ON SOME APPLICATIONS OF THE UNIVERSAL
ENVELOPING ALGEBRA OF A SEMISIMPLE
LIE ALGEBRA

BY
HARISH-CHANDRA(Y)

Introduction. The representation theory of semisimple Lie algebras over
the field of complex numbers has been developed by Cartan and Weyl. How-
ever some of Cartan’s proofs (see [2])(?) make explicit use of the classifica-
tion of semisimple Lie algebras and in fact require a verification of the as-
serted statement in each case separately. Weyl [12] has given alternative
proofs of these results by making use of general arguments depending on the
theory of representations of compact groups and in particular on the Peter-
Weyl Theorem. His proofs therefore are necessarily of a nonalgebraic nature.
In the first part of this paper we propose to give “general” algebraic proofs of
some of these theorems. This work happens to overlap considerably with some
recent results of Chevalley [3]. In particular the formulation of Theorem 1
and some of the ideas in the proof are due to him. I shall mention them more
specifically later in due course.

Recently great interest has arisen in the theory of representations of a
Lie group in a Hilbert space. Since every such representation defines a repre-
sentation of the corresponding Lie algebra (see Garding [8]) it is natural to
study infinite-dimensional representations of a Lie algebra. Part II of this
paper contains a theorem (Theorem 4) concerning such representations of
complex semisimple Lie algebras. The desirability of proving such a result
was pointed out to me by Mautner. Also its significance for unitary repre-
sentations of complex semisimple Lie groups on a Hilbert space will be
brought out by him in a separate paper.

In Part I1I we define and study the characters of the universal enveloping
algebra ¥ of a semisimple Lie algebra €. They are essentially homomorphisms
of the center of B into the field of complex numbers. We show that every
such homomorphism is determined by a linear function on a fixed Cartan
subalgebra of & Theorems 5 and 6 contain the principal results of Part III.

Part IV is devoted to a brief study of the representations of a complex
semisimple Lie group on a Hilbert space. With certain representations of the
group (in particular with all those which are irreducible and unitary) we
associate in a natural way a character of 8. It follows from Theorem 6 that
in order that a character may be associated to some representation of the
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group it must satisfy certain conditions. By a method due to Gelfand and
Naimark [7] we show in Theorem 7 that these conditions are also sufficient.

I should like to thank Dr. F. I. Mautner for a number of very valuable
discussions and also for his help in some questions concerning operator theory
which arise in Part IV.

Part I. Representations of semisimple Lie algebras. Let € be a semi-
simple Lie algebra over an algebraically closed field K of characteristic zero.
Forany X EQlet ad X denote the linear mapping (ad X) V= [X, Y] (Y ER) of &
into itself. Put B(X, Y)=sp (ad X ad V). Then B(X, Y) is a nondegenerate
bilinear form defined on &. Let §) be a Cartan subalgebra of ® and « a root of
¢ with respect to ). We denote by H, the unique element in § such that
B(H., H)=a(H) for all HEY. It is known that a(H,/) is a rational number
greater than 0. Put H,=(2/a(H,)))H. so that a(H,) =2 and let § be the set
of all linear functions on § with values in K. Then § is a vector space over K
dual to §. The linear transformation s, in § defined by s, A=XN—XN(H.)a AEF)
is called the Weyl reflexion with respect to the root a. It is known that the
group W generated by the s,'s for the various roots « is finite, and if @ and 8
are any two roots then s, is also a root. W is called the Weyl group of € (with
respect to ).

Let 2= {a,-, 1 éiél} (!=dim b) be a maximal set of linearly independent
roots. We shall say that Z is a fundamental system of roots if every root « is
of the form o= D _1<i<; dit; where d; are integers which are either all non-
negative or all nonpositive. It is known that fundamental systems al-
ways exist. Further if 2= {ai, 1 §i§vl} is a fundamental system then
the Weyl reflexions s.;, 1=<7=/, generate the whole group W and every
root a can be written in the form a=ca; (¢ EW, 0; EZ). Put s;=s5,, and H,,
=H; 1=:¢=Il Then s;a;=0o,+ajic; where a;;= —«;(I1;). Since s, is a root,
a;; is an integer such that ¢, = —2, a,;;=0, 7. It is clear that if the integers
aij, 1=1, j=I, are given we can find out which linear combinations of «; are
roots since they are all of the form s;s4 - - - 85, @; 157y, - -+, 4, jS1, 7r20.
Thus the matrix A = (ai;), 1<%, j=<! determines the root diagram of € com-
pletely. We shall call A the Weyl matrix of ® (with respect to §). Notice that
A has the following three properties.

(1) ap; = — 2, aij; g 0, 1 j,
(2) a;; = aji,
3) det 4 5 0.

The last assertion follows from the fact that a;, 1 7=/, are linearly inde-
pendent. A natural question to ask is the following: Given a square matrix 4
with integral coefficients what are the conditions which 4 must satisfy in
order that A be the Weyl matrix of some semisimple Lie algebra £? This is
one of the two questions considered in Theorem 1.
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Now we come to the second question. Let us call an element A & rational
if N\(H;) EK,, 1=1=1, where K, is the prime field of characteristic zero con-
tained in K. It is clear that A= Y 1<i<; cioi (c;EKo). We say that A>0 if
As£0 and ¢;>0, ¢ being the least index such that ¢;#0. Let §o be the set of all
rational linear functions on §. For any N\, uEFo we write A>u or u <\ if
AN—u>0. In this way §o is completely ordered under the relation >. This
order is called the lexicographic order in §, with respect to the ordered set
{al, cee, 0[1}. We shall call an element A&, integral if A(H,) is an integer
for all 1 £4=/, and dominant integral if, in addition, N(H;) =0, 1=7=/. Letp
be a representation of € on a finite-dimensional space V. Given any AEF we
define V, to be the set of all Y € V such that p(H)Y =N(H)Y for all HEY. N is
called a weight of p if Vi {O} It is known that every weight A of p is an
integral linear function on ) and V= >_x Vi where the sum is direct and A
runs over all the weights of the representation, these being only finite in
number. Hence p has a highest weight A¢ and it is known that A.(H;) =0,
1=<i=], so that Ao is a dominant integral function. The second question can
now be phrased as follows: Given a dominant integral function A does
there exist a finite-dimensional representation p of such that A is the highest
weight of p?

I should like to mention that in my original proof I had considered the
second question alone. The idea of dealing with both questions simultaneously
is due to Chevalley [3] who obtained independently a proof of the theorem
given below. I present here a modified version of my original proof so as to be
able to consider the two questions together. But in this modification I have
adopted several of Chevalley’s ideas. In particular the construction of the
algebra A and the consideration of its representations on @ is due to him.

THEOREM 1. Let a;, 1 =14, j=<1, be I? integers such that:

1) asi=-2, a;;=0, 1], and a;;=0 whenever a;;=0, 1 =51, j<I.

(2) det (ai;) #0.

(3) The group W generated by the linear transformations s;, 1 £1=1, given by
six;=x;4a;%: (x:, 1 4 =1, betng indeterminates) is finite.
Then there exists a semisimple Lie algebra L over K with a Cartan subalgebra
such that the following conditions are fulfilled. It 1is possible to find a set of linear
Junctions o, 1151, on Yy such that a;, 1 <1=1, is a fundamental system of
roots of R with respect to §) and o.0;=caj;+aj; where o; is the Weyl reflexion
with respect to ;. Finally if N;, 1 Z1=1, are any given integers greater than or
equal to 0 we can find an irreducible finite-dimensional representation p of L
such that the highest weight Ao of p is given by(®) Ao(Ha,) =Ni, 1 =251

Before proceeding with the proof we make some remarks about terminol-
ogy. All vector spaces and algebras appearing in our discussion are under-
stood to be over K. A vector space V (or a representation) is not necessarily

(®) As before we define H, for any root « of  in such a way that a(Hga) =2.
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assumed to be finite-dimensional unless it is explicitly stated to be so. Given
any collection {Uj; €I} of subspaces of V indexed by a set I (finite or
infinite) we denote by Z,‘ez U; the smallest subspace of V containing all
U;. In fact Y_; Uj consists of all finite sums of the form ¥4+ - - -+ ¢, where
each y; belongs to some U;. The sum Z,-E r Ujis said to be direct if for every
finite subset I, of I the sum ) ;er, U; is direct. If 2 is any set of linear map-
pings of V into itself we say that V is irreducible under 2 if there exists no
subspace U of V such that U is invariant under £ and UV, Us {0}.

Given an associative algebra %, we shall always write [z, w]=zw—wsz for
any z, wEN. We use a similar notation whenever 2z and w are matrices or
linear transformations on a vector space. If I is a left ideal in ¥ we define
the natural representation 7 of U on the factor space A*=UA/M as follows.
Let z—2* denote the natural mapping of % on A*. Then 7(z)w*=(zw)*,
2, wEYN. From the fact that I is a left ideal it is easily verified that 7 is a
representation.

After these preliminary remarks we return to Theorem 1. The proof is
rather long but is otherwise not very complicated. It depends on the con-
sideration of the representations of a certain infinite-dimensional associative
algebra Y. We shall have to prove a series of lemmas about left ideals in this
algebra, some of which are very simple but are nevertheless essential. Let %’
be the free associative algebra of all noncommutative polynomials in 3/
independent variables x/, y/, H!, 1<i=I, with coefficients in K. Let b’ be
the subspace of A’ spanned by H{, 1<7=<]. We define the linear functions
a;, 1541, on Yy by a;(H} ) = —aqyj, 1 <1, j 1. Since det (ay;) #0, «; are linearly
independent. Let U’ be the smallest ideal in %’ containing the set & consisting
of the following elements.

(1) [H,’,H,’], [X:,Y,’]—H,', [X:’YJ’]r i7£.7,
(B!, x!] - w@x!, [B,V!]+ (@)Y, 1=4ij=l.
Let ® be the free associative algebra over K with [ generators 1, + - -, 7.

Given any linear function u on §’ we define a representation w/ of A’ on ® as
follows. m, (1) =1 where I is the identity mapping of ® and
T (Vi )nimig -+« M, = namihiy * - * iy

(2a)  w (H)nimiy - - - mi,

= — {ay(H) + aip(@') + + - - + a;(H) — p(H) }nimsy - -+ i,
where H'EY, 1=<i=<!, 1<, -+, =l =20 and 7u;, - - - 9;,=1 if r=0.
Finally #, (X/) is defined by induction on r in the following way.

m (X{)1 =0,
(2b) T (X ng s e i, = Suqyma (H Inge + + - mj,
+ ni(md (X )ngy + 2 15)
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where §;; is the usual Kronecker symbol. Since A’ is a free algebra and
Nyt My 1271, + -+, 5+ =1, 20, form a base for ® it is clear that =/ is
uniquely defined by the above equations. It is easily verified that the kernel
of m,/ contains the set & and therefore I’. Now suppose H' €Y’ and =/ (H') =0.
Then

ai(H) + anH) + - + oy (H') — w(H) = 0

for all 1<j, - - -, j»=I. This implies that o;(H’) =0 for all 1 =j=I. Since a;
are linearly independent, H' =0. Hence it is clear that )N’ = {0}.

Let %A be the factor algebra A’/U’ and let X,, V., H; respectively be the
images of X!, ¥/, H! in %, 1=<{=<I. Since Y’"I'= {0}, §’ is mapped iso-
morphically under the natural mapping of A’ on ¥, on the linear subspace } of
A spanned by H;, 1 £4=!. Hence dim h=dim )’ =] and every linear function
X\ on I can also be regarded as a linear function on § if we put N(H;) =\(H/),
1 <7</ In particular this holds for «; and therefore a;(H;) = —a;:. Since the
kernel of 7/ contains W, w/ defines in the obvious way a representation =,
of A on @.

Consider the representation 7’ of 9’ on U defined as follows:

r(Da=a,  ©(X)a=[X! a], #T!)a=][V,;a]
(e = [HY, d), 1sislaecCq

It is easily seen that 7’ maps every element of the set & into zero. Hence the
kernel of 7’ contains 1. Therefore 7’ actually determines a representation
of A=W /W'. 7 is called the adjoint representation of ¥ and we shall write
ad z instead of w(z) for any z& 9.

The subspace §) of 2 is an abelian Lie algebra under the bracket operation.
Given a representation 8 of this Lie algebra on a vector space V and a linear
function X on ) we denote by V), the subspace of V consisting of all elements
Y& V such that 6(H)Y =\N(H)Y (HEY).

LEMMA 1. The sum D Vi, where \ runs over all linear functions on 9, is
direct. If U is any subspace of V which is invariant under 0(b) then

Uﬂ(?Vx>= ;(Uﬂ 7).

Let y€UN( 2 V). Then ¢y =¢1+ - - - +¢, where Y.€ V3, and \;=\;,
1=<1, j<r, i5%j. We claim that ;€ U, 1 Z7=<r. If r=1 this is true trivially.
Hence we may assume r>1 and use induction on ». We can find an HE})
such that N;(H) #M(H), 2<7=<r. Then

0HY = 2, N(HW: € U.

1S4Sr

Hence
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0(HW —\ (H) = SZS {N(H) — M(H) Y € UL
25iSr

Therefore by induction hypothesis {)x;(H) —\(H) }‘P.-E U, 2=<¢=r. But
No(H) —=MN(H) #0 for 2<i=r. Hence ;€ U, 2=<i=r and therefore ;€ U,
1=:1=r.

If we take U= {0} above it follows that the sum ) Vj is direct. Also
the above proof shows that UN( D x a) = 2 (ViND).

Let 7 be a representation of % on a vector space V. A being any linear func-
tion on h we define V) as above to be the set of all Y €V such that m(H)Y
=N(H)Y (HEY). ¢ is said to be homogeneous of weight A (or to have weight X,
or to belong to the weight X) if y &€ Vy and \ is called a weight of 7 if V) # {0 }
It is clear that if Y has the weight X and X is not a weight then ¥ =0. We shall
call the dimension of ¥, the multiplicity of X in 7. Now in particular we may
take 7 to be the adjoint representation of A and define the subspaces 2. A
weight of the adjoint representation will be called a rank and an element z
will be said to be homogeneous of rank \ (or to have rank ) if 2E,.

LEMMA 2. A= D, Ay and every rank is a linear combination of c;, 1 Si=1,
with integral coefficients.

Let P, Q, M denote any ordered set of integers as follows:

P = {il, i?y Tty iP}? 1 é ily Ty ip é ly P g 0’
(3) Q= {jl’j%". qu}) 1 é]’lv"' yjqékQéO,
M={mlv"',ml}) ngo,léiél,

where P or Q is empty if p or ¢ is zero. Put [P| =p, IQ[ =g, rank P=q;,
+ay+ - - - +ai, rank Q=a;+a;+ - - - +a;, the rank being understood
to be zero in case the set is empty. We denote by ¢ the empty set and by 0
the set M all of whose elements are zero. Put

(4) Z(Qv M, P) = Yilyiz tr Yqu;nl’H;nz' v H;"'Xilxiz tee Xi,,
where H'=1 if m =0. Making use of the relations
[Hi, Hj] = 0, [X,’, Y1] = H,‘, [X,', Y]] = 0, ‘L# j,
(B, Xi] = a(W)X:,  [H, V] = — a(I)V,

1=14, j<1, HEY, which hold in ¥ it follows easily that U is spanned by the
elements z(Q, M, P) taken together for all Q, M, and P. Clearly 2(Q, M, P)
has the rank rank P —rank Q. Let P denote the set of all linear functions on §
of the form rank P —rank Q for all P and Q. Then since 2(Q, M, P) span ¥,
AC Y aee M. Hence A= D hcp W= D » . But from Lemma 1 the sum
>» Uy is direct. Hence %= {0} if N¢EP. This proves the lemma.

Given & and a linear function Xy on } it follows from Lemmas 1 and 2



34 HARISH-CHANDRA [January

that we can find a unique element z,,E¥,, such that 2—2,,E X ra, 4x 2x
will be called the homogeneous component of 2 of rank No. Clearly 2z, =0 for all
linear functions \ except a finite number and z= Y _» 2.

