿i, •••.»,)

Therefore

a ZiiZi, ■ ■ • Zir
lmi%, • • • ,ir—n

= 22        E    bT'-^C^-^   s   ZiZiZ-Zi

=   22 22       i>"     '"h, " ZixZh ■ ■ ■ Zir mod    22    v„
lavas'      1=H, • • • ,iTíkn -lap<r

since

Also

ZhZh ■ ■   Zir-      S     ZhZh ■ ■ ■ Zir G    22    Vr (see [9, p. 902]).
(Hi ' ' 'tir) —I2ap<r

^2 H       b9 "hv r* Z{lZh • • • Zir =    X)    uvHv{Z)
l^ySs'      l^ii, ' • ' ,iT^n laxes'

where

w, =        22        *»       '-ZfiZi, • • • Zi,t G E
IjMl, • • • .ù^n

since M,(x) is an invariant. Since w¡, .tí¿(Z)G2Ia and w,GS it is clear that

Wj— Etó'á«' w,//Í(Z)G21a. Therefore

w, -  22 »Jffí(¿) g 2Ia n ( 22 ^) =   E  («a ̂  f*)
láxSs' \—láp<r       / —lSp<r

since 2Ía = 22í>so (Fpn2ÍA). Hence by induction hypothesis

wi -   E «,ff,'(z) g     E     e#,'(z).
lSxáa' láj'á?,lS»ál

Therefore

n G      E     sf.'(z)
íáíag.iá^á»

and the lemma is proved.

For a given A0GPx let ir be any irreducible representation of ï on a space

V such that 7tG33a0- Choose an element 0G F (0^0) which belongs to the

highest weight Ao. Since from Theorem 2 the multiplicity of Ao in ir is 1,0
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is unique apart from a numerical factor. Let §)a0 be the left ideal in 36 consist-

ing of all elements xGï such that ir(x)\p = 0. Let z-*z* denote the natural

mapping of 36 on 36* = 36/2Ja0 and tt* the natural representation of 36 on 36*.

Since F is irreducible 2Ja0 is a maximal left ideal and it is easily seen that x

is equivalent to tt* under the isomorphism 7r(z)i/'<->z* (zG36) of V with 36*.

Further 3Ja0 is uniquely determined by Ao since the vector \j/ is essentially

unique. We now define a representation p* of 8 on 36* by

(7) p*(X) = tt*(X),     A G 8k;      p*(Z) = 0, ZGg.

It is easily checked that p* is a representation. Let a denote the representa-

tion of 8 on 21 given as follows:

t(X)z = [A, z] (X E2k,zE 21),

a(Z)z =Zz (Z E g, z G 21).

It is again easy to verify that this is indeed a representation. Let v be the

uniquely determined representation of 33 on the Kronecker product 21X36*

which coincides with ff+p* on 8. For any AGPk we consider the subspace

(2ÍX36*)a consisting of all elements of 21X36* which transform under ï>(36)

according to 35a-

Lemma 26. 2tX36* = £agpü; (2ÍX36*)a and (21X36*) its a finîtes-module for
each AGPk-

Let tt denote the adjoint representation of 21, and y the isomorphism of

8k with g as defined on p. 53. Since [X, z]=[y(X), z] (XE2K, zG2t) it

follows that ff(X)=ir(y(X)) (XE2k). Hence for any AGPk the subspace

21a consisting of all elements in 21 which transform under ct(8k) according to

©a is the same as 2Ía of Lemma 25. Therefore we can find ai, • • • , arG2U

such that 2Ia= £ig,gr 6a,-. Since a¿G2ÍA the space <r(36)a,- = x(2I)a,- is finite-

dimensional. Since 36* is also finite-dimensional, the same holds for the space

<r(36)a¿X36* which is invariant under ?(•£). Hence it is completely reducible

under v(T) and therefore

«,-X**C    £    (2IX**)a<.
a-Gpx

Now v((S)(a;X?£*) =6a<Xï* and clearly each (2IXï*)a' is invariant under

j'(ß). Hence

21a X ï* C  £ (21 X **)A<.
A'Gp

Since 21= £a 21a from Lemma 25, we get

21 X Ï* = £ (21a X **) =  £ (21 X **)a;
a a£p£

this proves the first statement in the lemma.
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Now we come to the second part. For any fixed AGPx choose an ir-

reducible representation 0* of 2k on a space U* such that 0*G33a- We extend

9* to a representation of 2 by defining 0*(Z) =0 (ZGg). Let U be the space

dual to U*, and 6 the representation of 2 induced on U. Let <p denote the

representation of S3 on 2ÍXXXÍV which coincides with v-\-d on 2. Given any

A'GPx choose a,G2ÍA', i^i^r, such that 21a-= Eis<Sr £a;. Then a(ï)a,-

Xï*Xt/ is finite-dimensional and invariant under <p(X). Hence

<r(*K X X* X t/ C    E   (»(ï)mXÏ*X£0A"
a"Spx

where (<r(£)a¿XX*X í/)a" has the usual meaning. From this it follows as

above that

21 X X* X U =     E    (21 X X* X í/)a'.
A'GPx

We now claim that (21XX*X U)o is a finite 6-module. Since X*X£/is a finite-

dimensional space it is completely reducible under (p*+0)(8x). Let %*XU

= EiSjSat l7j where the sum is direct and the subspaces Uj are invariant and

irreducible under (p*+0)(8x). Let A¡ be the highest weight of the representa-

tion of 2k induced on U* where U* is the space dual to Uj. Then it is well

known that 33o occurs in the representation of 2k induced on 21a- X Uj if and

only if A'=Aj. Hence if AVA,-, it follows from Lemma 22 that

2Ía'X UjC  E (2IXX*X U)*>:
A'VO

Now

21 X X* X U = E (»a X Uj) = 22 (Ha, X U{) + T,   T, (»a X Uj)
A,; j i     KjíAj

c E (?ía, x t/,0 + E (« x x* x í/)A.
í AxíO

But from Lemma 22,

2ía,. x Uj = 22 {(«Ay x Ui) r\ (2i x x* x uu\.
A

Hence

21 X X* X tf C E {(«a, X Uj) (~\ (21 X X* X tf).}

+ E (a x x* x u)a.
A^0

Since the sum  22 a (2IXX*X£0a is direct it follows that

(21 X X* X t/)„ C E { (21a,- X tf/) n (21 X X* X tf)o} •
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Hence

(21 X 36* X i/)o = £ (2IA, X Ui)o.
i

Thus it is sufficient to prove that for a fixed j, (2IajX U,)o is a finite 6-module.

Choose a,G2ÍAy, f^iúr, such that 2Ía,- = £is.sr 6a,-. Since <r(36)a,Xí7J is

finite-dimensional, it is completely reducible under v(H). Hence

a(I)ai X U¡ = £ (ff(X)fli X Uí)a-.
A'

Clearly K6)(<r(36)a,-X Uj)a'C(ÎIajX Z7y)v. But

2Ía, Xif,=   £ *(6)(<r(36K X Ui).
lSiër

Therefore

(21a, X V,)l< =   £ K6)(<r(36)a,- X U,)a'.

Since dim (o-(36)a<X U,)a' is finite it follows that (2Ía, X £^y) a- is a finite 6-

module. If we take A' = 0 we get the required result.

Let gj,  fíkjíkp, be a base for  U and let w,-, l=t^r, be elements in

(21X36* Xt/)o such that

(2Í X 36* X i/)o =   £ K6)«,-.

Let Ui= £iá;Sp aiXej, l^i^r, (a{G2ÍX36*). We claim that

(21 X 36*)A = £       K<£)«'.
lát'ár.lajáp

Put .4 = £ig.sr,i¿y¿3) ^(6)0^. Since w< transform according to 3)o under

(v+6)(2k) it is clear that aÍG(2lX36*)A. Hence ¿C(2ÍX36*)A. Now let
aG(2tX36*)A- We have to show that aG^4- We may assume that a^O. Then

v(H)a is a finite-dimensional space which is completely reducible under ^(36)

into a direct sum of invariant irreducible subspaces Vk, 1 =&á<Z- It is suffi-

cient to show that VkEA, 1 =&;£o. For a fixed k write F= Vk. Let ^ be the

irreducible representation of 36 induced on F. Then i/'G&a and therefore we

can choose a base Vj, 1 ¿j^p, for F such that

£  (v¡ X «,) G (21 X 36* X U)o.

Hence

£ Vj X e¡ =   £ v(zí)uí = £       Zia'i X e,- (z,- G 6).
lÉjSp lSi'ár lSiár.lá/Sp
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Therefore v¡= EiSt'ér Zia{EA, l^j^p. This shows that FC^4 and so the

lemma is proved.

Lemma 27. Let v be the representation of 93 on 21XX* as defined above.

Then{17) ^(33)(1X1*) =2IXX* and the set of all elements &G93 such that

v(b) {1X1 *} = 0 coincides with 212Ja0.

If aG2I and xGX, it is easily seen that p(ax){lXl*} =aXx*. Hence

K93)(1X1*)=2IXX*. Also since [X, a]G2I for any XG2k and aG2I it is
obvious that 93 = 21X. Let 3R be the set of all elements &G33 such that

K&)(1X1*)=0. Clearly 2R is a left ideal and WID^a,. Hence 9)O2I§)a0. On
the other hand we can choose elements w¿, l^i^N, in X such that cof,

l^i^N, form a base for X*. Since 53 = 2IX every element &GS3 can be written

as & = Eis «sat aiíúi mod 212Ja0 («íG2í). Therefore

v(b)(i x i*) =   E «* x co*

Hence if &G3R, a, = 0, l^i^N, and 6G2í§)a0. Therefore 3R = 2I2)a0.
From Lemma 26, we can find elements a¿, 1 ^i^r, in (2IXX*)a0 such that

(2IXX*)a0= Eis«á>- '/(S)ai. Let ?o be the representation of X induced on

(21XX*) a0 by v. By Lemma 23, we can write (21XX*)a0= Ex (21 XX*)a0,x where

X runs over all the weights of v0. Let »>o(X)ai = 22x (^o(X)af)x be the correspond-

ing decomposition of the finite-dimensional space i>0(X)a¿. It is clear that

K6)(î'o(X)ai)xC(2IXX*)A0,x. Hence

(21 X X*)Ao,x =   E K<S)MXK)x.
lStár

Since Po(X)a¡ is finite-dimensional this shows that each (2IXX*)a0,x is a finite

S-module. In particular this holds for A = (21XX*)a0,a0- Now we turn A into

an associative algebra as follows. For any «Ç4 consider the finite-dimen-

sional space vo(H)u. It follows from the definition of (2IXX*)a0 that the rep-

resentation of X induced on po(X)m is a direct sum of irreducible representa-

tions each of which belongs to 33a„• Since u belongs to the highest weight A0,

it follows that p(§)ao)m = 0 and therefore p(2I2)a0)m = 0. Given any z>G^4 we

can, by Lemma 27, find a b Gesuch that v(b)(lXl*) =v. If b' is another such

element then by the same lemma, b — &'G212)a0 and therefore v(b — b')u = 0.

Hence v(b)u is uniquely determined by v alone. Now we define multiplication

by setting vu =v(b)u. If b' is any element in 53 such that v(b')(1 X1 *) = u, then

vu=v(b)v(b')(\ XI*). This immediately shows that the multiplication is asso-

ciative. For any zE&, v(z)(lXl*) = zXl*GA Also if z^O then sXlVO.

Therefore the mapping z—>zXl* (zÇz&) is clearly an isomorphism of S into

A. We may therefore identify 6 with its image under this mapping. Then it is

easily seen that S lies in the center of A and A is a finite S-module (under the

(") We denote the natural mapping of X on 3E* by x—>x* (*GX) throughout.
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multiplication defined in A). Let S be the center of 33. We note for later

use that if zE3> v(z)(lXf*) hes in the center of A.

Now let x be any homomorphism of 6 into C such that x(l) = L Let

9ÎX be the left ideal in 21 generated by all elements of the form z~x(z) (zG6).