Exactly as before we call a linear function N on § rational if N(H;) EK,
for all 1<¢=<!. We order rational functions lexicographically with respect to
the ordered set {al, SRR a;}. Let  be the subalgebra of 2 generated by
H;, 1=i=<l,and 1 and let B be the left ideal D> 1<i<; AX;.

LeMMA 3. P coincides with the subspace spanned by all elements of the
form 2(Q, M, P), IPI >0. Further BD D >0 A where \ runs over all rational
Sfunctions on ) which are greater than 0.

It is clear from the definition of P that 2(Q, M, P)E% if | P| >0. Con-
versely let 2&P. Then z= Zlgggz 2:X; (2:€%). Since z; is a linear combina-
tion of 2(Q, M, P’) and since 2(Q, M, P")X; =2(Q, M, P) with | P| >0, the
first assertion follows.

Let z&€, where A is a rational function greater than 0. We know that 2
is a linear combination of 2(Q, M, P). Since 2(Q, M, P) has rank rank P—rank
Q, we may, in view of Lemma 1, assume that only such elements 2(Q, M, P)
appear in this linear combination for which rank P—rank Q=X\. Since A>0
it follows that rank P>0 and therefore | P| >0. Hence z&%.

LEmmA 4. PNH={0}.

Let zEPNY. Then 2= D m,...om; a(my, + - -, m)) H™ - - - H" where
a(my, + + -, m;)EK and the sum is finite. Let u be any linear function on §
and let 7, be the representation of % on ® corresponding to (2). Then if
mi=u(H;), 1541,

m my
()l = D almy -, mur - opr

my, . ,my

But since z&9P and m,(x;)1 =0 it follows that

m m
E a(mlv"')ml)ﬂll"'ﬂll=0-
mys ey
This is true for every u and therefore for every choice of uy, us, - - -, miEK.
Since K is an infinite field it follows that all the coefficients a(my, + + +, m;)

are zero. Hence 2=0.
Let A be any linear function on §. Put

Qu= 2, AH:— MH)), s= 2 SH:— AH))).

154is1 JETEY

LEMMA 5. P+Qa=A.
It is sufficient to show that 1B+ Q. Suppose contrary to the assertion
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1€P+ Q4. Then we can find z;, #;ENU such that
1= Z Z,'X,'-l- E u;(H,- - A(Hc)).

1SisS1 15451

Since elements having different ranks are linearly independent we may as-
sume that 2; has rank —a; and #; is of rank zero. Now

1= 3 w(H:;— A(H)) mod B

15451
and since ; is of rank zero, u;(H;—A(H;)) = (H;—A(H,))u;. Further
ui = 33 a0, M, P)3(Q, M, P) (a:(Q, M, P) € K)

where the sum is only over such (Q, M, P) for which rank Q=rank P
since u; is of rank zero and 2(Q, M, P) has the rank rank P —rank Q. There-
fore from Lemma 3,

U; = E a5(¢y My ¢)Z(¢, Mr ¢) mod GB.
Since 2(¢, M, ¢) E P it follows that
2 wiHi = A(H)) = 30 (Hi — A(H))u: €B + Da
1

15:= 1551
Hence 1EP49Oa. Therefore 1 =34k where zEP, hEDs. Hence 1—h=z
EPNH = {0} from Lemma 4. Therefore 1 =hE Hs. Now consider the repre-
sentation ma of A on @ corresponding to the linear function A on . Since
hE 9. it follows from the definition of wx that wa(h)1=0. But since 1=14,
wa(h)-1=ma(1)-1=1. Since 1540 in @ we get a contradiction. The lemma is
therefore proved.

LEMMA 6. Let m be any integer greater than or equal to 0. Then
[Xo Y7] = m¥Yi (Hi—m+ 1), 1<i<!
where by definition Y7 =1 if p=<0.

The assertion is clearly true for m =0, 1. Hence we may assume 7 = 2 and
use induction. Then

I

m—1

(X, V7] = [X, V]V 4 valx,, V1]
=HY! "+ (m— )Y H—m+ 2)
by induction hypothesis. But [H;, Y:]= —a;(H;)Y:=—2Y;. Therefore
H{Y,'= Y,'(H;—Z) and
(X, V7] = YI (i = 2m 4+ 2) + (m — OV H: — m+ 2)
=mV7 (H; — m+ 1).
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Now put 6;;=0 and
6:; = (ad Y)Y, i,
1=<1, j<I. This is well defined since ¢;;20 for 75;.
LEMMA 7 (%). [X%, 6:]=0 for all 1<4, j, k1.
We may assume that 77j. First suppose k4. Then [X}, ¥;] =0 and there-
fore [ad X4, ad Y;]=0. Hence

(ad X1)0;; = ad Xi(ad V)%tV ;
= @ T)H([Xs, V).
If k], [X), ¥;]=0 and we get our result. If k=j, we get
(X%, 6:5] = (ad Vy)%+1H;
= (ad Vy)%i [V, Hj]

a;(H;)(ad ¥y)%:Y ..
If ¢;;>0, (ad Y,)*:¥;=0. On the other hand if a;;=0, it follows from as-
sumption (1) of Theorem 1 that «;(H;)= —a;;=0. Hence in either case
[X& 6:]=0.

Finally suppose k=1. Then [X;, 6;;]=ad (X;Y%*")Y,. From Lemma 6,
X,V = (a;;+1) Y (H;—a;;). Hence

[X:, 0:] = (a5 + 1){ad ¥ ad (H: — 0;)} V.
But
{ad (H; — a;)}V; = [H, Vi] = 0;Vi = — a;(H)Y; — as¥V; = 0.

Hence [X;, 6:;] =0 and the lemma is proved.
Let N\;, 1=7=!, be any given set of non-negative integers and let Ao be
the linear function on §) defined by Ao(H;) =\;. We consider the left ideal

Ba, =B+ Qn,+ X WA+ Y ar™

14,751 1501
in 9, where B and Q,, are defined as in Lemma 5.
LEMMA 8. B, =Y.
Suppose the assertion is false. Then 1&%B,. Hence
1=2z+ wmod (B + Qa,)

where z& Zlg,‘éz ?IY;“+1 and w& Zléi,jél 2[0,',’2[. Notice that 0.’,' has the
rank — (aj;;i+1)a;—a;. By considering components of different ranks we can

(*) This lemma is due to Chevalley.
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show, as in the proof of Lemma 5, that z can be chosen to be a linear com-
bination of elements of the form z(Q, M, P)Y}*! where rank P—rank Q
—(\i+1)a;=0. Similarly we may assume that w is a linear combination of
elements of the form 2z(Q, M, P)8.2(Q', M’, P’) where rank P+rank P’
—rank Q-rank Q' —(g;;i+1)a;i—a;j=0 (i¥j). Now consider a term
2(Q, M, P) Y}t such that rank P—rank Q= (\;+1)a;. If rank Q>0, rank
P>(\i+1)a;. Hence z(¢, M, P)Y}™ has rank P—(N\;+1)a;>0. There-
fore by Lemma 3, it is contained in B. Since P is a left ideal, 2(Q, M, P) ¥}+*!
€. Hence the term corresponding to z(Q, M, P) Y}+*! can be dropped from
the above congruence. Therefore we may assume that z is a linear combina-
tion of elements of the form z(¢, M, P)Y}it! with rank P=(\;+1)a;. But
since aj, 1=<j=<!, are linearly independent rank P =(\;+1)a; implies that
2(¢, 0, P)=X}"', Hence z is a linear combination of elements of the form
H™ . .. gux+ yMN*tt But from Lemma 6,

A+l Ni+1 A1

X = XY X, T 4+ x0T
= O\ + DXSVE(H: — M) mod B

Since H;—NEQu,, X3 V}"'=0 mod (P+Qa,). This shows that z can be
replaced by zero in our congruence. Hence

1= wmod (B + Qa,)

where w is a linear combination of terms of the form z(Q, M, P)#;;z(Q’, M’, P’)
with rank P+rank P'—rank Q—rank Q'=(a,;+1)ai+a; (15%7). Since we
are considering a congruence mod (B+Q4,) we may clearly assume in addi-
tion that P’=¢ and M’=0. Hence we have only terms of the form
2(0Q, M, P)0;;z(Q’, 0, ¢) withrank P —rank Q—rank Q'=(a;;+1)a;+a;. From
Lemma 7, X; commutes with 6;;. Hence

Z(Qr M, P)oijZ(Q,, 0, ¢) = Z(Qv M, ¢)0iiz(¢, 0, P)Z(Q,r 0, ¢)-

But rank P—rank Q'=rank Q+(a;i+1)a;+a;>0 (i#j) and therefore by
Lemma 3, 2(¢, 0, P)z(Q’, 0, ) EB. Therefore wEP and we have 1EB+LQy,.
But by Lemma 5 this is impossible. Hence 8Ba,# .

As usual we call a left ideal ! in ¥ maximal if NN and if there exists no
left ideal ¥’ in A such that W' ON, N =N, and N’ =A.

LeEMMA 9. Let A be any linear function on V). Then there exists at most one
maximal ideal N in N such that NOP+ Qa.

i+l

For suppose N1, Nz are two distinct maximal left ideals containing P+ Q.
Then N1+N.=A. Hence 1=2+2 where 2,EN;, =1, 2. Notice that if
wEN,, and HED, then

[H, w] = Hw — w(H — A(H)) — A(H)w €Ty
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since N DQa. Therefore N; is invariant under ad § and from Lemmas 1
and 2, M= D (MNNy). Similarly for N,. Hence if 2;,0 is the homogeneous
component of 2; of rank zero z;0EN; (¢+=1, 2) and 1 =2;,0+2:,0. Therefore
we may assume that 2y, 2; are both of rank zero. But then they can be written
as linear combinations of z(Q, M, P) with rank P—rank Q=0. If IPI >0,
2(Q, M, P)&P. On the other hand if P=¢ then Q=¢ since rank P=rank Q
and z(¢, M, ¢)=c mod Qs (c€K) because H;—A(H;) €EQ4, 1 =7=1. Henceit
follows that z;—¢;EB+LQa (¢=1, 2) for some ¢;, ;& K. Since zEN; and
NMOP+LQu, aENy. But Ny is maximal and therefore 1ER,. Hence ¢, =0.
Similarly ¢2=0. Hence 21, 22E B+ Q4 and therefore 1 EP+ Q4. But, in view
of Lemma 5, this is false. Thus the lemma is established.

REMARK. Since P+ Q47U it follows from Zorn's lemma that there exists
at least one maximal left ideal in % containing P+ Q4. The above lemma
then shows that it is unique. However we shall not have to invoke Zorn’s
lemma for our purpose.

LEMMA 10. Let 7 be a representation of N on V. If X and u are linear func-
tions on § and zEN, Y EV, then m(2)Y E Vs
Let HE. Then
w(Hx@)y = =([H, 2])¥ + =@ (H)Y
= NI 7Y + w(H)r(2)y
= (MH) + w(H))m(2)¥.

Hence 7 (2)Y & Viip-
We now define a linear transformation ¢;, 1 <7</, in the space of all
linear functions on § as follows:

o =\ — NHa

Since o} is the identity, 0y, 1<7</, generate a group W. Further, we recall
that a linear function X is called integral if A(H;), 1 1</, are all integers.

LEMMA 11. Let 7 be a representation of A on V. Suppose for every ¢ €V we
can find an integer v=0 such that m( X)W =n(Y)y =0, 1=:=1. Then every
weight of w is an integral function. Also if A is a weight of m then for any 1,
1=4=1, A—ka; is also a weight of  for every integer k such that

min (0, A(H;)) < k < max (0, A(H))).
In particular oA is a weight of w for every sEW.

Let A be any weight of 7. Consider any fixed 7 and choose an element
YE Va, ¥#0. Let ko be the least integer greater than or equal to 0 such that
T(XPt W =0. Put Yo=7(X,)W#0. Define Y»=7(VY")¢,, £=1. Then by hy-
pothesis ¢, =0 for some integer »=0. Let J be the least integer greater than
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or equal to 0 such that ;1 =0. Put Y_;=1. From Lemma 10 it is clear that
Vi € Vayoo—i@,. Using this fact together with the relation [X;, ¥:]=H; we
easily prove by induction on % that

(X)W = E[AH) + 2k — &+ 1) Wi, k0.
On substituting k=J+1 and remembering that ;41 =0, Y;0, J+10 we
get

J = A(H)) + 2ko.

This shows that A(H,) is an integer. This being true for every 7, 1 =1/, it

follows that A is integral. Further ¥+ & Vaygo—re; and ¥i#0 for 0k J.
Hence A —ka; is a weight of = for

_k0§kéf—ko=A(H;)+ko.
Similarly let &/ be the least integer greater than or equal to 0 such that

(Vi1 =0. Put ¢o=m(V5 )0 and ¢r = (XF)po, k=1, and $_; =0. Again
we prove by induction on k that

(Ve = k {— AH) + 2k — &+ 1) } ey, E=o.
Let J’ be the least integer greater than or equal to 0 such that ¢;,, =0. Sub-
stituting k=J’ in the above equation we get, as before,
J'= — A(H)) + 2k{.
Now ¢, & Va— (ki —k)a; and ¢, %0 for 0=k =< J’. Hence A — ka; is a weight of
w for
ko’ - ], = - kol + A\(Hg) é k é kol.

Combining this with the earlier result we find that A—ka; is a weight of =
for all integers k such that

min {— ko, b ko’ +A(H1)} § k §max {ko’,A(H{) + ko}.

Since the integer k=A(H;) always lies in this range, o;.A=A—A(H;)a; is a
weight. This being true for any < and any weight A of 7 it follows immediately
that oA is a weight for every ¢ € W. Finally since k2,20, kJ =0,

min {— ko, — k¢ + A(H:)} < min (0, A(H;)) < max (0, A(H.))
<max {k, A(H:) + ko}.
Therefore the lemma is proved.

We now return to the left ideal B, of Lemma 8.

LEMMA 12. Let 7 be the natural representation of A on A/BVx,=A*. Then A,
15 @ weight of m, and every weight of w is of the form A=A¢— (diou+ - - -+ +dio))
where d; are integers greater than or equal to 0. Further A*= >, A% where the
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sum 1is direct and s over all weights A of w. Finally, given any z*EA* we can
find an integer v=0 such that

(X0)z* = n(V)z* = 0, 1

IIA
IA

i<

Let z—2* denote the natural mapping of U on A*. Since from Lemma 8,
1B, 1*5#0. Also B4,DQu, and therefore it is clear that 1*€ ¥} ,. Hence
Ao is a weight of .

Given any z&E9 we can write it as a linear combination of z(Q, M, P).
But clearly 2(Q, M, P)EP if IPI >0 or is congruent to ¢z(Q, 0, ¢) mod
Qi, (cEK) if [Pl =0. Hence z is congruent mod P+ Q,, to a linear com-
bination of 2(Q, 0, ¢). Therefore (2(Q, 0, ¢)) * taken together for all Q span A*.
Since 2(Q, 0, ¢) has the rank—rank Q and (2(Q, 0, ¢))*=7(2(Q, 0, ¢))1* it
follows from Lemma 10 that (2(Q, 0, ¢))*E€ A% ,_rank ¢. Hence

* *
A" =D Wnyorank o
Q

We now deduce from Lemma 1 that this sum is direct and every weight A of
m is of the form Ay—rank Q. The first part of the lemma is therefore proved.

Since (2(Q, 0, ¢))* span A* we may, in proving the second part, assume
that z*=(2(Q, 0, ¢))*. Hence 2*E U} —rank ¢. For a fixed 7 consider 7 (X})z*.
From Lemma 10, 7(X})z*E A} ,—rank @ia; Now suppose m(X})z*0. Then
Ao—rank Q+va;is a weight and therefore is of the form Ay—rank Q’ for some
Q’. Therefore rank Q—va;=rank Q'. Let

rank Q = dia; + - - - + dioy,
rank Ql = d{oq + o + dz’az.

Then d;, d/, 1<j<I, are all integers greater than or equal to 0. Since
oy, + + -+, o are linearly independent it follows that d;—v=d/!. Hence v=d;
—d! =d;. Therefore if v>d;, 7(X])z*=0.

Now we consider w(Y7)z*. Let R;, L;, and D; denote the linear mappings
of A defined as follows:

Riw = wY;, Lw=Yw, Diw = [V;, w] (w €.

Clearly L;=D;+R; and L;, R;, D; all commute with each other. Hence for
any integer m =0

m m m! m—p__p
(6) Li =D:i+R) = > ———R:i D

0Spsm m — plp!

(where L?= R} =D} is the identity mapping if p =0). Notice that D}is*'Y;=0,;
if 2#j and D;Y;=0. Hence we can find an integer », such that if p>w,,
DYY;EDB, 15j<1, where B is the ideal » igji<i %0;:%. We claim that if
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p>vo| QI , D72(Q, 0, ) €. This is easily proved by induction on [Q] if we
make use of the rule

Dl(u) = 3 —LD(u)D ") (4, 9 € ).

0SrSp D —

Let u=vo| Q| +max;<j<i N\; where \j=A(H;) and let m>». Then from (6),

!
Yri0,0,8) = 3 ——— {D}((Q, 0, ¢)} VT

0Spsm M — plp!
Now if p>wo| QI, D7 (2(Q, 0, ¢))ELB and if p__<=vo| Q| ,m—p=N;+1 and

Aitl

{DI((Q, 0,¢))} Vi " cuv;
Therefore Y["2(Q, 0, ¢) EBa, and

(Y1) (=0, 0, ¢))* = 0.

Thus the lemma is proved.

Let 7 be as above. We shall call a weight A of 7 extreme if it is impossible
to find an «;, 175!/, and ¢E W such that Adoa; and A—oca; are both
weights of w. Obviously Ay is the highest weight of 7 and therefore it is also
extreme. From Lemmas 11 and 12 it is clear that if A is a weight of = then oA
is also a weight of 7 for all cEW.

C Ba,.

LEMMA 13. Let 7 be as in Lemma 12 and let A be an extreme weight of .
Then for any o S W, oA is also an extreme weight of w.

Suppose oA is not extreme. Then for some «;and o¢& W, cA+0e; and
oA —oa; are both weights of 7. But it follows from Lemmas 11 and 12 that ¢!
(eA+0oai) =A+071ooa; and 0~ (cA—0ooc;) =A —0~ 00 are also weights of 7.
Since 670 & W this contradicts the hypothesis that A is extreme. Hence cA
must be extreme.

LeMMA 14. Let w be as above and let A be an extreme weight of m such that
o A=A for all 1=1=1. Then A—a; is not a weight for any o;, 1S1=1.

Suppose A —a; is a weight. Since 0:A =A—A(H)a; = A, A(H;)£0. From
Lemma 11, A —wa; is a weight for A(H;) <v<0. Hence if A(H;) <0, A+a; is
a weight. On the other hand if A(H;) =0, ¢;(A —a;) =A+a; is again a weight.
Therefore in either case both A+a; and A —a; are weights, thus contradicting
our hypothesis that A is extreme.

Notice that ¢,0;=a;—a;j(H;)o; =aj+a;;. Since a;, 1=7=1, form a base
for the space of all linear functions on } it follows that the group W gen-
erated by ¢ is exactly the same as that appearing in the statement of Theorem
1. So far we have made no use of the hypothesis that W is a finite group.
But now it will enter in an essential way in the proof. -
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LemMA 15. If W is a finite group the space U* =U/Va, is finite-dimensional.

Let m be the natural representation of A on A* and let © denote theset
of all weights of 7 of the form gA, (6 & W). Since W is finite, & is a finite set.
Also since A is extreme it follows from Lemma 13 that every weight in & is
extreme. Let A; be the lowest weight in &. Then o;A;=A; for all 1 4=/ and
A; is an extreme weight. Hence from Lemma 14, A; —a«; is not a weight of =
for any a;, 1<7=I. Choose any z*€ U}, (*>0) and put N*=7(A)z*. Then
N* is an invariant subspace of A*. We claim that N* is finite-dimensional.
Corresponding to any P, M, Q put

w(P, M, Q) = XilX‘fg o X,'PH;n' v II;MYthz L qu

where P={dy, - -, 45}, M={my, - - -, m}, and Q={ji, - -+, jo} as in
(3). Then exactly as in the case of 2(Q, M, P) we prove that w(P, M, Q)
taken together for all P, M, Q span %. From Lemma 10, 7(¥;)z*EA%, ...
But since A; —a; is not a weight of m, w(¥;)2*=0. Hence w(w(P, M, Q))z*
=0if | Q] >0. Also m(H)z* =A,(H)z* (HEDY). Hence it is obvious that N* is
spanned by elements of the form w(w(P, 0, ¢))z*. But again by Lemma 10,
7(w(P, 0, $)) EAX +rankp. Hence if m(w(P, 0, $))z*#0, A;+rank P is a weight.
Therefore from Lemma 12,

A1+ rank P = Ao — rank Q
for some Q. Also A;=A¢—rank Q' for a suitable Q’. Therefore
rank P = rank Q' — rank Q.

Let rank P=eion+ - - - +ey, rank Q=dioy+ -+ + +dias, rank Q'=df
+ - .. 4d{a; Then e;, d;, d! 20, 1=7=/, and again from the linear inde-
pendence of «; we deduce that e;=d{ —d;, 1 =i=<I. Hence ¢;<d/!. Therefore
| P| = X ei< > d! =|Q’|. Thus it is clear that there are only a finite number
of possibilities for P. Since N* is spanned by w(w(P, 0, ¢))z* with |P| = | o'|,
it follows that dim 9t* is finite. Also since g*EN*, z* 0, N* = { 0 } .

Since MN* is invariant under m, it follows from Lemmas 1 and 12 that
N*= > » Nk where N3 =AXNN* and A runs over all the weights of . Since
the sum s A% is direct and dim N* is finite, N3 {0} for only a finite num-
ber of weights A. Let 7* denote the representation of % induced on N*. Then
it is obvious from the above remark that =* has only a finite number of
weights. Let A be a weight of 7* and let w*EN}. Then by Lemma 10,
T* (X)) w* EN} ;- Since a; %0, the linear functions A+vay, v=1, 2, - - -, are
all distinct. Hence they cannot all be weights of m*. Hence for sufficiently
large v, m*(X;)w*=0. Similarly we prove that #*(¥})w*=0 for » sufficiently
large. Since N*= ZA N} it follows that for any w*EN* we can find an
integer »=0 such that 7*(X))w*=7*(¥))w*=0, 1<¢=]. Hence Lemma 11
is applicable. Since z*E€ RN}, (s*#0) it follows that A, is a weight of 7*. But
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A1ES and therefore A;=0A(c EW). Therefore from Lemma 11, 67A;=A,

is also a weight of 7*. Now (2(Q, 0, ¢))* has the weight Aj—rank Q. Hence

(2(Q, 0, ¢))*€ AL, and (2(Q, 0, ¢))*0 implies that rank Q=0, that is,

Q=¢. Since the elements (2(Q, 0, ¢))* span %A*, it follows from Lemma 1 that
*,=K-1* Since N}, {0} it follows that 1*€N*. Hence

A = 7 1* CTN*.

Therefore A* is finite-dimensional.

Let M* be an invariant subspace of A* of the maximum possible dimen-
sion such that M*=A*. Let M, be the complete inverse image of PM* in .
Clearly M4, is a maximal left ideal containing B, Since B, DP+Ly,, it
follows from Lemma 9 that N4, is the unique maximal left ideal containing
B, The natural representation ma, on A/Ma,=A*/IM* is then irreducible and
finite-dimensional. We note for later use that if Ag=0 then ms,(X:) =ma,(¥5)
=ma,(H:) =0, 1 £4=</. This follows from the fact that X;, Vi, H:&%B,, and
therefore A/Ba,= K- 1*.

Let 7 be any representation of % on a vector space V. We shall say that A
is the highest weight of 7 if A is a weight of = and for any weight u of = (u\),
\—u is a rational function greater than 0. Given any linear function A on §,
let M4 be the unique maximal ideal containing(®) P+ Qa. We denote by ma
the natural representation of 2 on A/Ma. Since M4 is maximal, 7, is ir-
reducible. It is easily seen that A is the highest weight of ma.

LEMMA 16. Let w be an trreducible representation of A on V such that A is
the highest weight of w. Then w 1s equivalent(®) to wa. Also dim Vy=1.

Let ¢y &€ Vi, ¥5£0. Since = is irreducible, #(A)Yy=V. Let I be the left
ideal in ¥ consisting of all elements 2 such that w(2)y =0. Put A*=9%/M and
let z—z* denote the natural mapping of % on A*. Let 6 be the linear mapping
of A* into V defined as follows. For any & put z* =7 (2)y. It is easily seen
that this mapping is well defined. Since V=x(A)Y, 6 maps A* onto V. If
0z*=0 then w(2)¢ =0. Hence 2EM and so z*=0. Therefore 6 is an iso-
morphism of A* on V. Let 7* be the natural representation of % on A*.
Then if w, 29,

or*(w)z* = 0(w2)* = m(w2)Y = w(w)w(2)yY
= 7(w)bz*.
This shows that = and #n* are equivalent. Since 7 is irreducible the same

(5) We have assumed the existence of I, here and therefore made use of Zorn’s lemma.
This is done only for convenience. It would be sufficient for our purpose to define =, whenever
M, exists.

(%) ¥ being any associative algebra and =, =’ two representations of ¥ on V, V' respectively
we say that = and #’ are equivalent if there exists an isomorphism 6 of V onto ¥’ such that
7' (2)8¢ =0=(2)y for every ¢y &V and zEY.
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holds for 7* and therefore I is a maximal left ideal. Now it follows from
Lemma 10 that

(XY € Vata,

Since A is the highest weight of 7, A4-c; is not a weight of 7. Hence (X )y =0.
Also since ¢ € V,,

{=(@) — A }Y =0 (H €.

Since I is a left ideal these relations imply that MO P+ Q4. Since M is
maximal it must coincide with I,. Hence 7* =7,. Finally, since MDOP+ Q.
it is clear that (2(Q, 0, ¢))* span UA*. Since 2(Q, 0, ¢) is of rank rank Q,
(2(Q, 0, ) *E N _rank . Therefore A} is spanned by 1*. Since 1& I, dim AF
=1. Since w and 7* are equivalent dim V,=dim %} =1. The lemma is there-
fore proved.

We recall that an integral function A on § is called dominant if A(H;) =0
forall 171,

LeEMMA 17. Let 7 be an irreducible representation of A on a finite-dimensional
space V= {0}. Then © has a highest weight A which is a dominant integral
function. Also V=, Vy where \ runs over all the weights of .

Since K is algebraically closed and w(H;), 1 <7</, commute with each
other it follows that we can find an element y €&V (¥ 5£0) such that ¢ is a
common eigenvector of w(H;), 1 £1=<1. Therefore there exists a linear func-
tion X on b such that 7 (H)Y =N(H)yY (HEY). Since Vis irreducible, V=m(A)y.
Hence V is spanned by w(2(P, M, Q))¢¥ for all P, M, and Q. But from Lemma
10, w(z(P, M, Q))¥ has the weight A+rank P—rank Q. Therefore V= >, V,
where u runs over all the weights of 7. Since dim V is finite it follows from
Lemma 1 that = has only a finite number of weights. Now if ¢ &V, then
T( X))@ # Vitra,. Since p+va;, v=1, 2, - - -, are all distinct linear functions on
b they cannot all be weights of 7. Hence 7(X})¢ =0 for some ». Similarly we
show that 7(¥7)¢=0 for some ». Since V= ), V, it is clear that the hy-
potheses of Lemma 11 are fulfilled. Hence every weight of 7 is an integral
function. Since 7 has only a finite number of weights it has a highest weight
A. From Lemma 11, ;A is also a weight for every 7, 1 £4=1/. Since A is highest,
AZoA=A—A(H;)o;. Hence A(H;) =0, and A is dominant.

COROLLARY. Every finite-dimensional irreducible representation of U is
equivalent to some wx where A is a dominant integral function on Y.

This is an immediate consequence of Lemmas 16 and 17.

Let g be the smallest subspace of % which contains X;, ¥;, H;, 1=1=],
and which is invariant under the adjoint representation of A. Let X be the
smallest subspace which contains X;, 1 £7¢=<I, and which is invariant under
ad X;, 1=7=<I/. Similarly let 9 be the smallest subspace containing ¥,
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1=<7=/, and invariant under ad Y;, 1=7=l.

LEMMA 18. g=H+%+9 and (ad 2)w=[z, w] for any 2Eg and weE.
Further if 2, wEg then [z, w]Eq.

It is obvious that H+X%+9Cg. Hence in order to prove the equality it is
sufficient to show that §)+X+9 is invariant under ad &, where Lo is the
linear space spanned by X;, YV, H;, 1 <:=<I. It is clear from its definition that
% is spanned by all elements of the form {ad z(¢, 0, P) } X.. Put zp=2(¢, 0, P)
and z=(ad 2p)X; for brevity. Then if HEY,

(ad H)z = (ad [H, zp))X: + (ad 2p) [H, X:]
= \NH)z

where AN(H) =rank P+ ;. This shows that X is invariant under ad H. Now
consider

(ad Yj)z = (ad [Yj, Zp])Xi + (ad ZP) [Y,', X,]

Since [Vj, X:]=—0,;H;, it is clear that (ad zp)[Y¥;, X:]€h+%. We claim
further that (ad [V}, zp]) X:€h+%. If | P| =0 this is true. Hence we may
assume | P| =1 and use induction on | P|. Then

ip = sz(¢r 01 Pl)

for some k and P’ such that | P’| =|P| —1 and 1 k<L Put z(¢, 0, P") =2zp..
Then

[V, 2p] = [V Xilzpr + Xe[V s, 20 ] = — 6Hazp + X[V, 2]
Therefore
(ad [V}, 3p])X: = — d;u(ad Hy)(ad 2p) X + (ad Xi)(ad [V}, 20/ ]) X

Clearly (ad zp/)X;E€% and (ad [Y;, 2¢/]) X;E9+% by induction hypothesis.
Since h+% is invariant under ad H; and ad X, the assertion follows.
Hence (ad Y;)2&h+%. Since % is invariant under ad X; we have shown
that (ad w)sEHh+X for any wEQ, and 2EX. Similarly we prove that (ad w)z
€bh+9 for any wEL, and z2E€9). Finally it is clear that if wEL, and HE)
then (ad w)HEX+Y). Hence it follows that h+¥%+9) is invariant under ad £
and therefore g=H-+%X+9.

Keeping to the above notation, let z=(ad 2p)X; and w&. We claim
that (ad 2)w= [z, w]. If | P| =0, =X and this is true. Hence again we may
assume | P| 21 and use induction on | P|. Then as above zp=X;zps with
| P’| =|P| —1. Put ¢'= (ad 2p:)X:. Then

z = (ad zp)X; = (ad Xi ad 2p) X: = [X4, 7).

Hence
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(ad 5)w = (ad [X4, 2'])w = [X, (ad 2")w] — (ad 2') [X4, w]
= [X4, [#, w]] — [¢ [Xi w]] (by the induction hypothesis)
= [[Xk! Zl], w] = [Zv w]

Our assertion is therefore proved. Hence by linearity (ad z)w= [z, w] for
any zEX. Similarly we prove that (ad z)w= [z, w] for any 2€9 and w&d.
Finally if HEY, (ad H)w= [H, w]. Hence (ad 2)w= [z, w] for all z&E5+%+9
=g and w&. Since g is invariant under the adjoint representation it follows
that (ad 2)wEq for any 2EU and wEq. Therefore if 2E¢, [2, w] = (ad 2)wEg.
This completes the proof of the lemma.

Let A;, 1 £4=/, be the dominant integral functions on § defined by .A;(H;)
=0;;, 1=j=I. Ao being any given dominant integral function on b, let 7 de-
note the direct sum of the finite-dimensional representations ma,, 0=¢=1.
Then #(A) is a finite-dimensional associative algebra and therefore from
Lemma 18, w(g) is a linear(?) Lie algebra.