Then it is obvious that 9ÎX is actually an ideal and therefore [X, 9cx]

= [y(X), 9cx]C9cx (AG8k). Therefore the space 9cxX?6* is invariant under

p(33). Let z-^z denote the natural mapping of 2t on 2I = 2I/9cx and 6 the nat-

ural mapping of 2ÍX36* on the factor space (2IX36*)/(9?XX36*). Then it is

easily seen that 21X36* and (2tX36*)/(9cxX36*) are isomorphic under the map-

ping zXx*<->0(zXx*) (zG2l, xG36). We therefore identify the two spaces

under this mapping. Let V be the representation of 33 induced on (2ÏX36*)

= 0(21X36*). Then it is easy to verify that

v(X)(z X co*) = ■ f=77] X co* + z X (Aco)*,

v(w)(z X «*) = wz X co* (A G 2k, z, w G 21, co G 36).

Also it is clear that

(21 X 36*)a D 0((2I X 36*)a) (A G Pk).

Since 21X36*= £a (2IX36*)a, it follows that

(9) I X 36 = £ (I X 36)a
A

and (IX36*)a = 0((2IX36*)a). We have seen that (2tX36*)A_is a finite module

over 6. Since ?(z-x(z))=0 (zG6) it follows that dim (2ÍX36*)a< °°. Now

consider ¿n(9?xX36*). Since 9ÎXX36* is invariant under v(SQ), Ar\(mxX7i*)

is a left ideal in A. We shall now prove that it is actually an ideal in A. First

notice that 9c36x is an ideal in 33 since [A, 9îx]C9cx (AG8k) and 2136 = 3621=33.

Let MG^n(9cxX36*), vEA. Then we can find bEVlxX, ¿>'G33 such that u
= v(b)(lXl*), v = v(b') (1X1*). Hence uv=v(bb')(\Xl*). Since 9ÎX36 is an

ideal, o¿V_G9íx36 and therefore wz/G(9cxX36*)fVl. Put A =6(A). Then we can

regard A^A/AC\(yixX^.*) as a factor algebra of A. Again we verify that if

KiiXÏXl *)=«i- v(b2)(ÎXl*) = û2 then ü1ü2 = v(b1b2)(ÍXl*) (ôi,&2G33,

ßi, ü2EA). Since dim A gdim (2tX36*)A0< œ, A is a finite-dimensional asso-

ciative algebra. We note that ÏX1* is the unit element of A.

Put 93ca„ = 2í§)a0_+9cx36. It follows easily from Lemma 27 that ?(33) (ÏX1*)

= 21X36* and K^)(1X1*)=0 (&G33) if and only if &G93ca0.

Lemma 28. Let 93c be a maximal left ideal in 33 such that 93O93?a0. Put

93c* =?(93c)(lXl*). Then 93c"*n^4 is a maximal left ideal in A.

Let z-^>z* denote the natural mapping of 33 on 33* =33/93ca0 and let x*

be the natural representation of 33 on 33*. It is obvious that V is equivalent to

x* under the isomorphism ?(ô)(ÏX!*)<->&* (¿>G33) of 21X36* with 33*. We may
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therefore identify these two spaces under this isomorphism. Since 3R is a left

ideal it is clear that ÜR* is invariant under p(93) and therefore '$fl*r\A is a

left ideal in A. Also ÏX1*G2R*^4 for otherwise we would have 93* = i>(93)

(1X1*)C2R*. Since ÜJÜSRa, this would imply that 93/SR^93*/SR* = {Oj
thus contradicting the fact that 2R is maximal.

Let p be the natural representation of 93 on 93/2R. Since 9R is maximal p

is irreducible. Also since 9JO2Ra0, p is equivalent to the representation in-

duced by v on 33*/9R*. Let u, vÇ.A, wGSR*- Since p is irreducible we can

find a oG93 such that v(b)u=v mod SDc*. We have seen above (equation (9),

p. 63) that 21XX*= Ea (2IXX*)a- Hence v(b)u = u0+u1+ ■ ■ ■ +wr where

«¿G(2IXX*)aí, Ao, • • • , A, being distinct. Then

v(b)u — V = («o — v) + Mi + • • • + «r G 2R*.

From Lemma 4 of [9, p. 912], we can find an #GX such that v(x)z = 0 for all

zG(SXX*)A<, l£igr, and p(x)z = z for all zG(SXX*)A„. Hence

v(x){v(b)u — v) — v(xb)u — v = m — v G 2R*.

Further if Xo, Xi, • • • , X, (Xo = Ao) are all the distinct weights of 33a0, put

n (H-HH))
t lSíás

x    n (Xo(^) - un))
leiSs

where if is any element in bx such that \o(H) j¿\í(H), 1 gî'^s. Then clearly

v(x')z(E.A for any zG(2IXX*)a0 and v(x')z = z if z£A. Hence

v(x'xb)u - v = v(x')(uo - v) G 9R* H J.

Put b'=x'xb. Then p(o')M-z»GSR*n J and since »6Ä r(i>Gl Let 2RU be

the left ideal in 93 consisting of all zG93 such that v(z)u = 0. It is clear that

9WmD3Ra0. Let SR„* -f(SK.)(ÏXl*) and let 0 be the natural mapping of 93*
on 93*/2Ru*. Also let v0 be the representation of 93 on 93*/9R«* induced by

V. Then it is obvious that

?(»)« ̂ 93/aRu ̂ 93*/2R„* = (S X X*)/2R„*

and the representation of 93 on ?(93)w is equivalent to v0 under the isomorphism

p(z)M<-*0(p(z)(ÏX1*)) (2^93) of p(93)m with 93*/2R„*. Since v(b')uGj it fol-
lows that

e{v(b'){\ X 1*)) G (93*/2Ru*)a„a0

in the notation of Lemma 23. But it is obvious that

(Ö*/ÜR«*)a„.a. = 0(A).

Hence P(6')(ÏX1*)GJ+ÜRU*. Therefore we can find a zG2R« such that
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v(b'-z)(ÏXl*)=u'EA~- But then

u'u - v = v(b' - z)u - v = v(b')u - v E 93c* H A

since zG93?u. Since u, v were any two elements in A such that wG93c*f>\yl,

this shows that the natural representation of A on A/3Jl*C\A is irreducible.

Since 1X1*3:932*^.4 it follows that 93?*nZ is a maximal left ideal in A.

We have seen above that every maximal left ideal 93? in 33 such that

93O93?a0 defines an irreducible representation of A namely the natural

representation of A on A/^R*r\A. Since A is a finite-dimensional associative

algebra it has only a finite number of inequivalent irreducible representations. .

Hence there exist a finite number of maximal left ideals 93?;, 1=7=>, in 33

each containing 93?a0 such that if 93? is any maximal left ideal containing 93?a0

the representation of A defined by 93c is equivalent to the one defined by 93?¿

for some i, 1 =* = r. Let p¡ denote the natural representation of 33 on 33/93?,-.

Lemma 29. Let 93? be a maximal left ideal in 33 such that 93O93?a0 and let

p be the natural representation o/33 on 33/93?. Then p is equivalent to Pifor some

i, 1 ■¿i^.r. Moreover if 3 is the center of Si there exists a homomorphism £ of S

into C such that  z — £(z) G93? for all zES-

We keep to the notation of the proof of the preceding lemma. Then

SM„ =p(93c)(ÏXl*), aR*-»(2Db)(ÏXl*), 1 ä£*JSr, and we can choose an ?_such
that the natural representations of A on AfiSl*r\A and 4/93c,*P\J are

equivalent. Hence we can find an element vEA (vC¡.$Jl*r\A) such that for

any uEÂ, wî>G93c* if and only if ttG93?;*nJ. Let 93?,. be the left ideal in 33
consisting of all ¿>G33 such that p(ô)î<G93î*. Let ß be the natural mapping of

33 on 33/93? and 6 the natural mapping of 33* on 33*/93?*. Since 93?D93?A„, P
is equivalent to the representation of 33 on 33*/93?* induced by P, under the

natural isomorphism

ß(b) <-> 0(Z>*) = e(v(b)(l X 1*)) (b G33)

of 33/93? with 33*/93?*. Since ̂ G93?, 6(v)^0. Hence p(8)0(») =33/93? since p
is irreducible. Let 93?' be the set of all elements ¿>G33 such that p(b)6(v) =0.

Clearly 93?' is a maximal left ideal in 33 and if p' is the natural representation of 33

on 33/93?', p is equivalent to p' under the isomorphism ß(ba)<-+ß'(b) (ÔG33)

where ß' is the natural mapping of 33 on 33/93?' and a is any element in 35

such that ß(a) =6(v). Hence it is sufficient to prove that p' is equivalent to p,-.

Let93?; = ?(9J?')(ÏXl*).Then_MG93?*nJifandonlyif uEA and uvEM*,
that is, if and only if «G93?,*n/1. Hence Wl'+nA=$Jli*r\A. We now claim

that 93?'= 93?,-. For otherwise suppose 93?' 5=9??,. Since they are both maximal

left ideals, lG93?' + 93?¿. Hence ÏXl*=z*+w* where z*G93?*, w*G93?,*.

Since 93?* and 93?,-* are invariant under v(l), it follows from Lemmas 1, 22,

and 23 and the relation 1X36* = £A (2TX36*)A, that
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95?;= E9)í*n(íixx*)A,M
Ají

in the notation of Lemma 23. A similar equation holds for 3Rt*. Since the sum

Ea,m (IXX*)a,„ is direct and 1X1*G4 = (2ÍXX*)a0,a0 it follows that ÏX1*
= zi + w* where z* and w* respectively are the components of z* and w* in

A. From the above remarks it is clear that záGSR*^^4, w>*G3R.*^.4. But

since W^C\A = $Dc,-*P\.4, we have ÍX1*G9R¿*<^^4 which of course is false

since 9)(i*Pi A^A from Lemma 28. Therefore SRi = 3R' and Pi=p'.

Furthermore we know that p(z)(TXI*) lies in the center of A for any zG<3-

Since the natural representation of A on A/Af^T}* is irreducible it fol-

lows from Schur's lemma that we can find %(z)EC such that p(z)(1X1*)

-£(z)(ÏX1*)G37~33R*. Hence z-£(z) GSR. Since the mapping z->£(z)(zG,3)

is clearly a homomorphism the lemma is proved completely.

It is now easy to deduce Theorem 4. Let V be the representation space

of jr. Since by hypothesis Fa^Io} we can find an element 0GFao, 05^0.

We may clearly suppose that the space 7r(X)0 is irreducible under 7r(X) and

0 belongs to the highest weight Ao. Then it follows that t(§)ao)0 = O. Let SR

be the set of all elements ÔG93 such that ir(b)fa=Q. Since ir is irreducible, SR

is a maximal left ideal and 9)O2I2Ja0. Also it is clear that SRDSc* and there-

fore SRDX5RX = SRXX. Hence SRDSDÎa, = 2l§)Ao + 9cxX. Let p be the natural repre-

sentation of 93 on 93/SR. Then from Lemma 29, p is equivalent to p,- for some

l^i^r. Since ir is clearly equivalent to p the first assertion of the theorem is

established.

Now we come to the second part. We have already seen (cf. p. 63) that

dim (SXX*)a<« and 93/SR =0(21 XX*) = Ea 0((?IXX*)A). Let (93/SR)A de-
note the set of all elements of 93/50? which transform under p according to

33a- Then it is easily seen that (93/SR)a=0((?IXX*)a). Hence

dim (93/SR) a ^ dim (I X X*)a < ».

Since the existence of the homomorphism £ has already been established in

Lemma 29, the proof of Theorem 4 is now complete.

Part III. Characters. Let 2 be a semisimple Lie algebra over C and 93

the universal enveloping algebra of 2. Choose a fixed Cartan subalgebra b of

2 and a fundamental system of roots {«i, • ■ ■ , «¡} of 2 with respect to 6.

Let 3 denote the center of 93.

Definition. A complex-valued linear function % on 93 will be called a char-

acter if the following conditions are fulfilled :

(1) X(M2) =x(Mi) for all h, Ô2G93.
(2) x(l) = l and xO^) = x(zi)x(z2) for all zu z2G5-
Let Xi, 1 ̂ i^n, be a base for 2. Put g¿J=sp(ad Xi ad Xj). Since 2 is semi-

simple the matrix (fy)isi,,sB is nonsingular. Let (g'Oisijs« denote its in-

verse. Put Xl= Etéyá« KijXj.
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Lemma 30. // x is a character and (j\, ■ • • , jr) is any permutation of the set

(1, 2, • • • , r), then

£    __ x(AflA,-2 • • • X^X'Ut'h ■ ■ ■ X'irES-

The proof of this lemma is exactly parallel to a similar assertion proved in

[9, p. 912].