LeEMMA 19. © maps Yy isomorphically on w(Y). Further w(g) is a semisimple
Lie algebra and w(h) is a Cartan subalgebra of m(g).

Let V be the representation space of 7 and let HEY (H0). Since A,,
1=¢=1, are linearly independent, A;(H) 0 for some 7. Since A; is the highest
weight of m,,; it is also a weight of w. Hence we can choose ¢ & Vi, (¥ #0).
Then w(H)Y =A:(H;)¥ 0. Hence 7w(H) #0 and this shows that = maps } iso-
morphically.

Let B be the kernel of m and € the set of all elements 2&¢ such that
[H, 2] €D for all HEY. Clearly € is invariant under ad H (HEY). Let 2EG.
From Lemma 1 every homogeneous component of z belongs to €. Let z, be
such a component of rank N\. Then [H, 2| =AH)aEDB. If A0, N(H) %0
for some HEY. Hence 2, &L and w(z,) =0. On the other hand let us now sup-
pose that A=0. We have seen above that ¥ is spanned by suitable homo-
geneous elements of rank greater than 0 and 9 by similar elements of rank
less than 0. Since zEg=0)+X%X+9 it follows that zEH. Therefore since
2= D 2, m(2) =m(20) Ex(h) and so w(€)Cw(h). This shows that w(p) is a
maximal abelian subalgebra of w(g). In particular the center of w(g) is con-
tained in w(h). Let w(H) (HED) belong to the center of w(g). Then
[7(H), 7(X:)]=7([H, X;]) =a;(H)n(X;)=0. But [r(Xy), #(¥:)] =n(H;) %0
as we saw above. Hence 7(X;) 0. Therefore o;(H) =0, 1 <7 =<!. Since «; are
linearly independent this implies that H=0. Hence the center of w(g) is {0}.

Now for each 7, 0=7=/, m,, is an irreducible representation of . Since
1, X;, Y;, H;, 1=j =1, generate ¥ it follows that m4,(g) is an irreducible set of
linear transformations, 0<7=</. Since 7 is the direct sum of s, 07/,

(") A Lie algebra consisting of endomorphisms of a finite-dimensional vector space with the
usual bracket operation [4, B]=4B—BA is called a linear Lie algebra.
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w(g) is a fully reducible set of endomorphisms of V. Since the center of
w(g) is {0} it follows (see Chevalley [5]) that 7(g) is a semisimple Lie algebra.

Since m maps §) isomorphically we can regard every linear function A\ on
b also as a linear function on w(§) by setting A(w(H)) =\N(H) (HEDY). In particu-
lar therefore a;, 1 <1<, are now linear functions also on 7 (f)). We shall now
show that 7 () is a Cartan subalgebra of w(g) and a;, 1 =7=/, is a funda-
mental system of roots of w(g) with respect to w(b).

For a fixed 2&EU consider the linear mapping w—w((ad 2)w) of U into
m(). Since the kernel B of 7 is an ideal, it is invariant under the adjoint
representation of 9. Hence w(w)=0 implies w((ad 2z)w)=0. Therefore we
get a linear mapping w(w)—w((ad z)w) of w () into itself, which we denote by
p’'(2). Now

o' (ziza)m(w) = w(ad (z122)w) = 7((ad z1)(ad z2)w)
o' (21)p" (z2) w(w) (21, 20, w € A).

Hence p’ is a representation of . Since g is invariant under the adjoint repre-
sentation of ¥, (ad z) wEg if wEg and &Y. Hence 7 (g) is invariant under
p’(A). Let p be the representation of A induced by p’ on w(g). Then

p@)m(w) = m((ad 5)w) = 7([z, w]) = [r(z), 7(w)] (z weg)

from Lemma 18. Since w(g) is semisimple its adjoint representation is fully
reducible. Hence p(g) is a fully reducible set of endomorphisms of w(g).
Since p(¥A) is generated by p(g) and 1, it follows that p is a fully reducible
representation. Let U=m(g). Applying Lemma 17 to each irreducible com-
ponent of p we immediately get U= Y » Uy where \ runs over all weights of
p. This shows that p(H) is semisimple(8) for each HEY. But p(H) =ad w(H)
where 7(2)—ad 7(2) (2E€g) denotes the adjoint representation of 7(g). Hence
we have shown that 7 (D) is a maximal abelian algebra of w(g) every element
of which is mapped on a semisimple endomorphism under the adjoint repre-
sentation of w(g). This proves that () is a Cartan subalgebra of = (g).

I

LEMMA 20. a;, 1=24Z1, is a fundamental system of roots of w(g) with re-
spect to w(h). Also dim w(g) =1+ g where g is the number of distinct functions of
the form oo (cEW, 12¢<1).

We keep to the above notation. We have seen that U= Y, Ux where A
runs over all weights of p. Notice that a nonzero weight of p is exactly the
same thing as a root of w(g). N\ being a weight of p choose a 2&¢ such that
7(2) € U (m(2) #0). Then p(H)w(z) = [r(H), w(2)] =\(H)7(z). Hence [H, z]
—N(H)z& B for all HEY. Let 2, be the homogeneous component of z of rank
u. Then the corresponding component of [H, z]—\(H)z is [H, 2.] —N(H)z,

(8) An endomorphism 4 of a finite-dimensional vector space V is called semisimple if V is
fully reducible under 4.
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= {u(H) —\NH) }zﬂ. Since 8 is invariant under ad } it follows from Lemma 1
that {u(H)—N\H)}2,ER for all HEY. If u“\ we can find an HEY such
that u(H) >\ (H). Hence z,& %B. Therefore m(z) =m(2) #0. Since g is invariant
under ad § and zE¢ it follows again by Lemma 1 that z,&g. Since g=)+%+9
it is clear that g\ M= {0} unless \=diau+ - - - +dia; where d; are integers
which are either all greater than or equal to 0 or all less than or equal to 0.
But z:Eg and 2, 0. Hence A must be of the above form. Finally 7 (X;) € U.,
and we have already seen in the proof of Lemma 19 that = (X;)#0. Hence
o;, 1 1=, are roots of w(g). This proves that a;, 1 =7=/, is a fundamental
system of roots of w(g).

Since 7m(X;)##0 and similarly 7w(Y;)0, they are the root elements in
7(g) corresponding to the roots «; and —a; respectively. Since [7(X)),
7w(Y:) ]| =m(H,) it follows that if ¢, is the Weyl reflexion in 7(g) with respect
to aj,

ai(H ) N
ai(H;)

aj’ai=ai— j = oj0o;

since o;(H;) =2. Hence the Weyl matrix of w(g) with respect to the funda-
mental system {a;, SR a,} is (as), 1=1, j<I, and the Weyl group of
m(g) is W. Therefore w(g) has exactly g distinct roots. Since dim = (h) =/,
dim w(g) =1l+g.

Now consider the special case when Ap=0. As remarked earlier (cf. p. 43),
in this case m,(g) = {0 } Let # be the direct sum of ws,, 1 £4=/. Then clearly
m(g) is isomorphic to #(g) under the mapping w(z)>#(2) (2E¢). We put
2=7#(g). Again we may regard o; as linear functions on #(}) in the obvious
way. Then ® is a semisimple Lie algebra with the fundamental system of
roots o;, 1=<1=!, with respect to the Cartan subalgebra #()) and dim &
=dim 7(g) =/+g. Returning to the general case when A, is arbitrary, it is
obvious that 7(z)—#(z) (2€g) is a homomorphism of 7(g) onto L. But since
both 7(g) and ® have the same dimension /g, this must be an isomorphism.
Also w(z)—ma,(2) (2Eg) is evidently a representation of w(g). Therefore
#(2)—ma,(2) (2E¢) is a representation of € whose highest weight is Ao. The
proof of Theorem 1 is therefore complete.

We now consider the question of the uniqueness of the Lie algebra whose
existence is asserted in Theorem 1. Let € be any semisimple Lie algebra with
a Cartan subalgebra } satisfying the requirements of the theorem. Let
X, 7; be the root elements of ¢ corresponding to the roots a; and —ay,
1=<i=l. Put [X;, V:]=H.. Since a; is a fundamental system of roots, a;—a;
(¢5£7) is not a root. Hence [X;, ¥;]=0. By multiplying X; with an element
cEK (c#0) we may arrange that a;(H;) =2, 1<4=I. Then it follows that

g0 = Qf — T =0 = O + a ;0.
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Hence o;(H:)=w;(H:), 1=4,j<I. Let p’ denote the representation of the
free algebra %’ on { defined uniquely by the equations

(1) =1, p(X!)=ad X, p/(Y¥!)=12ad7¥,; o' (H!)=ad H, 15iZ],

where I is the identity mapping of € and X—ad X (X&Q8) denotes the ad-
joint representation of ¢. It is easily seen that the kernel of p’ contains the
ideal I’ and so p’ actually defines a representation 5 of % on {. Since ¢ is semi-
simple its adjoint representation is fully reducible. Hence p is also fully re-
ducible. From the corollary to Lemma 17, every finite-dimensional irre-
ducible representation of ¥ is equivalent to wa for some dominant integral
function A. But we have seen above that #(2)—w(2) (3E4g) is a representa-
tion of €. Hence it is clear that #(3)—p(z) (z5%¢) is also a representation of L.
We denote this representation by 6. Then 6(®) is a linear Lie algebra and
since dim L=I1+g, dim () <I+g. But clearly §(®) Dad & and dim (ad ®)
=dim =1+g since g depends only on the group W which is the same for
both € and L. Hence (%) =ad ¢ and § must be an isomorphism. Therefore
g2~2ad Q. This shows that € is uniquely determined up to an isomorphism.

Also notice that if  is any representation of  on V then 8 defines uniquely
a representation ¢ of A by the rule

o() =1,  o(z) = 0((2))

where I is the identity mapping of V and 2 is any one of the elements X;, V5,
H;, 1<i=<!. We claim that

o(z) = 0(7(2))

for all z&¢. This is obvious if 2EH. Now suppose z&X. It is sufficient to con-
sider the case when z=(ad 2zp) X; where zp =2(¢, 0, P). Again if ]PI =0 the
statement is true. Hence we may assume that | P| 21 and use induction on
|P|. Let zp=Xyzp where zp.=2(¢, 0, P’), |P'| =|P| —1, 1=k=Ll Then

7 = [X;,, z’]
where 2’ = (ad 2p/) X;. Hence
0(z) = o([Xr #]) = [e(X¥), o(z)]
= [6(%(X)), 6(7(z))]
by induction hypothesis. Therefore
o(z) = 0([#(Xx), #(z)]) = 0(#([X%, 2']))
= 6(#(z)).

Similarly if s€%). Since g=)+%X+9 the assertion follows. In particular if 8
is irreducible the same is true of ¢ and the weights of ¢ are the same as those
of 0. Hence if @ is irreducible and finite-dimensional and A is the highest weight
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of 0 then it follows from Lemma 16 that ¢ is equivalent to wa. Hence ¢ and
therefore 8 is uniquely determined up to equivalence, and the multiplicity of
A in 6 is 1. Thus we have proved the following theorem.

THEOREM 2. The Lie algebra & of Theorem 1 is unique within isomorphism.
Also the irreducible representation p of & with the highest weight Ao is uniquely
determined within equivalence and the multiplicity of Ao in p is 1.

Another way of stating the first part of Theorem 2 is to say that two
semisimple Lie algebras with isomorphic root diagrams are isomorphic. In
this form this result was first proved by Weyl [12]. The uniqueness of the
representation p is due to Cartan [2].

Finally we shall prove a result on the degree of the representatlon p.
The exact formula for this degree has been obtained by Weyl [12] by using
transcendental methods.

THEOREM 3. Let &, ), a;, 1=1=1, and p be as in Theorems 1 and 2 and let
d, be the degree of the representation p. Then

11 <M+l)§dpén<w+}>

15iz\ ai(Hap) a>0 \ a(Hq)
where o denotes any root of & with respect to h.

Let a;, 1=<17<7, be the set of all roots of  which are greater than 0 and
let x;520 and y,;70 be root elements in € corresponding to the roots oy and
—a; respectively, 1=<i<r. Also let H;=[x;, ], 1<i<r. (Notice that H;
corresponds to #(H;), 1 =1=<I, in our earlier notation.) Then «;, y;, H;, 1<%
=r,1=<j=I, form a base for & Let U be the universal enveloping algebra(®)
of L and let V be the representation space of p. Then p defines a representa-
tion 7 of U on V by the rule

(1) =1,  7(x) = p(x) (x€®

where I is the identity mapping of V. Let ¥ 70 be an element in V which be-
longs to the weight Ao. Let M be the left ideal in 1 consisting of all elements
2€U such that 7(2)y =0. Since V is irreducible under p and therefore under
m, M is a maximal left ideal. Let 7* denote the natural representation and
z—z* the natural mapping of U on U*=1U/M. It is easily verified that =*
is equivalent to m under the isomorphism z*—7w(2)y (z2&U) of U* with V.
Hence instead of p we may consider the representation w*. Notice that since
Ay is the highest weight of p, Ag+a; is not a weight for any 2, 1 £¢=r. Hence
w(x:)Y =0 and x;EM, 1=<i=r. Also since m(H)¥Y=A(H)Y, H—A(H)EM
for all HEY,.

(%) This concept is due to Birkhoff [1] and Witt [14]. However we follow the definition

given in [9]. We shall always assume that the Lie algebra is naturally imbedded in its universal
enveloping algebra.
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We now introduce the notion of a rank in U exactly as we did it in 2. \
being any linear function on § we say that an element z&U is of rank \ if
[H, z] =\(H)z (HEDY).

By multiplying x; by an element ¢;&K (¢;%0) we can arrange that
a;(H;)=2,1=1=2. We shall suppose that this has been done. Now we assert
that the elements 952 - - - 9™, 0=m;=<A¢(H;), 1=i=Zl, are linearly
independent(®) mod . Notice that yy32---9" is of rank
—(moq+ - - - +me,). Since oy, 1 4=, are linearly independent, all these
linear functions are distinct. Since H —Ao(H) EM (HED), M is invariant under
ad b. Hence in view of Lemma 1 it is sufficient to prove that yMy5z - « - 4™
EM for 0=m;<A(H;), 1=i=l. Let M=m~+m+ -+ - +m;. If M=0,
¥t - - - 97" =1 and the assertion is true since 1. Hence we may assume
M2=1 and use induction on M. Let 7 be the largest index such that m,;0.
Putz=1if i=1or s=9T5% - - - %" if ¢>1. Then we have to consider the
term zy}%. Notice that [x;, y;]=0 if i3, 1=<4, j<I This follows from the
fact that a;, 1 <7</, is a fundamental system and so a;—a; is not a root,
1=14, j=I (¢5j). Hence from Lemma 6,

xzyi . = sy = a[x, yi ] + 2yi
= maye (Hi — mi + 1) + 290w
= miayr (Ao(H:) — m; + 1) mod M.

Now 0<m;=<A(H,;). Hence m;(Ao(H;) —m;+1)£0. Also by induction hy-
pothesis 2y7" "' M. Hence x,;2y7 & IN. Since M is a left ideal, it follows that
2y *E M. Therefore our assertion is proved. Since the elements y["y52 « - - y}%,
0=m;SAo(H;), 1=5i=<l, are [[iziz: (Ao(H:)+1) in number and since they
are linearly independent mod I, it follows that

dim U* = [ (Ao(H)) + 1).

15051
Hence the first inequality of the theorem is proved.
Now we come to the second inequality. For brevity write
(g m p) = yiya -y Hi Hy' -+ Hy'm -2

where ¢;, pi, m;20, 1=i=r, 1<j<I, and ¢, m, p denote the corresponding
sets of integers. Also put ]q] =g+ - - +gr ]pl =pi+pot+ ¢ - -+ po, |m|
=m+ - - - +m; and s=|q| +|m|+|p|. We shall write 0 for the set p all
of whose elements are zero. Similarly for ¢ and m. It is known (see for example
[9]) that the elements 2(g, 7, p) for all ¢, m, and p span 1. Let U be the sub-
space of Ul spanned by all elements of the form y{y% - - - 3%, 0=<q:<A(H,),
1=7=r. We shall prove that U=+ U. First we claim that if g; > A(H;) then

(1) We use the convention that z» =1 for any z&U if m =0,
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¥ EM, 1 =<j=r. For otherwise (yJ))*#0. Since y}' has the rank —g,e; it fol-
lows that (y§)* is homogeneous of weight Ay—g;e;. Since (3§)* =0, Ao—g;o;
is a weight of #* and therefore of p. Let o; denote the Weyl reflexion with
respect to the root a;. Then(!) o;(A¢— g;jer;) must also be a weight of p. But

ai(Ao — gia;) = Ao — Ao(Hj)e; + gja; > Ao

since ¢;>A¢(H;). This contradicts our hypothesis that A, is the highest
weight of p. Hence yJE€M.