Lemma 31. If xi end Xi are two distinct characters of 33 we can find a zES

such that Xi(2) 7^X2(2)-

We know that the basic canonical elements(18) 5(íl,...,¿r) A^A,-,, • • • A,r,

1 SS*i> * ' ' 1 *ra». Tè0> form a base for 33. Since Xi 5^X2 we can find anr^O

and 1 =î'i, • • • , ¿r = w such that

Xi(     S     A^A.-j • • ■ Xir) 7e Xä(     S     A,-,A,-2 • • • Xi,).
(«1. •■•■«'r) C'l.---.«V)

Put

Ohif-i, = Xi(     S     Xit • • ' Xj,) — xî(     5     A;i • • • A,v),
(Jl,---.Jr) (i'r.---,3r)

1  á j!, •  •  •   , ,/r   ̂    ».

Then ajljl...jr are symmetric and not all of them are zero. Hence

w=        £       ailh...irXW*- ■ • A'V^O

(cf. [9, p. 913]). Also from Lemma 30, wES- Hence from Theorem 1 of [9,

p. 905] we can find a finite-dimensional representation x' of 33 such that

tt'(w) 5^0. Since 8 is semisimple x' is fully reducible. Hence tt(w) f^O for some

irreducible component x of tt'. Since x is irreducible and wE&, it follows from

Schur's lemma that tt(w) =cx(1) (cEC). Then c^O and therefore sp tt(w) ¿¿0.

Now put

z = £     _   {sp x(    5     A^A,-, • • ■ A)r)}AíiA'2 • • • XK
lá j'i, • •-,írán ih,'",ir)

If a" is the degree of x the function sp ir(b)/d (¿>G33) is clearly a character.

Hence from Lemma 30, zGc3- Also

Xi(z) - X2(z) = sp w(w) F¿ 0.

Hence the lemma is proved.

The above lemma shows that a character is uniquely determined by its

value on £. Our object is to obtain all the characters of 33.

Let P be the set of all dominant integral functions on f). For any AGP let

xa denote a finite-dimensional  irreducible representation  of 33 with  the

(1S) The symbol 5(<,,...,< > has the same meaning as on p. 51.
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highest weight A and let ¿a be the degree of 7Ta. For any root a let Xa ^ 0 be the

root element corresponding to a. Put [Xa, X-a]=Ha, Hi = Hai, i^i^l. As

before we may assume that a(Ha)=2. Let § be the subalgebra of 93 gen-

erated by Hi, lèièl, and 1, and let C[x] be the (commutative) ring of all

polynomials in / independent variables X\, • • • , Xi with coefficients in C.

We know that HT'H^1 ■ ■ ■ Hf", mlt ■ ■ • , m^O, are linearly independent.

Let ß denote the isomorphism of & onto C[x] defined by ß(Hfl • • • H?1)

= xfl ■ ■ ■ xTl, mi, ■ • • , mie^Q. Moreover if X is any linear function on b

and/(x)GC[x] we denote by/(X) the value of f(x) at the point Xj=X(iJ¿),

í^i¿l. We shall constantly make use of the following simple lemma which is

easily proved by induction on /.

Lemma 32. J//GC[x] (VO) we can find I integers \v ■ ■ ■ , \i all greater

than or equal to 0 such that f(\v ■ • • , X¡) 5^0.

Put $ = E«>° ®Xa. First we prove a few preliminary lemmas.

Lemma 33. S*n§ = {o}.

Let ÄGs]3f~3>'Ö. Suppose h^O. Then ß(h)=f(x)^0. Hence from Lemma

32, we can find a AGP such that /(A) ¿¿0. Let fa^O be a vector belonging to

the highest weight A in the representation space of tta. Then clearly tta(/x)0

=f(A)fapi0. On the other hand since AGS$> 7Ta(&)0 = O. Thus we get a con-
tradiction and the lemma is proved.

We recall that the adjoint representation p of 93 is defined by the relation

p(X)b=[X, b](Xe2, ÔG93).

Lemma 34. The smallest subspace of 93 which contains Q and which is in-

variant under the adjoint representation of 93, is 93 itself.

Let SR be the smallest subspace satisfying the required conditions. For

any a, exp it ad Xa)=o-a(t) (¿GC) is a well defined automorphism of 2.

Clearly this can be extended uniquely to an automorphism of 93. Let G

be the group generated by aa(t) for all roots a and all i£C. Then it is known

(see Chevalley [4]) that there exists a polynomial/in n variables with coeffi-

cients in C such that jVO and if X= EiSíS" ttXi (¿¿GC) and/(¿i, •••,/„)

5^0 we can find a aGG and an iZGf) such that X = <rH. It is clear that SR is

invariant under a. Therefore since £>CSR and a is an automorphism of 93,

A'm = ai:/'"GSR (w^l). Let Vm denote the subspace of 93 spanned by

•S«!,-■•,.•„) XhXÍ2 ■ ■ -Xim, \^iv ■ • • , t»^»; m^O. We claim that FmCSR.
For m = 0 this is immediate since 1G§CSR. Hence we may assume m^l.

It will be sufficient to show that Vm/ FmP\SR = {0}. Suppose this is false. Then

we can find a base wM, l^p^N, for Fm/FmnSR. Let 8 denote the natural

mapping of Vm on Vm/Vm(~\W. Then

0(      S      XitXi2 ■ ■ ■ Xim) =   22    «tií2---¿m,MwM («¡,.-.i»,,,GC).
i    •••.<„) léuéN
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Hence

8(Xm) = £ £    Ufo • • ' hm,aitit..-tujfàit.
láii,---,t„án     lS^SíV

But if/(¿i, • • • , O^O, Am = criP»GFmri93?. Hence

£       ai,ii---imJhti2 ■ • • hm = 0, la p ^N,
l£i¡. ■ ■ ■ ,iM¿n

whenever/(íi, • • • , í„)fí0. Since a,-,^...,^.,, are symmetric in t'j, • • ■ , im

this implies that «^...(.^"O. But since Sult...,t^ X^Xit • • • A,m span Vm,

we must have 6(Vm) = {o} which contradicts our hypothesis. Hence FmC93?

and this being true for all m, 33= £mèo FmC93?.

Given any linear function X on f) we propose to associate with X a char-

acter xx of 33. Put p = (1/2) £„>o a and let IF be the Weyl group of 8 with

respect to f). Let A denote the function [J„>o (exp (( —l)I/2a/2)

— exp ( —( —l)1/2a/2)) defined on f). Since every sEWinduces a permutation

a—>sa of the roots of 8 it is clear that

sA = n(exp ((-1)1/2 y) - exp (- (-1)«« ^ = ± A.

We say that 5 is even or odd according as sA = +A or —A and write e(s) = 1

or — 1 accordingly. It is known that the Weyl reflexion sa with respect to a

root a is odd (see Weyl [12]).

Let % be the space of all linear functions on f). Then % and f) are dual

spaces and every sEW can be made to act on f) by duality so that

\(sH) = s-l\(H)

for allXGfjí and HEf)- Let xlt • • • , xi, h, • • • , ti be 21 independent variables.

For any HEf) let x(H) denote the linear form £is,s¡ c,x,-, H=£is{g;c,-7í¿.

Also set sx(H)=x(s~lH) and (sx)i = sx(H¡), l^i^l. For any XG5 we

denote by \(Ht) the linear form £is»s¡ X(/f<)/< and write \(sHt) =s~1~K(Ht).

Finally we put

x(sHt) = s-xx(Ht) =  £ tix(sHi).
lSt'Sl

Consider the power series 0(x, /) in Xt, ■ • * » *i» h, ' • • i h with coefficients

in C given by(19)

Kx, t) = £ e(s) exp ((-l)U*sx(H,)).

Since e(sas) = —e(s),

28(x, t) =  £e(i){exp ((-\y>hx(Ht)) - exp ((-iy*sasx(H t))}.
sE.w

(") As usual exp z stands for the power series l-r-z+zV2!+s3/3!-f- • • ■ .
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But sasx = sx— (sx(Ha))a. Hence

exp ((-iyi2sx(Ht)) - exp ((-l)1'**.;*^)

= exp ((-l)Ws*(Hd){l - exp (-(-iyi*sx(Ha)a(Ht))}.

Now 1—exp (— ( — l)ll2sx(Ha)a(Ht)) is divisible by a(Ht) in the ring of

power series. Hence 8(x, t) is divisible by a(Ht). Similarly

20(*. t) =  E«W{exp ((-iyi*sx(Ht)) - exp ((- iyi*ss*x(H,))}.
sGlF

Since ssax(Ht) =sax(s~lHt) =x(s~lHt)—x(Ha)a(s~lHt), we get

exp ((-iyihx(Ht)) - exp ((-iyi2ssax(Ht))

= exp((-iyi2sx(Ht)){l - exp(- (-1)^x0 ^ai^H,))}.

Since 1—exp (— ( — V)ll2x(Ha)a(s~lHt)) is divisible by x(Ha) it follows that

0(x, /) is divisible also by x(Ha). Now if a, ß are roots greater than 0 and

ay£ß, x(Ha), a(Ht), x(Hß), ß(Ht) are all relatively prime. Since a power series

ring over C is a unique factorisation domain it follows that 0(x, t) is divis-

ible by II<,>o {x(Ha)a(Hi)}. If r is the number of positive roots of 2,

ila>o {x(Ha)a(Ht)} is of degree r in (x) and (/) each. Since each homogeneous

term of 0(x, t) is clearly of the same degree in (x) and (t) the same must

hold for the power series 0(x, 0/IT«>o [x(Ha)a(Ht)}. Now

exp {{-\y\a{Ht)/2)) - exp (- (-l)*/'(«(g,)/2))

<*(Ht)

is a unit in the power series ring since its constant term is ( — i)U2^0. Con-

sider

S(x, t) {exp«-iy>Ha(Hi)/2))-exp(-(-iyi*(a(Hi)/2))yl

IL>o{*(£T«)«(ffi)} iot *(Ht) )

Since the last factor is a power series in (t) only, it is obvious from the above

remark that the product is a power series in (x), (/) such that the coefficient

of each power product if ^ • • • tf1 is a polynomial in (x) whose degree is

less than or equal to oti + w2+ • • ■ -\-mi. Put

„ 0(x, t)
<p{X,t)   =   Up(Ha)

a>0 Ua>o{x(Ha)a(H,)}

(10) . TT (exP ((-l)1/2(«(gQ/2)) - exp (-(-l)i/»(«(gf)/2))p

a>o  I a(Ht) 1

lla>op(Ha)    6(x, i)

Y\a>ox{Ha)    A(Ht)
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where A(Ht) is the power series II«>o {exp ((-l)m(a(Ht)/2))-exp (-(-l)m

•(a(jy,)/2))}.Then

(11) <p(x, t) = £        smi,...,mi(x)hl ■ ■ ■ ti
mi, • • • ,m¡aO

where sm,...,m¡(x)EC[x].

Now put x't=Xi-\-p(Hi) and consider the power series

(12) X(X,  t)   = £ Smi,...,mi(x')tiit2'1  ■  •   ■   tl
mi, • • • ,m/èO

where smi,...,mt(x') is obtained by replacing each x,- in smi,...,mi(x) by x[,

1 gt'á/. Then x(x, ¿) is a power series in (i) with coefficients in C[x]. Define a

linear mapping x* of ^ into C[x] by the rule

(13) X:(H?H? ■ ■ ■ Hi) = (l/((-l)ITl+'"+"W...«l(*0.

Since iîf'iî™2 • • • Hf'1, mu • ■ • , m^Q, form a base for |) this defines x*

completely. Given any XG5 and AG§ we denote by xxW the values of the

polynomial Xx(h) at the point x,=X(ií¿), 1 Sais*/. In this way we get a linear

mapping x\ of § into C.