In order to prove that U=+ U it is sufficient to show that 2(q, m, p)
EM+U for all g, m, p. If s=|g| +|m|+]|p| =0 this is true since 1€ U.
Hence we may assume s = 1and use induction on s. Now if | p| >0 it is clear that
2(q, m, p) EM since x; &SI, 1 £7=<r. Similarly since H;—A(H;) EM, it fol-
lows that z(g, m, 0)=cz(g, 0, 0) mod M (¢&K). Hence we need consider

-only elements of the form 2(g, 0, 0) with ]q| =s. If ¢;SAo(H;) for all 7, it is
obvious from the definition of U that z(g, 0, 0) € U. Hence we may assume
that g;>Ao(H;) for some j. Choose the greatest such j. If j=r then z(g, 0, 0)
E M since M is a left ideal and we have seen above that y*r&EM if ¢.>Ao(H,).
Hence we may suppose that j <r. Put zo=1 if j=1 and zo=y% - - - 3}-} if
j>1. Then since yJ& M,

2(q, 0, 0) = no[y7, yit1 - - - 5] mod M.
But it is known (see [9]) that go[y¥, 3%t - - - y¥] =2’ can be written as a

linear combination of z(¢’, m, p) with |¢’ [ +|m| +]|p| <s. Hence it follows
by induction hypothesis that 2’ €M+ U. Therefore 2(q, 0, 0) EM+ U and our
assertion is proved. ’

Since M+ U=1 it is clear that dim U*=<dim U. Since U is spanned by
the Jlisisr (Ao(H:)+1) elements yiy% - - - 9%, 0=<q;<Ao(H;), 15i<r, it
follows that

dim U* < dim U = J] (A(H)) + 1).

154

The theorem is now proved completely.

Part II. Infinite-dimensional representations of complex semisimple Lie
algebras. Let R and C be the fields of real and complex numbers respectively.
Let & be a Lie algebra over R with a semisimple subalgebra 2k, such that
there exists a linear mapping I' of %k, into & with the following properties:

(1) L = L, + I'Qx.0), Lx,0 N T'Rk,0) = {0},
(2) [Xl’ P(Xﬁ)] = r([Xla X2])v [F(Xl)r P(X2)] = - [le X2]

for any X, X,E8k.o.

(1) This follows either from well known results on finite-dimensional representations of
semisimple Lie algebras or from Lemma 11.
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Let € denote the complexification(!?) of ¢ and let Lx be the smallest sub-
space of { containing Rx,0. Then clearly %k is a Lie algebra which is the
complexification of 8k,.. We extend I' on 2k by linearity and put(*®)

y(X) = 3(X + (= DI(X)), X)) =3X - (= DVTX)) (X €L%).

Let g=v(%%), gt=v*(2). Then g and gt are ideals in € and 2=g-+¢*,
gNg+=[g, g*]={0}. Also v and v+ are isomorphisms of 2x on g and g+ re-
_spectively. Since Rk, is semisimple, 2%, g, g+, and & are all semisimple.
Let B denote the universal enveloping algebra(®) of . Let ¥, ¥, and A+
be the subalgebras of B generated by the sets (1, g), (1, L), and (1, g*) re-
spectively. We claim that ¥, ¥, and %+ are the universal enveloping alge-
bras of g, €k, and g* respectively. This follows from the following lemma.

LeEMMA 21. Let M be a Lie algebra over a field k of characteristic zero and let
N be a subalgebra of M. Let U be the universal enveloping algebra of M and B
the subalgebra of U generated by N and 1. Then B is 1somorphic to the universal
enveloping algebra of N.

Choose a base x;, 1 <7<m, for M such that x;, 1 <7=#n, n<m, is a base
for N. Let B’ be the universal enveloping algebra of N. Then clearly there is a
homomorphism ¢ of B’ onto B such that ¢ leaves every element of N fixed and
©(1")=1, 1’ being the unit element of B’. We define as in [9] the basic
canonical elements in 11 and 8’ with respect to the bases x;, 1 £¢<m, and «;,
1=7=n, for M and N respectively. Then it is clear from their definition that
if 2/, 1 <j=<r, are any distinct basic canonical elements in B’, o(z/), 1 <j<r,
are also distinct basic canonical elements in I1. Now let 2/ €®8’. Since the basic
canonical elements form a base for ¥, 2’ = D 1<i=.ciz/ where ¢;€k and 2!,
1<{=Zr, are distinct basic canonical elements in 8’. Hence ¢(2’') = Z;g,;,
cip(2!). Since distinct basic canonical elements are linearly independent in
U it follows that if ¢(2’) =0, ¢; =0, 1 £1<r, and therefore 2’ =0. Hence ¢ is an
isomorphism.

We make the convention that whenever we speak of a representation of
the universal enveloping algebra U of a Lie algebra I on a vector space V
it will always be assumed implicitly that w(1) =I where [ is the identity
mapping of V. Then it is clear that there is a 1-1 correspondence between
representations of Il and those of M such that corresponding representations
coincide on . We shall usually denote these corresponding representations
by the same symbol. In particular if I? is semisimple every finite-dimensional
representation of IR (and therefore of W) is fully reducible.

Choose a fixed Cartan subalgebra hx of 8x and a fundamental system of
roots {ay, - - -, a;} of & with respect to hx. Let Px be the set of all dominant

('2) This means that { is a Lie algebra obtained from ® by extending the ground field from
R to C.

(13) We fix once for all an element (—1)!2 in C such that ((—1)¥?)2=—1,
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integral linear functions on hz. Then from Theorems 1 and 2 we know that
there is a 1-1 correspondence between equivalence classes of finite-dimen-
sional representations of Lk (and therefore of X) and dominant integral func-
tions A on hx such that if Dy is the class corresponding to A then A is the
highest weight of any representation in D,. Let 71EDs. Then every weight
of = will be called a weight of Da. In particular A is the highest weight of Da.

Let m be any representation ¥ on a vector space V (not necessarily finite-
dimensional). For any fixed y € V put U=x(X)y. Let 7’ be the representation
of ¥ induced on U. Given any AEPg we say that ¢ transforms under = ac-
cording to D, if either ¢y =0 or 7’ is finite-dimensional (and therefore fully
reducible) and every irreducible component of =’ belongs to D,. Let Vj be
the set of all elements of V which transform according to Da. It is clear from
its definition that Vj, is an invariant subspace of V.

LEMMA 22. The sum )_rcpg Va is direct and if U is any invariant subspace
of Vthen

Uf\( > VA>= > (UNVy).

AEPk ACPk

The proof is similar to that of Lemma 1. Let € UN( D agpe Va). Then
¥v=y1+ - - - +¢¥, where Y;E Vs, and A;#A;, 151, j=Sr (17#]) (A:EPk).
Choose some representation my; of X in Dy, 1=¢=<r. Then w4, are all in-
equivalent representations. Hence given any j, 1 £j<r, we can, from Lemma
4 of [9], find an element xEX such that ma;(x) =ma;(1), ma,(x) =0 (¢7j).
But then it is clear that w(x){ =y;. Since U is invariant under m, ¥; =m(x){
€ U. Hence UN( X reex Va) = 2orerx (UNVa). Now, if we take U= {0}
we find that if ¢ =0 then y; =0, 1 <j<r. Hence the sum >_,cp, Va is direct.

Since V, is invariant under m we can, for any linear function A on b, de-
fine V) just as in Lemma 1.

LEMMA 23. V= Z)\ VA,)\-

Let ¢y € Vi Put U=n(¥X)y. Then by the definition of V,, U is finite-di-
mensional. But from the theory of finite-dimensional representations it is
known that U= Y_» Uy Since clearly UxC Va., it follows that ¢ € D x Vaa.
This being true for every Y& Vi, Va= > Vaa. Notice that Via= {0} if A
is not a weight of Dj.

Let w be any representation of 8 on V. Then w defines a representation of
% on V and for each AEPg we can construct the subspace V, of Lemma 22
with respect to w(%X). Given any A(EPg we say that Da, occurs in 7 if Vj,
#{0}. Also we shall say that Da, occurs a finite or an infinite number of
times according as dim V), is finite or infinite. Let € be the center of U and
X a homomorphic mapping of € into C. Our object is to prove the following
theorem.
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THEOREM 4. Given Ao and X there exist only a finite number of inequivalent
irreducible representations w of B such that Dy, occurs in wand(¥*) w(z—x(2)) =0
for all 3&G. Further if w is such a representation then Dy occurs only a finite
number of times in T for every AEPx and B being the center of B we can find a
homomorphism & of B into C such that w(z—&(z)) =0 for all zE 3.

First we need some lemmas. Since g is isomorphic to £k under the mapping
7 every representation of Lx determines a representation of g and conversely.
Hence for any AEPxk, D, can also be regarded as a class of representations of
g. If w is any representation of A on V we can define exactly as before the sub-
space Vi of V consisting of all elements which transform under = () according
to Da. In particular let = be the adjoint representation of U on itself given by

T(Z)w = [Z, w] ZEg we).
Then for every AEPk we can define 5.
LEMMA 24. A= D ,cp, Un and for every A, Uy is a finite module over €.

We shall derive this lemma from a well known result in the theory of in-
variants. Let p and ¢ be any two matrix representations of g of degree p
and g respectively. Let x;, 1S7<p, and y;, 1=<j=¢q, be two sets of inde-
pendent indeterminates. Let C[x, ¥] denote the (commutative) ring of all
polynomials in (x) and (y) with coefficients in C. For every Z&g we define
a C-derivation(*) Dz of C[x, y] which is uniquely determined by the relations

Dzx; = Z xipii(Z), 1= J= b Dzy; = Z vigii(Z), 12j5=54¢
15iZp 1=4iSq
The mapping Z—Dz (Z&g) is easily seen to be a representation of g on
Clx, y]. An element f€C[x, y] is said to be an invariant if Dzf=0 for all
Z&g. Since g is semisimple the main theorem of the theory of invariants is
applicable in this case (see Weyl [13, p. 274]). It may be stated as follows.

THEOREM. There exist a fintte number of invariants, J,, 1 v = N, such that
the ring C[Jy, - - -, Jn| contains all invariants.

We shall now use this theorem to prove Lemma 25. f(¢;, « - -, 4,) being
any function of 7 indices (all running from 1 to #) with values in a vector space
over C, we denote by Sg,,...,i»y f(41, - + +,4,) 1/r!times the sum of f(j1, * * -, jr)

for all permutations (ji, - - -, 4r) of (4, - - -, %,). Such a function will be
called symmetric if f(i1, - - -, 4;) =Sq,,...,ip f(81, - - =, %) for all 1=4y, -« -,
i =n.

Choose a base Z;, 1=i=wn, for g. Then Su,,...,s,y Zi,Z4 - - - Z, is a basic

(**) We shall assume throughout that x(1)=1. For the only other possibility is x(1)=0.
But in this case (1) =0 and so in accordance with our convention = is not a representation.

(1%) This means that Dzisa linear mapping of C[x, ¥] such that Dz (fg) = (Dz f)g+f(Dz g)
forany f, ¢&Clx, y].
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canonical element in % with respect to this base. Let V, be the subspace of
spanned by all such elements for a fixed value of =0. Also put V_,={0}.
Clearly V, is invariant under the adjoint representation = of . Since V, is
finite-dimensional it is fully reducible under = and therefore V,C > ¥a.
But since the basic canonical elements span 3, A= > ,20 V.C >_x Us. Hence
%A= > 4 s But then from Lemma 22, V,= D> 1 (V,N\U4). Hence

LR EDNADHIAENED I N(ASENEDIEA
A r20 r20 A A r20 A

where ¥\ =D .20 (V:NUA,). Since ALCAx and since, by Lemma 22, the
sum D, ¥, is direct it follows that %} =4 Hence

Ap = 2 (V. N AY).
r20
The sum on the right-hand side is direct since distinct basic canonical elements
are linearly independent.

Now let p be the adjoint representation of g and ¢* any irreducible repre-
sentation of g on a vector space U* such that c*&D,. Let U be the space
dual to U* and ¢ the representation of g induced on U. Lete;, 1 =7=¢q, bea
base for U. Then ¢ can be regarded as a matrix representation with respect to
this base, so that

o2)ej = D eioii(Z) (Zeg 1sj=9.

1S:S¢q

Similarly

IIA

p(2)Zi=12,2;] = 2 Zpi(Z) (ZEg15]

1Sisn

Now we apply the above theorem to the pair (p, ¢). It is clear that if a poly-
nomial f&C[x, v] is an invariant then all the doubly homogeneous com-
ponents(!%) of f are also invariants. Hence we may assume that Jy, - -+, J»
are all themselves doubly homogeneous. Among these let Gi(x), + + -, Gu(x) be
all those which are independent of (y) and H,(x, y), 1 Sv<s, all those which
are linear in (y). Then it is evident that any invariant f(x, y) which is homo-
geneous and linear in (y) must belong to D i<, QH,(x, y) where Q

=C[Gy, - - -, Gn]. Let 7, be the degree of H,(x, y) in x. Then
H,(x, 3’) = Z hilir“irwjxilxiz tt %, Yi
154y, +,i,Sm;1S jSgq

where Y% "/ C and we may assume that k2" are symmetric with
respecttod, - -+, 4,. Put

(') By doubly homogeneous we mean homogeneous in each of the two sets of variables
(x) and (y) separately.
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HZ) = X wYzz,--z 1
1S4y,- .-, i, Sm
We shall prove that H)(Z), 1Sv<s, 1<j<gq, form a €-basis for . Con-
sider the element Y 1<j<, HI(Z)Xe;. If we extend p to a representation of
g on ¥ by setting p(2)w=[Z, w] (ZEg, wENA) we get the representation
p=+o of g on the Kronecker product AX U. Since H,(x, ¥) is an invariant it is
clear that Y 1<, H(Z)Xe; is invariant under p4-o. Therefore it follows
that the space W spanned by H’(Z), 1<j<q ,is invariant under p and the
representation induced on it by p must be dual to ¢ unless W= {0} Hence
in any case HJ(Z) &N, 1 Sj<q. Therefore in order to show that

lIA
IIA

i

Tryy

A = 3 CHUZ)
R4
it is sufficient to prove that
WV, C Y CHIZ), rz -1,
i

since Yx= D _r20 (AaN\V,). We shall prove this by induction on . For r= —1
this is true trivially. Hence suppose r=0. Let 2&EAx N\ V,. We have to prove
that z&€ _;, CH(Z). Since AxN\V, is finite-dimensional it is completely
reducible under p. Hence it is sufficient to consider the case when z0 and
W=mn(A)z is irreducible under w. (v is the adjoint representation of .)
Since z transforms according to ©a we can choose a base w;, 1 <j=<gq, such
that D 1<j<, w;Xe; is invariant under p4o. Let

w; = Z anigu.zn?ZilZ',z e Zi,-y 1 é ] é q,

where the coefficients a®i2* " ¥/ are symmetric in 4, - - -, 7,. Then it is easily
verified that the form

f(x’ y) - Z antz-..u-lxilxi2 e x,-ryj
184y, -+ +,i, 50,15 7S¢

is invariant with respect to (p, ¢). Hence

fx, 9) = 2 M (2)H.(%, y)

1S5vSs

where M,(x) is either zero or an invariant form of degree r—r,. We may
assume that M,(x) #0 for 1 Sy <s'"and M,(x) =0 for »>s'. Then if s,=r—7,,

i1ige s dn
M, (x) = 2 b, E7RTRONRE T 1=sv=ss,
1S4y, +is, S0
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where the coefficients are again symmetric with respect to ;, 7, * - *, 1,,.
Hence comparing coefficients we have

Tyige . ot ¥ i1ige e ds 1':,,4-1”-!' ¥}
a "= Y S (b, "k, .
1S9S8 (i1, -+ uiy)

Therefore
.'1;'2 ERY S 4
wi= 2, a "ZiZiy 2y,
1S4y, ¢+, S0
igige e sy da e cip,d
= Z Z b'l ? vh' ’ S Zizzi: s Zy
1SySs’ 1545, +,5,Sn (1 * *o1y)
t1ige s otsy  tay 4l o iy, T
= b, "k, ZiZiy-+-Z;mod Y, V,,
1SySs’ 1541, +,i;Sn —1S p<r
since
ZiZiyZii— S ZiZy---Zi€ D, V. (see [9, p. 902]).
(S1s e * *0ly) —1S p<r
Also
ipiger ~isy eyl e vip,d 7
> b, 'k, "2y Zi= Y, wHN(Z)
1SySe! 1S4y, eSS0 1S vSs’
where

W, = > bil“.i’yZi,Ziz v Zy, €6
1S4y, ',ic,§n
since M,(x) is an invariant. Since w;, H)(Z)E¥x and »,EC it is clear that
wWi— Y 1svser W HI(Z) EYs. Therefore

wi— 3 w.Hf(Z)E?hf\( > V,,)= SN,

1S5vSs’ —1= p<r —1= p<r

since Ar= D_,<o (V,N\Asn). Hence by induction hypothesis

wi— Y wH(Z)E Y GH\2).