If AGP and if xa is the corresponding finite-dimensional irreducible repre-

sentation of 33 with the highest weight A, then it is known (see Weyl [12])

that the degree ¿a of xa is given by

.        IL>oA'(Z7„)
(14) dA = TÎ—7JT\

whereA'=A+p. Moreover

(15) sp (exp (-1)i'2xa(#()) = dA     £ sm¡,...,mi(A')t7Y2i ■ • ■ h'
mi, • • • ,m¡^ 0

for any ti, ■ • ■ , tiEC such that |/i| , • • • , 11¡\ ¿rj, r¡ being a suitable real

number greater than 0. Here Ht= £ts,s¡ tjli and sni,...,mi(A') is the value

of the polynomial s„„ • • \mi(x) at the point Xi=A'(Ht), l^i^l. Also

exp (—\ynTTA(Ht) denotes the usual exponential of the matrix ( —1)1/2xa(í?¡)-

Hence by comparing coefficients of the two power series in (15) we get

(16) - sp tta(H?H? ■ ■ • H?) =        ,      * +    +    smi,....mi(A')

and therefore

(17) xa(A) - — sp ta(ä) (h G &
dA
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in this case.

Let 93' be the set of all elements in 93 which can be written as linear com-

bination of elements of the form [ôi, b2] (bi, &2G93).

Lemma 35. If &G€>n93', X*W =0. Furthermore x*(l) = L

Let Xx(h) = g(x). If g(xV0 we can find a AGP such thatg(AV0. Consider

the irreducible finite-dimensional representation 7ta of 93 whose highest weight

is A. Then xaW =g(A) ^0. On the other hand from (17)

1
Xa(A) = — sp ttaW = 0

ÛA

since AG93'. Thus we get a contradiction. Hence Xx(h)=0. We prove in

exactly the same way that x*(l) — 1=0.

From Lemma 34 we know that 93=93'+§. Given any zG93 let z — b+h

where b G93', h G £>• If b' G93', h' G § are two other elements such that z = b' + h'

then h — h'Cz¡QÍ~\$8' and therefore by the above lemma Xx(h-h') =0. Hence

it follows that Xx(h) is uniquely determined by z alone. We now extend Xx

to a linear mapping of 93 into C[x] by setting x*(2) = Xx(h). F°r any XG5 we

define xx on 93 by xx(z) = (Xx(z))x<=xi, \i=\(H,), l^i^l. It is clear that

X*W=Xx(&)=0for any &G93'.

Lemma 36. Given any zG,3 there exists a unique element f, (x)GC[x] such

that z—/3-1(fs(x))GS5. Moreover the mapping z—>/, (zG,8) « a« isomorphism of

S into C[x]. Finally, ft = Xx(z)-

oti, • • • , <xr being all the positive roots of 2, put Xai = X,-, X_ai = F<,

1 ¿i^r, and

z(?, i», />) = Fi F2 • • • Fr ff i #2   • • • l?i Xi • • • Xt

as in the proof of Theorem 2. Also we define ranks in 93 exactly as there.

Then z(q, m, p) is of rank rank p — rank q where rank p = Eiá»ár P%<*¡, rank g

= Etéfér q.'a'- It is clear that every zG,3 is of zero rank. Hence from Lemma

1, z is a linear combination of z(q, m, p) with rank a = rank p. But if rank

p>0, z(q, m, p)E% Hence

z m 22 a(w)z(0, w, 0) mod $ (a(w) G Q.
m

This shows that there exists an AG§ such that z — AG?. Put /(x) =ß(h).

Now if gGC[x] and z-ß-^GS* it follows that

r1(i)-AGçpn§= {o}

from Lemma 32. Hence g—ß(h)=g—f=0. Therefore/is unique.

Let «i, z2e8- Then if h^ß-^f^, h2=ß~1(U)
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Z1Z2 — h\h2 = s2(zi — hi) + Ai(z2 — h2) = 0 mod ^ß.

Hence it follows from the uniqueness established above that ftizi=ß(hih2)

=fzJn- Now let zE3¡ z^O. Then we can find a finite-dimensional irreducible

representation xa of 33 with the highest weight A such that xa(z) y^O (see [9]).

Since xa is irreducible it follows from Schur's lemma that xa(z) =cxa(1)

where cEC. Let ^^0 be a vector in the representation space of xa which

belongs to the highest weight A. Then since z — ß~1(fz)E<^,

xA(z - ß-KfM =  {c - /»(A) }^ = 0.

Since ^5^0, /2(A) = Cr^0. Therefore f,?¿0. This proves that z—*f, (zE3) is an

isomorphism.

For any zE3 put g(x) =Xx(z) —fz(x). If g(x) 5^0 we can find a AGP such

that g(A) j¿0. Then

Xa(z) - MA) = g(A) * 0.

Let i/^O be a vector belonging to the highest weight A of xA. Since xA is

irreducible   and   zES>   ta(z)=cxa(1)   (cEC)   by   Schur's   lemma.   Hence

c = (l/dA) sp xA(z).

Now

Tite-'c/.))* = urn
Since z-ß-^f^GV, TTA(z-ß-1(fM = 0- Hence

|-spxA(z) -/.(A)|*«0.

Since ^5^0,

1
— sp xa(z) - /.(A) = xa(z) - MA) = g(A) = 0
ÖA

from (17). Thus we get a contradiction and therefore xÁz) =MX)-

We are now in a position to begin the proof of the following theorem.

Theorem 5. xx ¿s a character for every linear function X on t). Given any

homomorphism x °f 3 íW¿° C such that x(l) = 1 we can find a linear function

X on f) such that x(z) =xx(z) for all z ES- U A1A2 are two linear functions on f)

then xx!=Xxs if and only if X2+p = 5(Xi+p) for some sE W.

Corollary. Every homomorphism x °f 3 into C such that x(l) = 1 can be

extended uniquely to a character of 33. Every character of 33 is of the form xx

where X is a linear function on f).

This is an immediate consequence of Theorem 5 and Lemma 31.

The first assertion of the theorem follows directly from Lemmas 35 and
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36 and the definition of xx- In order to prove the rest we first need some

lemmas.

Lemma 37. Let C[x) be the power series ring in xh • ■ ■ , x¡ with coefficients

in C and let Si be the ideal in C{x} generated by Xi, • • • , x¡. Given any f(x)

Ç£C[x] and an integer N^i we can find a finite number of linear forms Xy(x),

1 gj ^ r, such that

22 Cj exp X,(x) m f(x) mod SF (c, G C).
láíSr

If ^=1 we may clearly take r — \ and X,(x) =0. Hence we may assume

A^2 and use induction on N. Notice that

Xi - (exp Xi) + 1 G 5R2, 1 £ i ¿ I.

By induction hypothesis we can find linear forms X>(x), l^j^r, and CjÇ^C

such that

22 cj exp X,(x) m f{x) mod W~%.
lSiár

Hence

f(x) ■   E ci exp X,-(x) + g(x) mod SF
là jûr

where g(x) is a form of degree N—l. Let G denote the power series obtained

by replacing each x{ by exp (xi) — 1 in g(x). Clearly g(x) = G mod 5RW. Hence

/(*) =   22 c,- exp X;(x) + G mod SF.
lájár

The expression on the right is of the required type since G is clearly a linear

combination of exponentials of linear forms. The lemma is therefore proved.

Notice that if X(x) is any given linear form we can find an HÇ.Ï) such that

X(x) = ( — \)inx(H). Hence by the above lemma

f{x)m  22  c,exp(-l)1'2x(H(í))modSÍA'
lSiár

for suitable CjG.Ca.nd iTyjGb-
For any sGIF the mapping x<—>(sx),- = ix(.ff,-), l^i^l, can be extended

uniquely to an automorphism of C{x}. We denote this extension again by s.

Let/(x) be a polynomial such that s/(x) =/(x) for all s<E.W. Put

g(x) =f(x)U<Ha).
a>0

It is known (see Weyl [12]) that IJa>o sx(Ha) =e(s) TL<*>o x(Ha). Hence

sg(x) = e(s)g(x).

Now by Lemma 37,
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g(x) m £  a exp ((- iy»x(H(i>)) mod 9?" (c,- G C, Hiñ E f))-
léi¿r

Since 9? is invariant under W it follows that

1    _
g(x) = —   £  e(s)(sg(x))

h  ,£w

= —   £   Cí   £  e(s)exp((-l)l/2ix(í7(í)))mod9íí¡v
A   lá3ár «GW

where & is the order of W. We prove exactly as before that the power series

on the right-hand side is divisible by  IJa>o x(Ha). Hence

.. ,      v-    ' / £.eipi(j) exP (-i)1/2^(^(i)) )     jmM,,r/,
/(*) «  £   c¡ \-^-—-\ mod9?M (cí E C)

iSjir \ Lla>0X(Ha) J

where N—M is the degree of the form YLoo x(Ha). Since N could be chosen

arbitrarily large the same is true of M. Let us choose M greater than the

degree of/(x). Then it follows immediately that/(x) is a finite linear combina-

tion of the coefficients of the power series

.     .       £.e^(5)exp((-l)i'2ix(Z7t))
<Po(x, t) — -—-

Y[a>0X(Ha)

if we regard it as a power series in (tu ■ ■ ■ , ti) with coefficients in C[x].

Now put x[ = Xi+p(Hi), l^i^l, as before. From (11) and (12) it is clear

that the coefficients of x(x> t) are linear combinations of the coefficients of

cpo(x', t) and conversely. Hence f(x') is a linear combination of

XxCffT'iTT2 • ■ ■ HT1), mi, ■ ■ ■ , m,^0. Thus we have proved the following

lemma.

Lemma 38. Iff(x) is a polynomial in C[x] such that sf(x) =f(x) for all sE W

then f(x') =Xx(b) for some &G33.

Let 9Î be the set of all elements in C[x] of the form Xx(z) (zE3)- We shall

show that 9? coincides with the set of all elements of the form Xx(b) (?>G33).

Lemma 39. Let 33'= [33, 33] as before. Then 33=33'+,3-

Let F = <3+33'. Suppose F?^33. Then we can find a subspace U of 33 such

that 33= V+U, Vr\U= {o}, U^O. Clearly dim U is either finite or count-

able. Let e¡, 1 2¡¡j < N, be a base for U, where N is either a positive integer or

oo. X being any linear function on f) we define a linear function x on 33 as

follows :

x(z) = xx(z),    zEV,        x(ei) = xx(ei) + 1,        xUi) = XxOy),      j è 2.

Since x coincides with xx on  F it is clear that X is a character. However
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Xr^xx since x(ei) ^Xx(ei)- But this contradicts Lemma 31. Hence F=93-

Corollary. 9Î coincides with the set of all polynomials of the form Xx(b)

(&G93).

For, by the above lemma, b = z-\-b' when zG3i £>'G93'.  Hence Xx(b)

=xx(z)em.

Lemma 40. Let U be an indeterminate. The coefficients of the polynomial

II  (U - sx(Hi) - sp(Ht))

regarded as a polynomial in U lie in di[t].

Consider

g(U, x, t) =  II (U - sx(Ht)).
«Gif

Clearly this polynomial is invariant under the substitution x,—->(sx),-, 1 £*'£/.

Hence it follows from Lemma 38 and the above corollary that the coefficients

of g(U, x', t) regarded as a polynomial in U and (t) lie in 9î. This proves the

lemma.

Corollary. C[x] is integrally dependent on 9?.

On making the substitution t¡ — 0, láj'á/, »Vj, f< = l, we find from the

above lemma that x[ and therefore x< is integrally dependent on 9î. These

being true for every i, 1 ;=»£/, the assertion follows.

We can now prove the second part of Theorem 5. x being any homo-

morphism of S into C such that x(l) = l, put x'(x*(s)) =x(z) (zG,3)- Then

x' is a homomorphism of 9Î into C and x'(l) = L Since C[x] is integrally

dependent on $R it follows from well known results in algebra that every

homomorphism of 9? into C can be extended to a homomorphism of C[x]

into C. We denote such an extension of x' again by x'- Let X be the linear

function on b such that x'^*) =X(iîi), 1 gí = /. Then x(z) =x'(x2(z)) =Xx(z)-

This proves the second part of the theorem.

For the proof of the last part we proceed as follows. Let C\t\ and C[t]

denote the power series and the polynomial rings respectively in (/) with coeffi-

cients in C. We denote by d/dti the uniquely determined C-derivation of

C{t] such thatdtj/dt{=*&{j, Igi.jgl.

Lemma 41. Let Xi, ■ • • , Xr be any r distinct linear functions on i). Then the

elements exp (X;(ií¡))GC{/}, l^i^r, are linearly independent over C[t], that

is,

22 fi(t) exp (\j(Ht)) = 0,       fj(t) G C[t]

implies fj(t)=0, l^j^r.
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Suppose the assertion is false. Let m be the least integer such that there

exist polynomials /,-(/), 1 ̂ j ^ r, not all zero and all of degree less than or

equal to m such that £igJgr/y(¿) exp (\,(Ht))=0. Let 5 be the number of

polynomials among these which are not zero and which have degree m.

Clearly s^l. We choose that particular set of f¡ for which 5 has the least

possible value. Then

(18) £ /,(<) exp (\i(Ht)) = 0
lSiSr

and by differentiation

(19) £    \\i(Hi)fi(t) + -^1 exp (\i(Ht)) = 0, lá¿á/.
lijar     \ dti    )

We may assume that fx(t) 5¿0 and its degree is m. Since Xi, • • • , Xr are all

distinct we can find c,GC, 1=î'^/, such that if H= £iáígz cJHi, Xi(iï)

9*\i(H), 2-^j^r. Put

gi(t) =  {\i(H) - Xi(H)}fi(t) + £  d^~-> fújSr.
íúiúi       dti

Then from (18) and (19)

£ *,-(/) exp {X,(ff()} =0.
lä jar

Not all gj(t) are zero. For otherwise

(20) {\i(H) - \i(H) )fi(t) = -  £ a —^, tá/áf.
lg.'S! Oti

If jVl, \j(H)¿\(H) and (20) is impossible unless /¿(/)=0. But then

/i(¿) exp (ki(Ht)) =0. Since C{¿) is an integral domain and since exp Çki(Ht))

7¿Q,fi(t)=0. Therefore /,-(/) =0, l^jtír, which contradicts our hypothesis.

Moreover it is clear that the degree of gj(t) is not greater than that of/,(/)•

Also gi(t) is of degree less than or equal to m—\. Hence at most s—\ poly-

nomials among g¡(t) are of degree m. But this contradicts the definition of s.

Hence the lemma is proved.

Using the same notation as before, we consider the power series

.     J       Usewt(s)exp((-iy»sx(Ht))
fo(x, t) = -—y=-——-

i\_a>(ix(Ha)

as a power series in (t) with coefficients in C[x]. Given a power series £(x, 0

in (/) with coefficients in C[x] and any XG5 we denote by £(X, t) the series in

C{t\ obtained by substituting x¿=X(/J,), i£i£l, in the coefficients of £(x, /).

Lemma 42. Let Xi, X2 be two linear functions on f) such that cnpa(\i, t)
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= C2<po(X2, /) where C\, d are complex numbers not both zero. Then X2 = 5Xi/or

some 5 G IF.

Let d/dxi denote differentiation with respect to x¿ in C[x] and for any

power series 6(x, t) with coefficients in C[x] let 30(x, t)/dxi denote the series

obtained by differentiating the coefficients of 0(x, t) with respect to x,-. Then

*•(*. 0 II *(#«) = E <s) exp ((-iy*sx(Ht)).
«>o i6ip

Differentiating r times we get

-Lo(x, Ou x(H.)\
dxißXi^ ■ ■ ■ dXi, \ a>o ;

Put

^ dsx(Ht) dsx(Hi)
22 t(sK(-iyi*)--i-¿--^-^-exp((-l)"*5*(ff()).

íGpt »*<! dXir

is) dsx(Hi) dsx(Ht)
/U.-vW = ((-D1/2)r-

dX;, dx,'r

#,<,...<,(*) = -—-—- ii x(Ha).
ax.jöXi, • ■ • dXir „>o

fM(t) = 1 and g(x) = Ha>o x(Ha). Since g(x) ^0, it is clear that there exists an

rjäO such that gi^j.-vCXiVO Ior some t'i, i& ■ • • i *r- (We define gtl...!r(x)

= g(x) if r = 0. Similarly for f'i?---iT(t).) Choose the least such r. Then

E •(*)/&.■■!,<*) exp ((-l)1'^!^,))

= [-——r--{«*(*, o n *(*.)} 1
Lox'n ■ • • dXir \ „>o ) Jzi-x^ff,)

=   g.-1<i"-«'r(Xl)*'0(Xl,  /)•

Since gi1,-2...,r(X1)?iO,

^     ,      E^W*)/^ ••<,(*) exp ((-l)"»?Xi(g())
Vo(Al, ¿) - -—— •

giiij-.uXi)

Similarly

/N     .      E.Ê**«/£•••v(í) exp ((-l)W«*X,(2r,))
Vo(X2, ¿) = —■-

£ft---í,'(Xí)

where g/,/2 •••;>» (^2) 5^0. It is clear from the definition of <po(x, t) that
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A(Ht)
<p<s(x, t) = <p(x, t)

ll<x>op(Ha)

where ip(x, t) is defined by (10). Since the coefficient of 1 in <p(x, t) is x*(l) — 1,

it follows that <p(\i, t)^0 and therefore <p0(Xi, t)^0. Similarly <pQ(\2, t)¿¿0.

On the other hand c^ofXi, /) ~c2c/?o(X2, /)=0 where cu c2 are not both zero.

Hence from Lemma 41, SiXi = s2X2 for some S\, s2EW. ThereforeX2 = sX1 where

s — s2  Si.

Now we can complete the proof of Theorem 5. Let x(x, t) be defined as

in (13). Then xxi = Xx2 implies thatx(Xi, t) =x(H t), and therefore <p0(Xi+p, t)

= <Po(X2+p, t). Hence from Lemma 42, ~K2+p=s(\i+p) for some sEW, and

Theorem 5 is proved completely.

Notice that in the definition of the series x(*> t) on p. 71 we made use of

the positive roots rather than of the negative roots. We could have equally

well considered the series

T,*ewe(s)exp((-iyr>sx"(Ht))
X~(x, t) — -^f- I I p (Ha),

Ua<0x"(Ha)A'(Ht) ¿r

x['=Xi+p'(Hi), l=¿á/,p' = 2-1£a<oa= -P,A'= IL<o V-***"-^-1***).
Then

(21) X~(-x, t) = x(x, t) = x(x, -t)

where x(x, t) is obtained from x(x, /) by changing the coefficients to their com-

plex conjugates. Let ((-l)1'2)"""1-• • •+mixJ(^ri • • • HT1) denote the coefficient

of C ■ • • t?1 in X"(x, t). We define Xx (h) (hE&) by linearity and extend Xx

to a linear mapping of B into C [x] exactly as in the case of x* by setting Xx (z)

=Xx(h) where z = h+b (A£§, &G33'= [33, S3], zG33). Let 9?= £a<0 33A0.
Then corresponding to Lemma 36, we prove that z—ß-1 (XaT(z))G9? (zE3)-

Let es denote the linear mapping A-* —A (AG8) of 8 into itself. Since

<?( [X, A']) = [A', A] = [<p(X'), <p(X) ] (A, A'G8), <p can be extended uniquely
to an anti-automorphism of 33. Clearly <p(3) =3- Now for any zE3<

z - ß~Kxx(z)) E%

Hence

z - ß-'(Xx(z)) = £ zaA„
a>0

where za is of rank —a. Hence

<p(z) - lp(ß~1(Xx(z)) = £ v(Xa)<p(za).
a>0

But

[H, <p(za)] = - [<p(H), <p(za)] = <p([H, za\) = - a(H)v(za)
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for any i?Gb- Hence (p(za) is of rank —a and therefore lies in 9Î. Hence

(22) Xfo«) = ß(<p(ß-Kxx(z)))) = x-x(z)

where the polynomial X-x(z) is obtained from Xx(z) by the substitution

Xf-4—Xi, í^i^l. For any XGS, we denote by xx the linear function on 93

such that Xx (z) =/(X) where/(x) — Xx (z) (zG93). We prove exactly as in the

case of xx that xx is a character. Therefore from Theorem 5, X\ =Xn Ior some

MGg. But then

„ x-^\ , , . 1/2, rn\4- • ■ •4-mi    —,      t»i »if.    nii mi

x~(\t)=      E      ((-D) xxtfi1 ■ ■ ■ Hi')hl ■ ' ■ h
mj, * • * ,wîj = 0

((-1)    ) XAfli   ■ ■ ■ Hi)h   ■ ■ ■ ti    = x(n, t).
mi, ■ • ■ ,m¡^0

Hence from Lemma 42, X—p=s(Ju+p) for some ¿GIF Changing X to —X,

we get the result that X-x=X« if and only if

(23) - (X + p) = s(p + p).

Let 7T be a representation of 93 and x a character of 93. We shall say that

it has the character x if 7r(z — x(z))=0 for all zG,3- From the corollary to

Theorem 5 it is clear that ir has a uniquely determined character provided

7r(z) is a multiple of 7r(l) for every zG,S-

We shall now apply the above results to the situation considered in

Theorem 4. From now on we adhere strictly to the notation of Part II. In

particular 2, g, 8+, 2k, 93, 21, and X have the same meaning as there. 21+ is the

algebra generated by g+ and 1. The isomorphisms y and y+ of 2k with g

and g+ respectively have been defined on p. 53. Then 7(bx) is a Cartan sub-

algebra of g and every linear function X on bx can also be regarded as a linear

function on 7(bx) and conversely by the rule \(y(H))=\(H) (H(EÍ)k).

Under this correspondence roots of 2k with respect to §k are also roots of g

with respect to y(f)K)- Hence the Weyl group IF of 2k is also the Weyl group

of g. Similar remarks hold for g+. Since 2 is the direct sum of g and g+, b

= 7(f)if) +7+(b#) is a Cartan subalgebra of 2. Every linear function v on b can

be regarded as a pair (X, p) of linear functions on i)K by the rule

v{H) = \{Hi) + p(Ht)

where H — y(Hi)-\-y(Hi) (iïGb, Hi, H2Gbx)- It is easily seen that the roots

of 2 are exactly those pairs which are of the form (a, 0) or (0, a) where a is a

root of 2k- Let [ai, ■ ■ • , a¡} be a fundamental system of roots of 2k with

respect to Í)k- Then the set (a¿, 0) (0, ai), í^i^l, is a fundamental system of

roots of 2 with respect to b and therefore the Weyl group of 2 is the direct

product IFX W.

Let (X, p) be a pair of linear functions on 6k;. This pair defines a linear
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function on f) and therefore a character of 33. We denote this character by

Xx,^. Let Xa be a root element in 2k corresponding to the root a. Put

[Xa, X_a]=Ha, Hi = Ha{, l^i^l. Let xi, ■ ■ ■ , x¡, yu ■ ■ ■ , yh tu ■ ■ ■ , t¡,

«i, • • • , ui be independent variables. Then corresponding to (12) we have to

consider the power series

x(x, y, t, u)

2 Z,„erc(»M>) exp ((-\yiHx'(Ht) + (-l)wyy(g,))

IL>o*'(# «) IIW (Ha)A(H t)A(H u)
= x(x, t)x(y, t)

where the notation is analogous to that of pp. 71-72. x{ = x¿+p(ií,), yí =y¡

+p(Hi), and p= 2_1£a>oa. We define the linear mapping Xx.y of 33 into

C[x, y] exactly as on p. 72. Similarly let Xx and Xv denote the corresponding

linear mappings of 36 into C[x] and C[y] respectively. Whenever necessary we

shall also regard Xx and Xv as linear mappings of 2t and 21+ so that

Xx(y(u>)) = xx(u),      Xv(y+(">)) = Xv(u) (w G 36)

where the isomorphisms y and 7+ have now been extended (uniquely) on 7c..

It follows from (24) that

(25) Xx,y(y(H? - - - n?)y+(H? ■ • • H?)) = Xx(B? ■ ■ ■ H7)Xy(H? ■ • • Hi),

mi, m 3: 0.

Let x denote the linear mapping of 33 into C[x, y] such that x(aa+)

= Xx(a)xv(a+) (aG2í, a+G2i+). Then clearly x([bi, b2]) =0 for any &,, 62G33.

Also x coincides with Xx.y on the algebra § generated by f) and 1. Hence

from Lemma 34, x=Xx,»and therefore Xx,v(aa+) —Xx(a)Xv(a+) (aG2t, a+G2t+).

We express this relation symbolically in the form Xx.y^XxX-Xv- It is clear that

X\,Áaa+) =X\(a)xÁa+)- Hence we again write Xx,m = XxXXm-

Let 3< ®. and S+ be the centers of 33, 2t, and 2Í+ respectively. Clearly

Xx,v(z) =Xx(z) if zGS and x*,„(z+) =Xv(z+) if Z+GS+. Hence Xx,y(3) contains

Xi(S) and x»(S). Let ß be the set of all elements x*.»(2) (ZG3) such that (20)

Kz)(lXl*)=0.