1SySs’ 12j5q,15vSs
Therefore

w,€ 3 GH,2)
1S7Sq,1S5vSe
and the lemma is proved.
For a given A¢&EPxk let 7 be any irreducible representation of ¥ on a space
V such that r&D,,. Choose an element y &V (Y #0) which belongs to the
highest weight A,. Since from Theorem 2 the multiplicity of A¢ in 7 is 1, ¢
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is unique apart from a numerical factor. Let )4, be the left ideal in ¥ consist-
ing of all elements xE€X such that w(x)¥ =0. Let 2—2z* denote the natural
mapping of ¥ on ¥*=%/9., and =* the natural representation of ¥ on X*.
Since V is irreducible 9., is a maximal left ideal and it is easily seen that «
is equivalent to 7* under the isomorphism 7w (z)¢2z* (2€¥%) of V with X*.
Further Ya, is uniquely determined by A, since the vector ¥ is essentially
unique. We now define a representation p* of € on X* by

(M pPHX) = a%(X), X&) =0, ASK

It is easily checked that p* is a representation. Let o denote the representa-
tion of ® on ¥ given as follows:

o(X)z = [X, z] (X e, z€9),
o(Z)z = 2z Ze€g, zE€).

It is again easy to verify that this is indeed a representation. Let » be the
uniquely determined representation of 8 on the Kronecker product AXX%*
which coincides with o4p* on L For any A&Px we consider the subspace
(AX%*)s consisting of all elements of AXX* which transform under »(¥)
according to Da.

LEMMA 26. AXX*= D rcpe (AXE*) 2 and (AXE*) 4 s a finite C-module for
each AEPk.

Let = denote the adjoint representation of U, and v the isomorphism of
Lk with g as defined on p. 53. Since [X, z]=[y(X), z] (XEL, 2E) it
follows that ¢(X)=w(y(X)) (XE8Lk). Hence for any AEPxg the subspace
A, consisting of all elements in 9 which transform under ¢(%%) according to
Dy, is the same as Ay of Lemma 25. Therefore we can find a4, + - -, ¢, EAyp
such that Yx= D 1<z, Ca;. Since a;E Y, the space o(¥)a;=n(W)a; is finite-
dimensional. Since X* is also finite-dimensional, the same holds for the space
o(X)a;X%X* which is invariant under »(X). Hence it is completely reducible
under »(%X) and therefore

aXEC 2 AXEN.
AMEP,

Now »(€)(a;XX%*) =Ca;XX* and clearly each (AXX*)ss is invariant under
»(€). Hence

8)

W XX C D (UAX X4
AEP

Since A= D, Ay from Lemma 25, we get
AXE =D A XE) = 2 (AX ¥y
A

AE P,

this proves the first statement in the lemma.
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Now we come to the second part. For any fixed AEPx choose an ir-
reducible representation 8* of 2x on a space U* such that *€D,. We extend
0* to a representation of € by defining *(Z) =0 (Z&4g). Let U be the space
dual to U*, and 6 the representation of & induced on U. Let ¢ denote the
representation of 8 on AXXX U which coincides with »46 on 2. Given any
A EPx choose a;ENpr, 1=1=r, such that A = le€§r Ca;. Then o(X)a;
XX*X U is finite-dimensional and invariant under ¢(%X). Hence

c®)a; XX UC 2 (¢(®)a: X ¥* X U)ar
A E Py
where (o(X)a;X%X*X U)s» has the usual meaning. From this it follows as
above that
AXEXU= 2, AXEXU).

NVEPE

We now claim that (A XX*X U) is a finite €-module. Since X* X U is a finite-
dimensional space it is completely reducible under (p*<40)(8x). Let ¥*X U
= > 1<j=~ U; where the sum is direct and the subspaces U, are invariant and
irreducible under (p*+40)(2k). Let A; be the highest weight of the representa-
tion of 2x induced on U} where U; is the space dual to U,. Then it is well
known that D, occurs in the representation of 8« induced on Aa- X U; if and
only if A’=A;. Hence if A’5A,, it follows from Lemma 22 that

A XU, C D UXXEX Ui,

A’7%0
Now
AXE XU =2 MXU)=2UXU)+ 2 2 AXU)
A,i i i AxAj
CYE @ XU)+ 2 UXE X U
i Ax0

But from Lemma 22,
W, X Us= 2 {@s; X U) N QA XXX U}

A

Hence
AXXXUC Y (U, XUIN @A X E* X U)o}
7

+ 2 (U XE X U

A0
Since the sum ZA (AXX*X U), is direct it follows that
AXEXU)CX{Q,XU)NEQAXE X V.
i
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Hence

QXXX U)o = 22 (Hay X Upo.

Thus it is sufficient to prove that for a fixed j, (¥a;X U,)o is a finite €-module.-
Choose a;EUs;, 1=S1<7r, such that A= > isizr Cas. Since o(¥)a;X Uj is
finite-dimensional, it is completely reducible under »(¥). Hence

o(®)a; X U; = 25 (e(¥)a: X Uja-.
o

Clearly v(€)(¢(X)a:X U;)aC(Aa; X Uj)a. But
s, X Ui = 2 v(Q)(c(X)a: X U).

1SiSr
Therefore
QAa; X Udar = 22 v(©)(e(®)a: X Ua.

1Si<r
Since dim (o(¥)aiX U;)a- is finite it follows that (¥x;X U;)a- is a finite €-
module. If we take A’=0 we get the required result.
Let ¢, 1<j<p, be a base for U and let u; 1=<7=r, be elements in
(AXX*X U)o such that
QAXEXU)= 2 v(Q®u.

1S:iSy

Let ui= Y 15i2p @i Xej, 1507, (alEAXE*). We claim that

AXE)N= >  »Oa.
15i{Sr,157Sp

Put A= D 1<icrasi<p »(€)a). Since u; transform according to D, under
(v40) (%) it is clear that a]E(AXX*)s. Hence AC(AXX*)s. Now let
aE (AX%*)s. We have to show that aEA. We may assume that a 0. Then
v(¥)a is a finite-dimensional space which is completely reducible under »(%)
into a direct sum of invariant irreducible subspaces Vi, 1<k =gq. It is suffi-
cient to show that V,CA4, 1=k=q. For a fixed k write V="V;. Let ¢ be the
irreducible representation of ¥ induced on V. Then Yy €D, and therefore we
can choose a base v;, 1 £j<p, for V such that

2 (viXe) €EAXEX U)o

15jSp

Hence

YviXei= 2, viz)u = > Zfaf Xe; (z: € Q).

15iSp 1SiSr 15i8r,157Sp



62 HARISH-CHANDRA [January

Therefore v;= > iz, 2:a)EA, 1<j<p. This shows that VCA4 and so the
lemma is proved.

LEMMA 27. Let v be the representation of B on UXX* as defined above.
Then(") v(B)(1X1*)=AXX* and the set of all elements bEB such that
v(b) {1)(1*} =0 cotncides with AP a,.

If a€EY and xE%, it is easily seen that v(ax){1X1*} =aXx*. Hence
v(B)(1X1*) =AXX*. Also since [X, a]EU for any XEL% and aC¥ it is
obvious that B=UAX. Let M be the set of all elements bEB such that
v(0)(1X1*)=0. Clearly M is a left ideal and MDY, Hence MDUAP4,. On
the other hand we can choose elements w;, 1<47<N, in ¥ such that of,
1 <4< N, form a base for ¥*. Since B =UX every element 6&EB can be written
as b= Y 1<izy aiw; mod APy, (a:EA). Therefore

yOAX 1) = X X o
1SiSN
Hence if €M, a,=0, 1=7= N, and bEAYs,. Therefore M =AP,,.

From Lemma 26, we can find elements a;, 1 £7=r, in (A XX*),, such that
(AXX*)r,= X 1zizr »(€)ai. Let vy be the representation of ¥ induced on
(AXX*)s, by v. By Lemma 23, we can write (AXX*)s,= D XX*) o where
A runs over all the weights of »o. Let »o(%X)a; = ZX (vo(%)a:)a be the correspond-
ing decomposition of the finite-dimensional space vo(¥)a:. It is clear that
»(€) o (X)a)rC(UAXX*)a,2. Hence

A X X0 = ZS v(€) (mo () ai.
1S:iSy
Since vo(¥)a; is finite-dimensional this shows that each (AXX*)s, is a finite
G-module. In particular this holds for 4 =(AXX*)4,,1,- Now we turn 4 into
an associative algebra as follows. For any #&4 consider the finite-dimen-
sional space vo(¥)u. It follows from the definition of (A XX*),, that the rep-
resentation of ¥ induced on »¢(X)u is a direct sum of irreducible representa-
tions each of which belongs to Da,. Since » belongs to the highest weight Ay,
it follows that »(Ya,)#=0 and therefore »(UAPs,)u=0. Given any vEA we
can, by Lemma 27, find a 5&E®B such that »(b) (1 X 1*) =v. If b’ is another such
element then by the same lemma, b—b'& %94, and therefore »(b—b")u=0.
Hence v(b)u is uniquely determined by v alone. Now we define multiplication
by setting vu =v(b)u. If b’ is any element in B such that »(d") (1 X1*) =u, then
vu=v(b)r(b’)(1X1*). This immediately shows that the multiplication is asso-
ciative. For any 2€G, v(2)(1X1*) =zX1*E 4. Also if 270 then 2X1*=0.
Therefore the mapping z—zX1* (2&C) is clearly an isomorphism of € into
A. We may therefore identify € with its image under this mapping. Then it is
easily seen that € lies in the center of 4 and A4 is a finite €-module (under the

() We denote the natural mapping of ¥ on X* by x—x* (x&¥%) throughout.
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multiplication defined in 4). Let 8 be the center of 8. We note for later
use that if 2E 3, v(3)(1X1*) lies in the center of 4.

Now let x be any homomorphism of € into C such that x(1)=1. Let
N, be the left ideal in A generated by all elements of the form z—x(z) (2E€).
Then it is obvious that 9, is actually an ideal and therefore [X, ]
= [v(X), N )TNy (XELk). Therefore the space N, XX* is invariant under
»(8B). Let 2—% denote the natural mapping of % on Y=A/N, and @ the nat-
ural mapping of AXX* on the factor space (AXX*)/(NyX%*). Then it is
easily seen that Y X¥%* and (AXX*)/(N,XX%*) are isomorphic under the map-
ping zXx*—0(zXx*) (2€, x&EX). We therefore identify the two spaces
under this mapping. Let 7 be the representation of B induced on (Y X%*)
=0(AXX*). Then it is easy to verify that

H(X)(E X o*) = [X, 2] X o* + 2 X (Xw)*,
7 (w)(Z X o*) = w2 X o* XE%k,z,wEY, 0 EX).

Also it is clear that

@ X )2 D 0((U X E*)4) (A € Px).
Since AXX*= D 4 (AXX*)4, it follows that

) AXE=D AX X
A

and (AXX*)2r=0((AXX*)s). We have seen that (AXX*), is a finite module
over G. Since 5(z—x(2)) =0 (2€6) it follows that dim (AXX*)s< . Now
consider AN(N, X%*). Since N, XX* is invariant under »(B), AN(N,XX*)
is a left ideal in 4. We shall now prove that it is actually an ideal in 4. First
notice that N¥, is an ideal in B since [X, N, ]C N, (X ERk) and AX =%A=B.
Let u€AN(N,X%*), vEA. Then we can find bEN,X, b'EDB such that =
=p(b)(1X1%*), v=p(d") (1X1*). Hence uv=»(bd’)(1X1*). Since N, X is an
ideal, 80’ EN,X and therefore uv € (N, XX*)NA. Put A=0(4). Then we can
regard A~A JAN (N, XX*) as a factor algebra of 4. Again we verify that if
17(b1)(1 X1 *) =1, ﬁ(bz)(l X].*) =iy then U1Ts =17(b1b2)(1 X1 *) (b],b265~8,
i, % EA). Since dim 4 <dim (Y XX*)s,< o, 4 is a finite-dimensional asso-
ciative algebra. We note that 1X1* is the unit element of 4.

Put Ma, =AY s, + N, X. It follows easily from Lemma 27 that 5(B) (1X1*)
=9 XX* and »(b)(1X1*) =0 (bEDY) if and only if bEM,,.

LEmMA 28. Let M be a maximai left ideal in B such that MDOMa,. Put
Ms =5(M) (1 X1%). Then MxNA4 1is @ maximal left ideal in A.

Let z2—2x denote the natural mapping of B on Bsx =B/M4, and let 74
be the natural representation of 8 on B+. It is obvious that 7 is equivalent to
7% under the isomorphism 7(0) (1 X 1*)—bx (bEDB) of AXX* with Bx. We may
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therefore identify these two spaces under this isomorphism. Since I is a left
ideal it is clear that 9« is invariant under 7(B) and therefore MxMN4 is a
left ideal in 4. Also 1X1*&MM+N4 for otherwise we would have B =7(8)
(IX1*)C M. Since MDOMa, this would imply that B/MBs/Mx = {0}
thus contradicting the fact that I is maximal.

Let p be the natural representation of B on B/IM. Since M is maximal p
is irreducible. Also since MDD M4, p is equivalent to the representation in-
duced by 7 on Bx/M«. Let u, vEA, ucEMx. Since p is irreducible we can
find a bEP such that 7(b)u=v mod M«. We have seen above (equation (9),
p. 63) that AX¥*= 3 s (AX¥*)s. Hence 5(b)u=uo+u+ - - - +u, where
w,E(AXE*)a,, Ao, + - -, A, being distinct. Then

B)u —v= (o —v) + 01+ -+ + u, & M,

From Lemma 4 of [9, p. 912], we can find an xEX such that 5(x)z=0 for all
2E(UAXX*)a, 1=51=7r, and 5(x)z=3 for all 2&(AXX*)a,. Hence

7(%) {3(0)u — v} = #(wb)u — v = 1o — v € M.

_Further if Ao, My, - - -, As (M\o=A,) are all the distinct weights of D,,, put
IT (# — (i)
;o 1S:iSs
IT Oo(H) — N(H))
1S:Ss

where H is any element in hx such that No(H) #N;(H), 1 £7=s. Then clearly
v(x")2E€4 for any sE(UAXX*)s, and 5(x")z=2 if 2&E 4. Hence

(' xb)u — v = v(&) (o — v) E My N 4.
Put b’ =x'xb. Then 5(b")u—vE M+« 4 and since vE 4, 5(b")ucA4. Let M, be
the left ideal in B consisting of all &% such that 5(z)u=0. It is clear that
DM DOMa,. Let Moux =75(M.) (1 X 1*) and let § be the natural mapping of Bx

on B /Mux. Also let 7y be the representation of B on Bx/Musx induced by
7. Then it is obvious that

7(B)u = B/Mu X Bu/Mus = A X X*)/Mus

and the representation of B on 7(B)« is equivalent to 7 under the isomorphism
7(2)uc0(F(2) (1X1*%)) (2EB) of 5(B)u with Bx/Dux. Since 5(b")uE 4 it fol-
lows that

83(')(1 X 1¥) € (Ba/DMuk) 40,4,
in the notation of Lemma 23. But it is obvious that
(B4/Mux) 10,8, = 6(4).
Hence 5(b")(1X1*) EA+Mux. Therefore we can find a zEM, such that
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7(b’—2)(1X1*) =4’ € 4. But then
W —v =30 —2)u—v=30)u—0vEMNA4

since 2EM,. Since u, v were any two elements in 4 such that uEM«N4,
this shows that the natural representation of 4 on 4/MxN4 is irreducible.
Since 1X1*EM+N4 it follows that M«NA is a maximal left ideal in 4.

We have seen above that every maximal left ideal It in B such that
MOM4, defines an irreducible representation of 4 namely the natural
representation of 4 on 4 /M« 4. Since 4 is a finite-dimensional associative
algebra it has only a finite number of inequivalent trreducible representations.
Hence there exist a finite number of maximal left ideals M;, 1=<:=r, in B
each containing M, such that if M is any maximal left ideal containing Ma,
the representation of 4 defined by M is equivalent to the one defined by M;
for some 7, 1 <¢=7r. Let p; denote the natural representation of B on B/M..

LEMMA 29. Let M be a maximal left ideal in B such that MO My, and let
p be the natural representation of B on B/M. Then p is equivalent to p; for some
1, 1 Si=r. Moreover if R is the center of B there exists a homomorphism & of 8
into C such that z—=£(2) EM for all zE 3.

We keep to the notation of the proof of the preceding lemma. Then
D =5(P) (I X 1%), Mix =5(M:) (1 X1*), 1 £i =<7, and we can choose an 7 such
that the natural representations of 4 on A/MxNA and A/MxMNA are
equivalent. Hence we can find an element v&E4 (v M« A) such that for
any uC A, uwvE M« if and only if uEMxMNA. Let M, be the left ideal in B
consisting of all &8 such that 7(b)v&Mx. Let B be the natural mapping of
B on B/M and 6 the natural mapping of Bx on Bsx/Mx. Since MDOMa,, p
is equivalent to the representation of B on Bx/Mx induced by 7, under the
natural isomorphism

B(b) < B(by) = 6(()(1 X 1%)) (b €9)

of B/M with Bx/Mx. Since vEIM, 0(v) #0. Hence p(B)0(v) =B/M since p
is irreducible. Let IR’ be the set of all elements &% such that p(6)8(v) =0.
Clearly I’ is a maximal leftideal in B and if p’ is the natural representation of 8
on B/M’, p is equivalent to p’ under the isomorphism B(ba)«<B’(b) (bEDB)
where 8’ is the natural mapping of 8 on B/M’ and a is any element in B
such that 8(e) =60(v). Hence it is sufficient to prove that p’ is equivalent to p;.

Let My =5(M') (1X 1*). Then «€M,N4 if and only if €A and uv E M,
that is, if and only if #EMxNA. Hence MeNA =MixNA. We now claim
that MM’ =M,. For otherwise suppose M’ == M;. Since they are both maximal
left ideals, 1ED+M;. Hence 1X1*=2z¢+wsx where 24 SN, wx & M.
Since My and Mx are invariant under 7(¥%), it follows from Lemmas 1, 22,
and 23 and the relation AXX*= D4 (AX¥X*)s, that
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Dy = 2 D N X X445
Apu

in the notation of Lemma 23. A similar equation holds for M .«. Since the sum
ZA,,; (AXX*) 4,4 is direct and 1X1*E 4 = (AXE*)4,.4, it follows that TX1*
=2z, +w, where 2} and w} respectively are the components of z¢ and wx in
A. From the above remarks it is clear that z,EMM,N4, wiEMixNA. But
:since MeNA =MixNA4, we have 1 X1*ENM N4 which of course is false
since M\ A5#4 from Lemma 28. Therefore M, =M’ and p;=p".

Furthermore we know that 7(z) (1 X 1*) lies in the center of 4 for any zE 8.
‘Since the natural representation of 4 on A/ANMx is irreducible it fol-
lows from Schur’s lemma that we can find £(2) €C such that 5(2)(1X1%)
—£(2) 1 X1*) C AN M. Hence z—£(z) EIM. Since the mapping z—E(z) (zE B)
is clearly a homomorphism the lemma is proved completely.

It is now easy to deduce Theorem 4. Let V be the representation space
of m. Since by hypothesis 1,5 {0} we can find an element Y& V,,, ¥ 0.
We may clearly suppose that the space w(X)y is irreducible under 7(¥) and
¥ belongs to the highest weight Ao. Then it follows that m(§a, )¢ =0. Let M
be the set of all elements 6&B such that = (b)Y =0. Since = is irreducible, IN
is a maximal left ideal and M DAYa,. Also it is clear that MO N, and there-
fore MOEIN, =N, X. Hence MO Wa, =AY, + 9, X. Let p be the natural repre-
sentation of B on B/M. Then from Lemma 29, p is equivalent to p; for some
1=7=r. Since 7 is clearly equivalent to p the first assertion of the theorem is
established.

Now we come to the second part. We have already seen (cf. p. 63) that
dim (AXX*)y < and B/M=0(AXE*) = D1 ((AXE*)4). Let (B/M)4 de-
note the set of all elements of B/M which transform under p according to
Da. Then it is easily seen that (B/M)r=0((AXX%*),). Hence

dim (B/M)x < dim A X ¥*¥)x < .

Since the existence of the homomorphism £ has already been established in
Lemma 29, the proof of Theorem 4 is now complete.

Part IIl. Characters. Let ¥ be a semisimple Lie algebra over C and 9
the universal enveloping algebra of € Choose a fixed Cartan subalgebra § of
{ and a fundamental system of roots {al, SEEEIN Olz} of ® with respect to D).
Let B denote the center of 8.

DEFINITION. A complex-valued linear function x on 8B will be called a char-
acter if the following conditions are fulfilled:

(1) X(b1bz) =x(b2b1) fOI‘ all b1, bze%

(2) x(1)=1 and x(2122) =x(21)x(22) for all z;, z.& 3.

Let X;, 1 £7=<n, be a base for & Put g;;=sp(ad X;ad X;). Since £ is semi-
simple the matrix (gi;)1=i,j<» 1S nonsingular. Let (g#)i<; ;<. denote its in-
verse. Put Xi= Y <<, g1 X;.
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LeEmMA 30. If x ¢s a character and (jy, - * -, jr) 1S any permutation of the set
1,2, -,7r), then
> x(XaoXi, - X)X X% - X € 8.
1§i,, e .i,én
The proof of this lemma is exactly parallel to a similar assertion proved in
[9, p. 912].

LeMMA 31. If x1 and X2 are two distinct characters of B we can find a 2E 3
such that x1(z) #x2(2).

We know that the basic canonical elements(*®) S¢,,...,i») X X4, - - - X,
154, +,%=5n,r=0, form a base for B. Since x17#x: we can find an =0
and 1=17;, - - -, %,<#n such that

xi( S XXy Xi) # xa( ’ S ‘ XXy oo Xi,).

[GTEREN 1] (i1, 1y)
Put
@iriy-gp=x1( S Xj-o- X)) —x( S Xy X4,
(€ TRERTS Y] [CITRERIF /5]

1§jly"',jr§n~
Then a;,;,...;, are symmetric and not all of them are zero. Hence
w = Z Ciig- -5, X1 X2+« Xir 5£ 0

157 - - irSn

’

(cf. [9, p. 913]). Also from Lemma 30, wE 8. Hence from Theorem 1 of [9,
p. 905] we can find a finite-dimensional representation 7’ of 8 such that
m’(w) #0. Since { is semisimple 7’ is fully reducible. Hence m(w) 0 for some
irreducible component m of w’. Since 7 is irreducible and w& 3, it follows from
Schur’s lemma that w(w) =¢r (1) (¢&C). Then ¢£0 and therefore sp 7 (w) 0.
Now put
7 = > {sp,,( S XhXh...X’.r)}Xi;Xiz... X i,
154y, - 05, 5m G, e, in

If d is the degree of w the function sp w(d)/d (bEDB) is clearly a character.
Hence from Lemma 30, 2& 3. Also

x1(z) — x2(2) = sp m(w) # 0.

Hence the lemma is proved.

The above lemma shows that a character is uniquely determined by its
value on 8. Our object is to obtain all the characters of 8.

Let P be the set of all dominant integral functions on §). For any AEP let
wa denote a finite-dimensional irreducible representation of B with the

(*®) The symbol Sg,,. .., has the same meaning as on p. 51.
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highest weight A and let da be the degree of ws. For any root a let X, 0 be the
root element corresponding to a. Put [X,, X_o]|=H,, Hi=H,, 1=5i<1. As
before we may assume that a(H,)=2. Let § be the subalgebra of B gen-
erated by H;, 1=7=</,and 1, and let C [x] be the (commutative) ring of all
polynomials in / independent variables xy, - « +, x; with coefficients in C.
We know that H"H}* - - - H™, my, - - +, m; =0, are linearly independent.
Let B denote the isomorphism of § onto C[x] defined by B(H - - - HY)
=x - - - a7, my, - -, m=0. Moreover if N\ is any linear function on }
and f(x) € C[x] we denote by f(\) the value of f(x) at the point x;=\(H),
1=<7=!. We shall constantly make use of the following simple lemma which is
easily proved by induction on /.

LeEmMa 32. If fEC[x] (f0) we can find I integers N, - - - , A\, all greater
than or equal to O such that f(\,, + + -, Ny) #ZO0.

Put P= D us0 BX.. First we prove a few preliminary lemmas.
LemMa 33. PN = {0}.

Let h€PN Y. Suppose £=0. Then B(k) =f(x) 0. Hence from Lemma
32, we can find a AEP such that f(A) 0. Let Y0 be a vector belonging to
the highest weight A in the representation space of wa. Then clearly mwa(h)Y
=f(A)¥ 0. On the other hand since 2EP, ma(h)Y =0. Thus we get a con-
tradiction and the lemma is proved.

We recall that the adjoint representation p of B is defined by the relation
p(X)b=[X, 5] (XEL, bEY).

LEMMA 34. The smallest subspace of B which contains O and which is in-
variant under the adjoint representation of B, is B itself.

Let I be the smallest subspace satisfying the required conditions. For
any «a, exp (¢ ad X,)=0.(t) ((€C) is a well defined automorphism of L.
Clearly this can be extended uniquely to an automorphism of 8. Let G
be the group generated by g.(¢) for all roots a and all ¢&C. Then it is known
(see Chevalley [4]) that there exists a polynomial f in # variables with coeffi-
cients in C such that f>0 and if X = Y 1<i<a t:.X: ((:€C) and f(t1, - -+, ta)
#0 we can find a ¢ €G and an HEY such that X =c¢H. It is clear that I is
invariant under o. Therefore since $CIN and o is an automorphism of B,
Xn=cH"cIM (m=1). Let V, denote the subspace of B spanned by
Stigeovigy XiyXig ++ Xy 124, -+, tn=n; m=0. We claim that V,CI.
For m=0 this is immediate since 1&E9CIM. Hence we may assume m=1.
It will be sufficient to show that V../ V.M = {0}. Suppose this is false. Then
we can find a base w,, 1Su=N, for V,/ V.M. Let 6 denote the natural
mapping of V,, on V,/VaN\IM. Then

0( S )(,‘1)(,'2 LR X,m) = Z Qiyige s vipg,nWp (ail...;m,,. E C).

i Wim) 1SusSN
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Hence
6(X™) = ) Z ) Z biliy * * * bipg@igige - iy pOpe

But if f(t1, - - -, ta) #0, Xm»=cH"E V,,N\IM. Hence
Z Qisiye e vigbiship * * * big = 0, 1= u =N,

154y, ¢+, ipSn
whenever f(t1, + - -, 2,)#%0. Since @ii,...i, » are symmetric in 4y, + + +, In
this implies that a,,...i, »=0. But since Sq,,...,i,y X0, X4, - - - Xi,, span Vp,
we must have 8(V.,) = {0} which contradicts our hypothesis. Hence V,,CM
and this being true for all m, 8= ngo Vi CIN.

Given any linear function N on ) we propose to associate with A a char-
acter x» of 8. Put p=(1/2) X >0 @ and let W be the Weyl group of € with
respect to h. Let A denote the function [Jaso (exp ((—1)Y2a/2)
—exp (— (—1)"2a/2)) defined on §. Since every s& W induces a permutation
a—sa of the roots of { it is clear that

sA = H(exp ((—1)1/2 _szg) — exp <— (=12 fg)) =+ A

a>0

We say that s is even or odd according as sA=+4A or —A and write e(s) =1
or —1 accordingly. It is known that the Weyl reflexion s, with respect to a
root a is odd (see Weyl [12]).

Let § be the space of all linear functions on §. Then § and } are dual
spaces and every s& W can be made to act on §) by duality so that

MsH) = s7I\N(H)

forall \&Fand HEY. Let x4, - + -, x1, 81, * - -, t1be 2] independent variables.
For any HEY let x(H) denote the linear form D igisi cixi, H=) 1gisic:H,.
Also set sx(H)=x(s"'H) and (sx);=sx(H;), 1=¢=<]. For any AEF we
denote by N(H ) the linear form Y 1<i<: N(H))t; and write N(sH,) =s~\(H,).
Finally we put
x(sH,) = s7'w(H,) = 2 t:ix(sH)).
1551

Consider the power series 0(x, ¢) in %1, - - -, x4, 1, - - -, t; with coefficients
in C given by(1?)

0(x, 1) = D e(s) exp ((—1)V%sx(H)).

Ew
Since €(s.s) = —€(s), .
2002, ) = 3 e() {exp (= DV5sa(T)) — exp (=1 susa(H) ).

(%) As usual exp z stands for the power series 1+3z+422/2!1423/314+ - - - .
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But s.sx =sx— (sx(H.))a. Hence
exp ((—1)Y*sx(H.)) — exp ((—1)"%sasx(H )
= exp ((—1)'2%sx(H ) {1 — exp (— (= 1)/ %sx(Ho)a(Hy))}.