Lemma 43. Let A,-, 0^i^N,be all the distinct weights of 3)a0. Then the coeffi-

cients of the polynomial

F(x, y, t) =    II II    M#<) + MB,) + sx(Ht) + sp(Ht) - Ai(Ht))
Oái'SiV       s,<rG.W

regarded as a polynomial in (t) are all in Q.

Exactly as in the proof of Lemma 40, we show that these coefficients lie

(20) We recall that v'isthe representation of 23 on 31XX* (see p. 59). Ao is a fixed dominant

integral function on Í)k and X* =21/312) a0-

(24)
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in the ring generated by Xx(S) and Xy(6+) and therefore in Xx,v(3)- Therefore

we can write

F(x, y, t) =        E       Xx,y(z(mi, • • • , w¡))¿i'¿22 ■ ■ • t¡', z(mu ■ ■ ■ ,m¡) G S-
m i, • • • , m i ̂  0

We have to show that v{z(mx, ■ ■ ■ , mi))(i XI*) =0, f»i, • • • , mt^0. Sup-

pose this is false. Then for some z among z(fWi, • • • , mi)

v(z)(l X 1*) ^ 0.

Choose Wi, l^i^p, in X such that u¡ form a base for X*. Then

v(z)(l XI*) =   E  «.-X4 a,-G2I.
láíáp

Since ï'(z)(1 XI*) ^0 we can find an a¿, say ait such that a^O. By Theorem 1

of [9] there exists a finite-dimensional representation ir of 2Í such that 7r(a,)

?¿0. Clearly we may choose ir so that it is irreducible.

Let 0 denote the linear mapping of g+ on g given by 0(7+(A)) = —7(A)

(IGSk). It is easily verified that

e([zX, zX] = - [9(zt), e(zX)] (zX,zXg g+).

Hence 0 can be extended uniquely to an anti-isomorphism of 2l+ onto 21.

Let a denote the representation of 93 on 7r(2l) defined by

ff(m')v(a) = ir{a'a),        a(X)w(a) = ir([X, a]) (X G 2K; a', a G 2I).

Then

a(Z+)7r(a) = a(Z+)a(a)ir(l) = <r(a)o-(Z+)7r(l)

= T(a)ir(9(Z+)) (Z+ G g+, a G 21)

since [Z+, a]=0 and Z+ = X-y(X) if Z+ = y+(X) (X<E2k). From this it

follows easily that

tr(a+)ir(a) = 7r(a)x(0(a+))

<r(a')ir(a) = ir{a')ir(a) . (a+ G 2Í+; a, a' G 21).

Since 7T is irreducible, 7r(2i) is a simple algebra. Therefore it has no ideals

other than  {o} and itself. Hence a is an irreducible representation.

Let Pjt be the set of all dominant integral functions on bx- For any

Ai, A2GPjc let «pi, ip2 be two irreducible representations of 2k belonging to

33a[ and 33a2 respectively. Extend <pi, <p2 to representations of 2 by setting

<pi(Z+)=0 for all Z+Gg+ and <p2(Z)=0 for all ZÇ.Q. The representation

<pi+^2 of 2 is then known to be irreducible. We denote by 33a!,a2 the class of

all representations of 2 equivalent to <pi+<p2. It is known that 33a1,a25"í33aÍ,A2

unless Ai=Ai, A^A^, and every irreducible finite-dimensional representation
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of 2 is contained in some 33aj,a2. Hence aG33x,„ for some X, p.GPx- By Schur's

lemma, a(z) =x(z)a(l) (zG<3) where z-^x(z) is a homomorphism of S into

C. Hence by Theorem 5, x can De extended uniquely to a character of 93.

From the theory of finite-dimensional representations it is known that this

character is xx,,i. Finally we note that the zero representation of 2k occurs in a

since a(A)7r(l) =0 (AGSx) and 7r(l) ¿¿0. Hence again it follows from known

theory that

x(p, t) = x(x, 0

where x(X, t) is obtained by changing the coefficients of the series x(X, t) (re-

garded as a series in (/)) to their complex conjugates. Applying Lemma 42,

we get immediately

p + p = - s(\ + p) (s G IF).

Now consider the representation ir+ of 93 induced on 7r(2I) XX*. It is given

by

*+(X)(*(a) X co*) = ir([X, a]) X co* + ir(a) X (Aco)*,

t+(Z)(t(o) X co*)   = ir{Z)ir{a) X co* (X G 2k, co G X, a G 21, Z G 0).

Let Six be the kernel of ir in 21. It is easily seen that if £ is the natural mapping

of 2ÍXX* on 2lXX*/SixXX* then ir+ is equivalent to the representation of 93

induced by v on 2lXX*/Sc»XX* under the isomorphism 7r(a)Xw*<->£(aXw*)

(aG2I, co*GX*) of 7r(2l)XX* with 2IXX*/SÎ,XX*. We may therefore identify
tt(20XX* and 2IXX*/9c.XX* under this isomorphism. Since Tr(ai)^0,

7r+(z)(7r(l)Xl*)= Eis.'SA' 7r(a,-)Xto*^0. Since tt(21)XX* is finite-dimen-

sional it is fully reducible under 7r+(93). Then it follows easily that we can find

a maximal invariant(21)subspace SR* of 7r(2l)XX* such that 7r+(z)(7r(l)Xl*)

GSR*. Let ir' be the irreducible representation of 93 induced on

(7r(2l)XX*)/SR*. Let 7r'G33xv (X', m'GPjc). Since the representation of 93 on

X* is of the type 33o,a0 it follows from known results that X'=X and p'=p+Ai

where A,-is some weight of 33a0. Since p.+p= — s(X+p) (sE.W),

s\'(Ht) + sp{Ht) + p'(Ht) + p{Ht) - Ai(Ht) = 0.

Therefore FÇK', p', t) =0. On the other hand

F(x, y, t) =        ¿^       Xx,y(z(mi, ■ ■ ■ , m¡))h h   ■ ■ ■ ti .
mi, • • • ,miiQ

Hence

F(X', p', t) = E       Xx',,.'(2(»íi, • • • , mi))hl ■ • ■ h'.

(21) TI* is maximal independently of the property of not containing jr+(z)(7r(l)Xl*).
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Since x+(z)(x(l)Xl*)G93?*, x'(z)^0. Therefore as zE3, v'(z) =X\'.Az)tt'(1)

t¿0. Hence xx' ß'(z) ?¿0. Since z is one of the elements z(mi, ■ ■ ■ , m,), it fol-

lows that ^(X', p', t) 5¿0. Thus we get a contradiction. This proves the lemma.

Let x be any representation of 33 with the character x such that jDa0 oc-

curs in x. Let/(x, y) E ß. Then/(x, y) =Xx,y(z) where zE3 and v(z) (1X1 *) = 0.

Let F be the representation space of x. By hypothesis Fa^O. Choose \p

E Fa0,a0. ̂ ^0, and let 93? be the left ideal in 33 consisting of all ¿>G33 such that

x(?# = 0. Then 93?32í2Ja0. Since j»i»(lXl*) =0, zG2I2)Ao from Lemma 27.
Hence zG93? and x(z) =0. Therefore/(X, p) =X\.ÁZ) =0. Applying this to the

polynomial F(x, y, t) of the above lemma we find that

s\(H,) + sp(Ht) + MB,) + MB,) - Ai(Ht) = 0

for some s, <rE W and i, O^i^N. Now for every A,- and rG W, rAi is also a

weight of 3)a0. Hence

\(H,) + p(H,) + th(H,) + MB,) - A,{H,) = 0

for some tE IF and some./, 0^j ^ N. Put r(p-\-p) = — (ß'+p). Then X—p'=A¿

and Xn=X-n' from (23). Thus we have proved the following theorem.

Theorem 6. Let tt be a representation of 33 with the character x such that

S) a 0 occurs in tt (A0 GPjc) • Then x = Xx Xx~, where ~k—pis an integral function on

t)K which is a weight o/£)a0.

Corollary. Let tt be any representation of 33 with the character x = Xx

Xx-,.- For any AGPx, ©a cannot occur in tt unless (X+p) —cr(p+p) is a weight

of £) a for some aEW.

Let 8o and 2k,o be the Lie algebras over the field R of real numbers as

defined on p. 52. Henceforward we suppose that 2k,o is compact, that is,

the quadratic form sp (ad A)2 (AG8ir,o) is negative definite. Let 33o be the

universal enveloping algebra of 8o- Then 33o is an algebra over R and 33 can

be regarded, in the obvious way, as the extension of 33o over C. Then every

£>G33 can be written uniquely in the form 6 = &i + ( —1)1/262 (6i, &2G33o). Let

3o be the center of 33o- It is easy to show (see [9, p. 914]) that the elements of

3o span over C the center 3 of 33. Let <p denote the linear mapping of 8o into

itself given by <p(X) = — A (AG8o). <p can be extended uniquely to an anti-

automorphism of 330. We now extend <p on 33 as follows. If b = bi+( — l)inb2

(bi, e2G33) we put <p(b) =<p(bi)-(-\)xl-<p(b2). Let x be any character of 33.

We shall denote by x* the linear function on 33 defined as follows:

(26) x*(b) = xMby (b E 33)

where the bar denotes complex conjugate. It is easy to verify that x* ¡s aIso a

character.

Let f)K,o be a maximal abelian subalgebra of 8x,o and f)K the complexifica-
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tion of bx,o- Then bx is a Cartan subalgebra. If a is any root of 2k with re-

spect to bx and Ha the corresponding element in bx then it is known that

(—l)1/2iiaGbic,o- In particular if {«i, • • • , a¡} is a fundamental set of roots

and Hai = Hi, l£i£l, H't = (-iyi2HiGU.o. Moreover <p(y(X)) =-y+(X),

<p(y+(X)) - -7(A) for any AGSx.o- Hence

xM*c*r • • -HDAnr ■ ■ ■ h?')))
I       4X">1+-' •+m!+«l+-• •+»!    ,    +/TT'ml rr'm'\     fry'"1 tt   '"!\\

= (-1) x(y (Hi    ■■■Hi   )y{Hi    ■■■Hi    )),

since <p is clearly an anti-automorphism of 93 over R. Hence

*/     +/TJ,mi TT>mi\       /7-t'"1 TTin'\\

X*(y (Hi     ■ ■ ■ Hi   )y{Hi    ■ ■ ■ Ht  ))

(27) = (-1) x(l(Hi     ■ ■ ■ Hi   )y (Hi    ■ • ■ H¡  ))

(mi, • • • , mi, Mi, • • • , #i à 0).

For any linear function X on bx define X by \(Hi> =\(H¡), l^i^l. Further if

£ is any polynomial (or series) we denote by ¿ the polynomial (or series) ob-

tained by changing the coefficients of £ to their complex conjugates. Suppose

X=XxXxm and X*=Xx*XX/i* where X, p, X*, p* are linear functions on bx.

Then from (27) it follows that

x(x*, P*, t, u) = x(/i, x, -/, -w)

in the notation of (24). But, from (21), x(p, X, — t, —u) =x(£, X, t, u). Hence

x(X*, p*, t, u) = x(fl, K i, «).

Therefore from Lemma 42, x*=Xx*XXj«*=x¿>Xxx- Thus we have the follow-

ing lemma.

Lemma 44. Let x=XxXx^ be a character of 93. Then x*=XmXxx-

Corollary, x =X* if and only if x =XxXxx f°r some linear function X on

bx.

Part IV. Representations of a complex semisimple Lie group in a

Hubert space. So far we have considered only abstract representations of the

Lie algebra 2o- Now we come to the representations of the corresponding

group in a Hubert space. Let G be the simply connected Lie group whose

Lie algebra is 2o, the latter being defined as in Part II. We assume that 2k,<¡

is compact and bx.o is a maximal abelian subalgebra of 8x,o and bx = bx,o

+ ( —l)1/2f)x,o. We shall adhere closely to the notation of Parts II and III.

Let F be a Hubert space and ir a mapping which associates to each gGC7

a bounded operator 7r(g) on F such that ir(gigi) =ir(gi)ir(gî) (gi, g2GG) and

t(1) =/, where 1 is the unit element of G and / is the unit operator on  F.
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x is called a representation of G on F if for every \pEV the mapping g^ir(g)\p

(gEG) is continuous. Moreover it is called an irreducible representation if

there exists no closed subspace other than Fand {0} which is invariant under

x(g) for all gEG.

Since G is a Lie group it is also an analytic manifold. Let C"(G) denote the

class of all complex-valued functions on G which are infinitely differentiable

everywhere and which vanish outside a compact set. For any AG80 and

fEC;(G) we define _I/GC(G) by the rule

(28) (Xf)(g) = i~f((exp (-tX))g)\     .
\dt ) (=o

It is easily verified that if Xx, X2, A3G80 and \X\, A8] = A3 then

Ai(A2/) -X2(Xif) = A3/.

Thus we get a representation of 80 (and therefore by linearity a representa-

tion of 8) on C"(G). We extend this uniquely to a representation of 33.

Then for any zG33 and fEC"(G) the function —zf is well defined. Let Fi be

the subspace spanned by all elements <pE F of the form

(29) <p=    ff(g)TT(g)Wg
J G

where î/'G F and fEC"(G) and dg is the left invariant Haar measure on G.

It has been shown by Gârding [8] that Fi is dense in F and

(30) Lim — {x(exp/A)^-ç,}   =   f   -Xf(g)ir(gWdg (A G 80)
t-o    t                                           Jo

where <p is given by (29). Let x(A) denote the operator on Fi defined by
1   ,

(31) tt(X)v = Lim — {x(exp tX)v - <p) (X E 80, <p G Vu t E R).
(-.0      t

Then x(A) maps Vx into itself and it is obvious from (30) that x([Ax, X2])

= tt(Xi)tt(X2)—tt(X2)tt(Xi) (Ai, A2G8o). Hence we get a representation of

80 and therefore of 33 on Fi which we shall denote again by x. We shall call

Fi the Gârding subspace of V.

Let 3 be the center of 33 and x a character. We shall say that the repre-

sentation x of G on V has the character x if x(z)cp =x(2)<P for every <pE Vi and

zE3- It is known that if x(G) is an irreducible unitary representation then

tt(z) (zE3) is a multiple of the unit operator on Fi. Hence x has a uniquely

determined character in this case.

Let Gk be the analytic subgroup of G corresponding to 8x,o- Gk is compact

and simply connected. Hence there is a 1-1 correspondence between repre-

sentations of Gk and those of 8k,0 (and therefore of 2k)- Hence for any AGPx,

S)a can also be regarded as an equivalence class of representations of Gk- For
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any AGPx we denote by Fa the set of all elements ^G F such that either

\p = 0 or the subspace U spanned by all vectors of the form ir(g)\p (gEGx) is

finite-dimensional and the representation of Gk induced on U is fully reducible

into components each of which belongs to ©a- Put FA = Vif~\ Va and F°

= £a Fa. It can be shown (Mautner [il]) that F° is dense in V.

Choose a fundamental system {«i, • • • , «¡} of roots of 8x with respect

to f)K- For any root a we define the corresponding element HaEf)K as before.

We may again suppose that a(Ha) =2. Put Hi = Hai, l^i^l. We note that

( — l)l,2HaEf)K,o for every root a.

Let x be a representation of G on F with the character x- Since F° is

dense in F, Vl05¿ {o} for some AoGPx- Hence jDa0 occurs in x(33). Therefore

from Theorem 6, x=XxXx-,i where X—p is an integral function on f)K- The

following theorem shows that the converse is also true.

Theorem 7. Let X and p be linear functions on f)x such that X—p is integral.

Then we can find a representation tt of G on a Hubert space such that it has the

character xx Xx-n- Moreover ifk-\-\ is integral, we can find a unitary representa-

tion of G with the character xxXxx-

For the proof of this theorem we follow a method which is due to Gelfand

and Naimark [7]. Let P be the set of all positive roots of 8x- We can choose

elements Ua, Va (aEP) in 8x,o such that ¿7« + (-l)1/2Fa = Aa^0 and

Ua — (— l)ll2Va = X-a^O are root elements corresponding to the roots a and

-a respectively. Then the elements (-iy^Hi = Hi, t£i£l, Ua, Va (aEP)

form a base for 8x,o. We define the linear mappings T, y, and 7+ as in Part

II (pp. 52-53) and put

Wa =   Ua -  T(Va), W'a =   Va + T(Ua),

W-a - Ua + T(Va),        WL = F„ - T(Ua),

Za = T(Aa) = (Wa + (-iyiWa)/2,

Z-a = 7(A_„) = (W-a - (- l)1'2IF:a)/2,

Z+a   =   7+(Aa)   =   (W-a +   (-iyiWLa)/2,

Z-a = 7+(A_a) = (Wa - (-1)1'2If1)/2.

Let t)=y(f)K)+y+(f)K), t)o = f)x,o+r(f)x,o). We have already identified (see

p. 80) linear functions on f) with pairs (X, p) of linear functions on f)K- X being

any linear function on f)K we denote by X+ and X- the linear functions on fi de-

fined by the pairs (X, 0) and (0, X) respectively. Also we write \(T(H))

= _(_l)i/2X(iî) (HEf)K).

Let 9? be the subspace of 80 spanned by W-a, WLa (aEP)- Then 9? is a

nilpotent subalgebra of 80. Put f)a* = Y(f)K,a) and © = f)0* + 9?. Then

(34) 80   =  8x.0+&0+9î  =  8x.0 + ©
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where all the sums are direct. Let S, A, and N respectively be the analytic

subgroups of G corresponding to the subalgebras @, b*> and Si. Then it is

known (see for example Iwasawa [10]) that the mapping $: (u, h, n)-*uhn

(ii£Gjc, AG^4, wGA) is a topological and analytic mapping of GkXAXN

onto G. The tangent space of Gk XA X A at any point (u, h, n) is the Cartesian

product of the tangent spaces of Gk, A, and A at u, h, and n respectively. But

for a Lie group the tangent space at any point may be identified under left

translation with the Lie algebra, which is the tangent space at the unit ele-

ment (see Chevalley [6, Chap. IV]). Therefore we can, in a natural way,

identify the tangent space of Gk XA X A at any point (u, h, n) with So- Let d$

be the differential^2) of i>. Then for any (u, h, n) GGxX.4 X A, (d$)u,h,n is a

linear mapping of So into itself. Our object is to evaluate the Haar measure on

G in terms of the Haar measures on Gk, A, and N.

Let <p, \p, x be left invariant differential forms VO) of degree n, I, and

n — I on Gk, A, and A respectively. Here w = dim 2k,o and / = dim bx.o- Then

we define a differential form £ of degree 2m on GxX^4 X A as follows:

RUu ■■■ ,Un; EC, • • • , ff<»; Xu • • • , An_<)

= *>(£7x, • • • , UnMHV, ■■■ , H^)x(Xi, ■■■ , !„.,)

for any Uí&k.o, ff» GW, AAGSÍ, lá*á», 1 £;'£/, 1 =£ = «-/. Let 0?¿O
denote a left invariant differential form of degree 2« on G and let 6$ be the

mapping dual to ¿<$. Then 0$ maps 0 on a differential form 0' (of degree 2»)

on GkXA X A. If 8'u,h,n denotes the value of 0' at any point (u, h, n)

&u,h,n(Ul, ■ ■ ■ , Un', H     , ■ ■ • , H     ; Ai, • ■ • , Xn-l)

= d(Ui, • ■ • , Un, H     , ■ ■ ■ , H      , Ai, ■ • ■ , Xn-l)

where í/¿, Hlf>, and Xk are as in (35) and U[, H'u\ X¿ respectively are their

transforms under d$u.h.n- Therefore we get

(36) d'u,hln   =   C(det d$u,h,n)£u.h,n

where £„,*,„ is the value of £ at (u, h, n) and c is a fixed real number ^0.

Let/ be a function on G which is analytic around uhn. Put F=fO$. Then

F is analytic around (u, h, n) on GkXAxN. Let AGSÎ. Then

XF(u, h, n) =  < — ÍX«, Ä, w exp /A)>
\dt ) (=o

(37a) ( d )
— <— f(uhn exp tX) >

lcf¿ J   Í-0

= Xf(u h n).

i22) We use here and in the sequel the terminology of [6].
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Similarly if HE f)o*,

HF(u, h, n) = \ — F(u, h exp IH, n) \
\dt ) i_o

(37b) =  {— f(uhexptHn)\

= \ — f(unh (exp t Ad (n~l)H))\      = (Ad (n-l)H)f(uhn)
\dt ) í=o

where g—»Ad (g) denotes the adjoint representation of G, so that

g(exp W)r' = exp (Ad (g)W)

for any IFG80 and gEG. Finally if <7G8x,o,

(37c)      UF(u, h, n) =  {— F(u exp tU, h, n)\      -  {Ad (n-lh~1)U}f(ukn),
(dt ) ¡=o

These relations show that

¿$.,,.,,,6' = Ad (n-ih-^U (U E 8x,o),

(38)                                    d<$u,h,nH = Ad (n-*)H (H E $,

á*.,».Jf = A (A G 9?).

Let PF-—>ad IF denote the adjoint representation of 8o- Then it is easily seen

that ad A is nilpotent for all AG9? and therefore det Ad (n) — 1 for all nEN.

Hence det (d<bUih¡n) =det D, where £>=Ad (n) di>„,jl,„. Now 9? is invariant

under Ad (n). Let (Ad («))«« denote the restriction of Ad (n) on 9?. Then

again we prove in the same way as above that det (Ad («))îr = 1. Also we

notice from (38) that © = h0* + 9? is invariant under D. Let D* be the linear

mapping of the factor space 8o/© induced by D. Since det (Ad («))g¡ = l it

follows from (38) that det Z> = det D*. Clearly © is also invariant under

Ad (h~l) and the linear mapping of 8o/© induced by Ad (h~l) coincides with

D*. Now every Z7G8x,o can be written uniquely in the form

U = H' + £ 2aaUa +   £ IbaVa
«ëp «Ep

=  H' + £ aa(Wa +  W-a)  +   £ ba(W'a + WLa)
aGP a€zP

where H'Ef)K,o and aa, baER- Now for any HEf)o* and aGP,

[H, Wa] = a(H)Wa, [H, W'a] = a(H)W'a,

[H, W-a] = - a(H)W-a,        [H, W'-a] = - a(H)WLa,
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where a(i/) = -(-l)1/2a(r-1(ií)) is real. Hence if A = exp H (ffG60*),

Ad (h-^U = H' + E aa(e-aiH)Wa + e"^>IF_a)
»S?

+ E &«(<ra(ir)ïF« + e°<*>lFLa)

- ff + E ««e-^Wa + W_„)

+ E ¿>ae-a(JÏ)(IFl + ïFl«) mod ©
«6p

■ ff + X) 2aaer"mU<, + E 2o„£r-°<flr>F„ mod ©.
oSp «£p

This shows that det £>* = exp (-2 £ai/> a(ff» =e-^(a). Hence

0«,*,B = ce-4'«0^,*,» (â = exp H, H G b*)

and it follows that the left invariant Haar measure on G is given by

e-t'Wdudhdn

where du, dh, dn respectively are the left invariant Haar measures on Gk, A,

and A and h = exp H (ff G bo*).

Let x(EG and mGGx- Then xu = uxh(x, u)n(x, u) where uxÇH_Gk, h(x, u)

G-4, n(x, m)GA. Since A is simply connected there is a unique element

H(x, «)Gbo* such that h(x, u) =exp H(x, u). Clearly ux, H(x, u), and n(x, u)

are continuous functions of (x, u) and for a fixed *, u—>ux (wGGx) is a topo-

logical mapping of GK onto itself. Let y = uhn («GGx, ÄG^4, «GA), and let

¿y denote the left invariant Haar measure of G. Then for a fixed xt^G,

d(xy) = dy = e~i<'{H)dudhdn.

On the other hand

xy = #wA» = uxh(x, u)n{x, u)kn

= uxh(x, u)h(h~1n(x, u)hn).

Since Sf is an ideal in ©, A is an invariant subgroup of 5. Hence hrln(x, u)h

= «(x, u, Ä)GA. Also for fixed (x, u), d(h(x, u)h) =dh and for fixed (x, u, h),

d{n(x, u, h)n)=dn on account of the left invariance of the Haar measures.

Hence

erWdudhdn = d(xy) = e-*"^-*'^^-^duxdhdn

and therefore

(40) dux = e^H<-x-"»du.

Let / be any function on Gk. For any x(E.G we define a new function f*

on Gk as follows :
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/*(») = /(Mx-0-

Let L2(Gk) be the Hubert space consisting of all measurable functions / on

Gk such that foK\f(u)\2du<<x. Then if fEL2(GK),

f    | /*(«) \Hu =   I     | /(m) \Hux =   f   | /(«) |V<><»<*.«»¿« < oo
•J GK J GK J Gk

since the function e4pUi(a,,u,), being continuous, is bounded on the compact

set Gk- Notice that if yEG,

yxu = yuxh(x, u)n = (ux)yh(y, ux)h(x, u)n'

where n, n'EN. Hence uyx = (ux)v and H(u, yx) =H(y, ux)+H(x, u). v being

any linear function on f)K and xEG, fEL2(GK), we define x(x)/=/'G¿2(Gx)

as follows

/'(«,)«.«'»<«.«»/(#) (mGGx).

Then by using the above relations it is easily verified that x is a representa-

tion of G on L2(Gk). We shall write x(x)/(m) for f'(u) (uEGk)-

For any xGG and IFG80 put Wx = Ad (x) IF. Then we have the following

lemma.

Lemma 45. Let uEGKand (pEL2(Gk)- Then ifxEuNu~1,Tr(x)tp(u)=<p(u).

Moreover if x = exp Hu (HEflo*), tt(x)<p(u) =e'(-m(p(u).

Let x = unu-1 (nEN). Then xu = un. Hence ux — u and H(x, u)=0. There-

fore tt(x)(p(u)=tt(x)(p(ux)=<p(u). Now let x = exp Hu (HEf)*)- Then xw

= m exp H. Hence ux = u, H(x, u) =H. Hence tt(x)<p(u) =tt(x)<p(ux) = evl-H)<p(u).

Let AK be the analytic subgroup of Gk corresponding to the subalgebra

f)K,0 Of 8x,0-

Lemma 46. Let uEGk and hEAK- Then for any xEG,

(uh)x = uxh,        H(x, uh) — H(x, u).

Notice that elements of Ar and A commute and 9? is invariant under ad H

for all HEf)K,o- Hence h~lNhCN. But

xuh = uxh(x, u)nh = uxh(x, u)h(hrxnh)

where nEN. Hence

ux = uxh,        h(x, uh) = h(x, u).

This proves the lemma.

Let A be any integral function on t)K. Then for some A0GPx, —A is a

weight of 5Da0. Since every finite-dimensional irreducible representation of

Gk occurs in the right regular representation of Gx we can find a continuous

function \p¿¿0 on Gx such that \¡/ transforms according to T>a0 under the right
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regular representation of Gk and belongs to the weight —A. Then \p(u exp H)

= e~K{H)4/(u) for any mGGx and ffGbx.o-

Lemma 47. Let x(E.G, uElGk, and ÜGbx.o- Then

?r(exp Hu)v(x)4/(u) = e^H)ir(x)\p(u).

Now

ir(exp Hu)ir(x)4>(u) = ir{x)\p{{exp (-Hu))u) = ir(x)4/(uhrl)

where & = exp ff. But from Lemma 46,

irix^iuh-1) = exp (v(H(x, (uhr1)*-»))*((«*-i)r*)

= exp (?(#(*, ux-ih-1)))T^{ux-i)e^H'>

= exp (v(H(x, ux-i)))T^(ux-i)eA(B)

= eA<*>7rO*#(M).

Hence the result.

Lemma 48. Let V+ be the set of all <pÇz.L?.(G) which are of the form

<p= f j(x)T(x)fdx (fee™).
•J G

Then   ir(z)<p = x(z)<p   (zGá.   *»G ̂ *)   where   x=XxXx-M   and  X = (A+i<)/2,

p = (v-A)/2.

It is clear that V¿ is invariant under 7r(93) and ir(G). Also it follows from

Lemmas 45 and 47 that

7r(exp tW-a)v(u) = ir(exp tWLa)<p(u) = <p(u) (a G P),

7r(exp tH*)v(u) = «"»>¥>(«) (# G íto),

7r(exp tH*)<p(u) = e'^VM (ff G bo.x)

for any ^G V^ and «GGx. Since F^ is invariant under 7r(93), the same rela-

tions hold true if we replace <p by ir(b)¡p (&G93). Hence it is clear that

ir{Wlab)<p(u) = ir(wZb)<p(u) = 0 (a G P),

ir{HUb)<p(u) = v(H)ir(b)<p(u) (H G bt),

T(HUb)<p(u) = A{H)ir{b)<p{u) (H G bo.x).

Now for any Z= Wi+(-l)l'*Wi& (Wu W2E2o) put

zx= if;+(-i)V2if2 (xEG).
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Then from (33) it follows that

Tr(Zlab)<p(u) = TT(Z+a"b)<p(u) = 0 (aEP)

TT(Hub)v(u) = (\+(H) - vTWMbMu) (H E f>)

where X = (A + ^)/2, p. = (v-A)/2. For any xGG, the mapping Z-±ZX (ZE2)

is an automorphism of 8 which can be extended uniquely to an automorphism

of 33 which we denote by b—>bx (¿>G33). It is clear that if zE3> zx = z. Let £>

be the subalgebra of 33 generated by 1 and f)=7(f)x)+Y+(f)x). Let/3 denote the

isomorphism of £> with the ring C[x, y] of polynomials in the indeterminates

(xi, • • • , Xi, yi, • ■ ■ , yi) with coefficients in C given by

O/     tTT™1 TTm'\     +/TTni TTni\\ "*' "*'    "' "' ->   n
ß(y(Hi   ■ ■ ■ Hi)y (Hi   • • • Bt )) = Xt   ■ ■ ■ x, yl   ■ ■ ■ y¡ , mu m à 0.

Then if we take(23) (a,-, 0), (0, — a¿), l^i^l, as a fundamental system of

roots of 8 with respect to f), for every zE3 we can find a unique element

fê(x, y)EC[x, y] such that

z - ß-\f,(x, y) G £33Z„ + £33ZÍa.
«6p «ëp

Hence

z - ß-*(fz(x, y)) = £ a-aZa + £ baZ-a (a-a, i.G8).
«£p «Gp

Since the left-hand side is of rank zero, we may suppose that a^a is of rank

( — or, 0) and ba is of rank (0, a) with respect to f). Then we can show exactly

as in the proof of Lemma 3, that a-aE £ogí' Z-J&, ba = £agf ¿£33. Hence

z - ß~l(f,(x, y)) = £z_«ca + £Ä (c«, da G 33)
«6 p «6p

and therefore

z = z   = (ß"\f2(x, y)))U + J^zlacl + £ (Z+a)"dl       (u E Gk).
oG/' «£P

But then it follows from (41) that

tt(z)<p(u) = /,(X, —n)<p(u).

Since this is true for all uEGk,

x(z)<p = fz(\ —n)<p.

But it is clear that/z(X, —p.)=x(z) where x=XxXx-n- Hence the lemma is

proved.

(23) As already mentioned earlier, we identify linear functions on 6 with pairs of linear

function on f)jr.
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The next two lemmas are due to Mautner. We use the usual terminology

of Hubert space. If Q is an operator with a dense domain we denote by Q* its

adjoint. Also if 0/i, Q2 are two operators we say that (?iC<22 if the domain

Di of Qi is contained in the domain of Qi and Q\ and Ç2 coincide on Dx.

Lemma 49. Let Q0 and Q be two operators on a Hubert space V such that Qa

and Q* are densely defined and QodQ. Then if Qo is bounded so also is Q.

Since <2oC<2 and Ç0 is bounded, Q*<ZQ* and Ço* is also bounded. Hence

Q* and therefore Q** is bounded. But Q**Z)Q- Therefore Q is also bounded.

Lemma 50. Let ir be a representation of G on a Hubert space V. Then for any

¿>G93, (ir(b))* has a dense domain.

Let Fi* denote the set of all vectors (p in F of the form

<P=  f f(g)**(g)Wg (/GCr(G),^GF)
J G

where 7r*(g) is the adjoint of ir(g). Also for any AGSo and/GCC°°(G) put

d
(X*f)(g)= {-/(g exp ¿X")l

\dt ; <=o

Now

7T*(exp (-tX))<p =   f f(g)ir*(g exp (-tX))tdg
J G

=   f f{g exp tX)ir*(g)*dg

since the Haar measure on G is both left and right invariant. Hence

Lim - {7T*(exp tX)v - <p\ = -  f A*/(g)x*(g)^g G Vi*.
t^O       t J G

From this it is clear that for any XGSo, (7r(A))* is defined on Fi* and leaves

it invariant. Hence it follows immediately that for any ¿>G93, (ir(b))* is de-

fined on Fi*. Since F* is dense in F the assertion follows.

Now we return to the notation of Lemma 48. Let U be the closure of

Vf. Then U is clearly invariant under ir(G). Let 7r0 be the representation of

G induced on U. Let t7i be the Gârding subspace of U.

Lemma 51. ir(z)<p = x(z)<p for any zÇ.3 and <pÇ_Ui. Hence ira has the char-

acter x = XxXx-Al-

Clearly V+CZUi. For any fixed z£z3 let Ço and Q be the operators in U

with the domains   F^ and   Ui respectively such that Q0<p=ir(z)<p (c^GF^,)
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and <2<p = x(z)<p (<pG Ui). Then QoEQ and Q0 is densely defined. Moreover by

applying Lemma 46 to the representation x0 of G on U we see that Q* is

also densely defined. On the other hand we know from Lemma 48 that Qo<p

= x(z)v (<pE Vf). Hence Ço is bounded. Therefore from Lemma 46, Q is also

bounded. Hence Ço an<3 Q have a unique common extension on U which

must be x(z)I where / is the unit operator. Therefore Q<p = x(z)<P (<pEUi)

and the lemma is proved.

We are now in a position to prove Theorem 7. Put X—p=A, X+p = »'.

Since A is integral by hypothesis, the first assertion of the theorem follows

from Lemma 51. Notice that if <pEL2(Gk) and xEG we get from (40)

f    | tt(x)<p(u) \2du =   f    | e*«<*.»>V(«) \Hux =   f    | e"'W<-x-«»<p(u) \Hu
J Gk J gk J Gk

where v' — v-\-2p. Now suppose v' = ( — l)1/2cr where <r is a real linear function

on f)K (that is, cr(Hi), 1 ¿¡i^l, are all real). Then v'(H) is pure imaginary for

all IIEf)* and it is clear that the representation x of G on L2(Gk) is unitary.

Moreover in this case X+p = (A + (- l)1/2<r)/2, - (p+p) = (A-(-l)1/2o-)/2.

Hence — (p+p) =X+p and so from equation (23) of Part III, X-^Xx- There-

fore xo is a unitary representation with the character xxXxx- Since A can be

any integral function and a any real function on f)x it is obvious that X is arbi-

trary apart from the condition that X + X=A —2p be integral. This completes

the proof of Theorem 7.

From the theory of representations of compact groups it follows that the

function \p of Lemma 48 is a linear combination of the matrix elements of

some representation of Gx which belongs to Sa„- Let Sa* = S¡Ai (AiGPx)

be the equivalence class of representations of Gk which are dual to the repre-

sentations in üDa0. It is easily seen that under the left regular representation

of Gx, "A transforms according to S)av Hence ©Ai occurs in the representation

xo of Lemma 51. Moreover it is clear that —A is a weight of S)a0 if and only

if A is a weight of Sav Therefore we get the following extension of Theorem 7.

Theorem 8. Given any AoGPx such that\—p, is a weight of'S) a „ we can find

a representation tt of G on a Hubert space such that tt has the character xxXx-n

and jDa0 occurs in tt. Similarly if X + X + 2p is a weijht of Sa0, we can find a

unitary representation tt of G with the character x\ Xxx such that Sa¡, occurs in tt.

This is a sort of converse of Theorem 6. We have mentioned earlier that

every irreducible unitary representation x of G has a character x- It is not

difficult to prove that in this case x =X* in the notation of Lemma 44. Taking

into account the corollary to Lemma 44, we see that Theorem 7 provides a

partial answer to the problem of determining those characters of 33 which

correspond to some unitary representation of G (see also Gelfand and

Naimark [7]).
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