Now 1—exp (—(—1)Y2sx(H,)a(H,)) is divisible by a(H) in the ring of
power series. Hence 0(x, t) is divisible by a(H¢). Similarly

20(x, t) = Ez: e(s){exp ((—=1D)¥2sx(Hy)) — exp ((-—1)”2ssax(H¢))}.

scw

Since ss.x(H;) =s.x(s7'H,;) =x(s'H,) —x(Hy)a(s™'H.), we get
exp ((—1)*’sx(H.)) — exp ((—1)M2ssax(H 1))

= exp (= D)V%sx(H) {1 — exp (= (= 1) *x(Ho)a(sH))}.
Since 1 —exp (—(—1)Y2x(H,)a(s"'H,;)) is divisible by x(H,) it follows that
0(x, t) is divisible also by x(H,). Now if «, 3 are roots greater than 0 and
a#B,x(H,), a(H;), x(Hpg), B(H;) are all relatively prime. Since a power series
ring over C is a unique factorisation domain it follows that 6(x, ¢) is divis-
ible by [Jaso {*(H.)a(H,)}. If 7 is the number of positive roots of ¢,
ITeso {x(H)a(H) } is of degree  in (x) and (£) each. Since each homogeneous

term of 0(x, t) is clearly of the same degree in (x) and () the same must
hold for the power series 8(x, £)/ ] [aso {x(Ha)a(H:)}. Now

exp ((—1)'*(a(H:)/2)) — exp (— (= DV*(a(H)/2))
a(H,)

is a unit in the power series ring since its constant term is (—1)¥20. Con-
sider

0(=, 1) {exp((—l)l/? <a<H,>/2>>—exp(—<—1>1/2(a<H,>/2»}-1
Iesof x(Ha)a(H)} 56 a(H)) '

Since the last factor is a power series in () only, it is obvious from the above
remark that the product is a power series in (x), (¢) such that the coefficient

of each power product #'3? - -« " is a polynomial in (x) whose degree is
less than or equal to mi+ms+ - - - +m;. Put
(=, ¢)

b)) = H,
¢(x t) aI>Iop( ) Ha>0{x(Ha)a(Ht)} -

exp ((—1)Y*(a(H¢)/2)) — exp (—(=DY*(a(H)/2)N 7
(10 1 { o(H) }
Ha>0P(Ha) G(x, 25)
Ha>0x(Ha) A(Ht)
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where A(H) is the power series | a0 {exp (= 1)V2(a(Hy) /2)) —exp (—(—1)12
(a(H4)/2))}. Then

(11) el )= 2 smeem(®@0 U
my, o0 ,m=0
where sm,,....m,(x) EC[x].
Now put %] =x;+p(H;) and consider the power series
(12) X% ) = X Smpeeem(@)ta et
my, e ,ma0
where Su;,....m;(¥") is obtained by replacing each x; in $m,,....m,(x) by «i,
1 <4<l Then x(x, t) is a power series in (f) with coefficients in C[x]. Define a
linear mapping x, of § into C[x] by the rule

(13)  GETH - B = /=D ().
Since H"H3? - - - H", my, + + -, m;20, form a base for § this defines x,
completely. Given any AEF and 2E D we denote by xa(k) the values of the
polynomial x (%) at the point x; =X(H;), 1 <¢=/. In this way we get a linear
mapping xx of § into C.

If AEP and if 7, is the corresponding finite-dimensional irreducible repre-
sentation of B with the highest weight A, then it is known (see Weyl [12])
that the degree da of 7, is given by

Ha>0A’(Ha)

14 dy = ==— %
(1) b TLeow(Ha)

where A’=A+p. Moreover
(15)  sp (exp (=D)2ry(HY)) = da 3o SmpoomAEE o B!

my, e ,m,go
for any ¢, - - -, ;& C such that ]t; Ly, lt;l =<7, n being a suitable real
number greater than 0. Here Hy= ) 1gi<; t:H; and sm,,...,m,(A’) is the value
of the polynomial su,, * * ‘(%) at the point x;=A’(H;), 1=i=l. Also
exp (—1)Y2r,(H,) denotes the usual exponential of the matrix (—1)Y27,(H,).
Hence by comparing coefficients of the two power series in (15) we get
1

1 my__mg mi ’
(16) ZSP 7l'A(}Il H2 R Hl ) = ((_1)1/2)m1+"'+m1 sml."‘.mt(A)

and therefore

(17) xa(h) = ;il—Sp Ta(k) (k€ 9)
A
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in this case.
Let B’ be the set of all elements in B which can be written as linear com-
bination of elements of the form [b1, bs] (b1, 5:EB).

LeMMA 35. If hEONDB', x:(h) =0. Furthermore x.(1)=1.

Let x.(k) =g(x). If g(x) #0 we can find a AEP such that g(A) 0. Consider
the irreducible finite-dimensional representation 7, of 8 whose highest weight
is A. Then xa(k) =g(A) #0. On the other hand from (17)

1
xa(k) = — spwa(k) =0
da

since hE®’. Thus we get a contradiction. Hence x.(#) =0. We prove in
exactly the same way that x.(1)—1=0.

From Lemma 34 we know that =8'+9. Given any z&% let z=b+4
where b ¥, € D. If b’ €Y', B € D are two other elements such that z=5"+4’
then h—h' €HNB’ and therefore by the above lemma x.(k—A4’) =0. Hence
it follows that x.(k) is uniquely determined by z alone. We now extend x.
to a linear mapping of B into C[x] by setting x.(2) =xz(%). For any AEF we
define x» on B by x(2) = (x2(2)) s;=r;y Ni=A(H;), 1=¢=1. It is clear that
xz(0) =xa(b) =0 for any b&B’".

LEMMA 36. Given any 2E 3 there exists a unique element f. (x) € C[x] such
that z—B~1(f.(x)) EB. Moreover the mapping 2—f, (2E€ B) is an isomorphism of
B into C|x]. Finally, f.=x2(3).

oy, * + +, ar being all the positive roots of &, put X.;=X,;, X_.,=7Y;,
1=<7=r, and

rr

2(q,m p) = Yi'Vy - - ViH Hy - H X1 X,

as in the proof of Theorem 2. Also we define ranks in B exactly as there.
Then 2(g, m, p) is of rank rank p—rank ¢ where rank p= D 1<is, pia;, rank ¢
= Y 1<izr gicti. It is clear that every € 3 is of zero rank. Hence from Lemma
1, z is a linear combination of 2(g, m, p) with rank g=rank p. But if rank
>0, z(g, m, p) €P. Hence

2= 2 a(m)z(0, m, 0) mod P (a(m) € C).
This shows that there exists an k€9 such that z—hEP. Put f(x) =8(h).
Now if g&CJ[x] and z—B-1(g) € it follows that

Bl g) —hEBNS = {0}

from Lemma 32. Hence g—B(h) =g—f=0. Therefore f is unique.
Let 21, 22€ 8. Then if by =B7(fs,), h2=p"1(f2,)
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z182 — ks = 22(21 - hl) + h1(22 - hz) = 0 mod ‘B.

Hence it follows from the uniqueness established above that f.,.,=B(k1hk,)
=fu fep. Now let 2& 3, 2#0. Then we can find a finite-dimensional irreducible
representation 7 of 8 with the highest weight A such that m4(z) 0 (see [9]).
Since m is irreducible it follows from Schur’s lemma that ma(2) =cma(1)
where c&C. Let ¢#0 be a vector in the representation space of w4 which
belongs to the highest weight A. Then since z—871(f.) €,

ma(z — B (f)W = {c — f:(A) }¥ =

Since Y #0, f.(A) =c>0. Therefore f,£0. This proves that z—f, (2&€3) is an
isomorphism.

For any zE 38 put g(x) =x.(2) —f:(x). If g(x) #0 we can find a AEP such
that g(A) #0. Then

xa(8) — f(A) = g(A) 0.

Let ¢¥5#0 be a vector belonging to the highest weight A of ms. Since m, is
irreducible and 2E€3, wa(g)=cwra(1) (c¢€C) by Schur’s lemma. Hence
c=(1/dy) sp wa(2).

Now

ma(BHfY = fo(A)Y.
Since z—B71(f.) €B, ma(z—B1(f.))¥ =0. Hence

{i sp ma(e) — (A)}w -
da :
Since ¥ #0,
1
A sp ma(2) — fo(A) = xa(2) — f:(A) = g(A) =0

from (17). Thus we get a contradiction and therefore x.(2) =f,(x).
We are now in a position to begin the proof of the following theorem.

THEOREM 5. xa s a character for every linear function N on Y. Given any
homomorphism x of B into C such that x(1) =1 we can find a linear function
N on Y such that x(2) =xn(2) for all 2E 3. If N1, \2 are two linear functions on §
then xp,=xx, if and only if Na+p=s(\1+p) for some sCW.

COROLLARY. Every homomorphism x of B into C such that x(1) =1 can be
extended uniquely to a character of B. Every character of B is of the form x»
where \ 1s a linear function on b,

This is an immediate consequence of Theorem 5 and Lemma 31.
The first assertion of the theorem follows directly from Lemmas 35 and
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36 and the definition of xa. In order to prove the rest we first need some
lemmas.

LeEmMA 37. Let C {x} be the power series ring in x1, + + -, x; With coefficients
in C and let N be the ideal in C{x} generated by x,, - - -, x1. Given any f(x)
€C|[x] and an integer N=1 we can find a finite number of linear forms \;(x),
1=<j=<r, such that
> cjexp (%) = f(x) mod N¥ - (c; e 0).
1SjSr
If N=1 we may clearly take r=1 and \,(x) =0. Hence we may assume
N =2 and use induction on N. Notice that

— (exp %) + 1 €N?, 1

By induction hypothesis we can find linear forms \;(x), 1Sj=r, and ¢;&EC
such that

I\

1= 1.

IIA

> cjexp N (x) = f(x) mod N¥-1,
1SjSr

Hence

flz) = Z ¢; exp Aj(#) + g(x) mod NV

1S 7Sr

where g(x) is a form of degree V—1. Let G denote the power series obtained
by replacing each x; by exp (x;) —1 in g(x). Clearly g(x) =G mod N¥. Hence
f(x) = X ¢;exp \i(x) + G mod MY,
1SSy
The expression on the right is of the required type since G is clearly a linear
combination of exponentials of linear forms. The lemma is therefore proved.

Notice that if A(x) is any given linear form we can find an HE&) such that
Ax) =(—1)V2x(H). Hence by the above lemma

f(®) = 2 cjexp (—1)Y2x(H ;) mod NV

1S jSr

for suitable ¢;& C and H(; €M.

For any s& W the mapping x;—(sx);=sx(H;), 1=¢=!, can be extended
uniquely to an automorphism of C{x}. We denote this extension again by s.
Let f(x) be a polynomial such that sf(x) =f(x) for all s&€ W. Put

g(x) = f(=) ]I =(Ha).

a>0
It is known (see Weyl [12]) that Ha>0 sx(H,) =¢(s) H.,>o x(H,). Hence
sg(x) = e(s)g(x).
Now by Lemma 37,
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g(x) = 2 cjexp ((—1)2x(H ;) mod NV (c; €EC, Hy €0).

1Sj<r

Since N is invariant under W it follows that

1
8®) = — > e(s)(sg(x))
CEW

= i 2 ¢i Z e(s) exp ((—1)Y%s%(H (;))) mod NV

h15isr €W

where % is the order of W. We prove exactly as before that the power series
on the right-hand side is divisible by [Ja.so x#(H.). Hence

, . s —1)Y2%sx(H (;
=3 { 2 «Ewe(s) exp (—1) (H p)
Ha>0x(Ha)
where N— M is the degree of the form []a>0 x(H.). Since N could be chosen
arbitrarily large the same is true of M. Let us choose M greater than the

degree of f(x). Then it follows immediately that f(x) is a finite linear combina-
tion of the coefficients of the power series

e wels) exp ((—1)"2sa(H )
TTeo%(H.)

if we regard it as a power series in (1, - - -, £;) with coefficients in C|[x].
Now put x;=x;+p(H;), 1=1=1, as before. From (11) and (12) it is clear
that the coefficients of x(x, t) are linear combinations of the coefficients of
eoo(x’, t) and conversely. Hence f(x’) is a linear combination of
X(H'H? - - - H{"™), my, + + -, m;20. Thus we have proved the following
lemma.

LeMMA 38. If f(x) is @ polynomial in C|x] such that sf(x) =f(x) for all s€ W
then f(x') =x.(b) for some bEB.

Let % be the set of all elements in C[x] of the form x.(z) (zE€3). We shall
show that R coincides with the set of all elements of the form x.(6) (bEDB).

LeEMMA 39. Let B’ = [B, B] as before. Then ="+ 3.

Let V=389’ Suppose V=®B. Then we can find a subspace U of B such
that 8=V+U, VN\U= {0}, Us0. Clearly dim U is either finite or count-
able. Let ¢, 1 <j <N, be a base for U, where N is either a positive integer or
. \ being any linear function on §) we define a linear function x on B as
follows:

x(@) =x@), z€V, x(e) =xle) +1, x(e) =xn(es), j=2.

Since x coincides with xx on V it is clear that x is a character. However

} mod MM (¢; € C)

1SjSr

eo(%, t) =
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x #xx since x(e1) #xx(e1). But this contradicts Lemma 31. Hence V=2.

COROLLARY. R coincides with the set of all polynomials of the form x.(b)
(bED).

For, by the above lemma, b=2+4b" when z2E3, b'&€8’. Hence x.(b)
=Xx(z)€m-

LEMMA 40. Let U be an indeterminate. The coefficients of the polynomial
11 (U~ sx(B) — so(H)

sEw
regarded as a polynomial in U lie in R|[t].

Consider
g(Uy X, t) = H (U - sx(Ht))
Ew

Clearly this polynomial is invariant under the substitution x;—(sx);, 1 <711,
Hence it follows from Lemma 38 and the above corollary that the coefficients
of g(U, x’, t) regarded as a polynomial in U and (¢) lie in . This proves the
lemma.

CoROLLARY. Clx] is integrally dependent on R.

On making the substitution ¢;=0, 1<j=<I, 15, t;=1, we find from the
above lemma that x] and therefore x; is integrally dependent on 9. These
being true for every ¢, 1 <7</, the assertion follows.

We can now prove the second part of Theorem 5. x being any homo-
morphism of 8 into C such that x(1) =1, put x'(x.(2)) =x(2) (2€3). Then
x' is a homomorphism of % into C and x’(1) =1. Since C[x] is integrally
dependent on R it follows from well known results in algebra that every
homomorphism of  into C can be extended to a homomorphism of C[x]
into C. We denote such an extension of x’ again by x’. Let X be the linear
function on B such that x’(x;) =N(H;), 1 £7=1. Then x(2) =x"(x2(2)) =x2(2).
This proves the second part of the theorem.

For the proof of the last part we proceed as follows. Let C{t} and C][t]
denote the power series and the polynomial rings respectively in (¢) with coeffi-
cients in C. We denote by d/d¢; the uniquely determined C-derivation of
C{t} such that d¢;/9t;=8;, 1 <4, j<I.

LeEMMA 41. Let Ny, - - -, N\, be any r distinct linear functions on Y. Then the
elements exp (\:(H,))EC{t}, 1<i<r, are linearly independent over C[t], that
1s,

2. fi(t) exp (\(HY) =0, fi(t) € C[¢]

155y

implies f;(t) =0, 1Sj=r.
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Suppose the assertion is false. Let m be the least integer such that there
exist polynomials f;(¢), 1=<j=<r, not all zero and all of degree less than or
equal to m such that ) i<,z fi(t) exp (\j(H:))=0. Let s be the number of
polynomials among these which are not zero and which have degree m.
Clearly s=1. We choose that particular set of f; for which s has the least
possible value. Then

(18) 2 fit) exp (N(H1) =0

1SjSy

and by differentiation

0f (%) .
(19) 2 {M(Hf)ff(t) L } exp (\(H)) = 0, 1=isl
1Sj=r i
We may assume that f,(f) #0 and its degree is m. Since Ay, - - -, N, are all

distinct we can find ¢;€C, 1=57<l, such that if H= Z]§;‘§l ¢:H:, M(H)
#N\;j(H), 2=5j=<r. Put

af;
6 = ) = @0 + 5 o LY

, 1<j=sr
15is1 0t;

Then from (18) and (19)
2 git) exp {M(H)} = 0.

1SSy

Not all g;(¢) are zero. For otherwise

ofi
(20) {Mm—wﬂDM@=__Zciﬂ0’ 1

15:51 0k
H j=1, Nj(H)#N(H) and (20) is impossible unless f;() =0. But then
Jf1(t) exp (\1(H,)) =0. Since C {t} is an integral domain and since exp (\1(H))
#0, fi(t) =0. Therefore f;(t) =0, 1 <j=<r, which contradicts our hypothesis.
Moreover it is clear that the degree of g;(¢) is not greater than that of f;(¢).
Also gy(t) is of degree less than or equal to m—1. Hence at most s—1 poly-
nomials among g;(¢) are of degree m. But this contradicts the definition of s.
Hence the lemma is proved.
Using the same notation as before, we consider the power series

[1.ewe(s) exp ((—1)"%s2(H))
Ha>0x(Ha)
as a power series in () with coefficients in C[x]. Given a power series £(x, ¢)

in (¢) with coefficients in C[x] and any AE§ we denote by £(\, ) the series in
C{t} obtained by substituting x; =\(H;), <7 <1, in the coefficients of £(x, ¢).

IIA
IA
i

J

‘Pﬂ(xv ) =

LEMMA 42. Let N1, \; be two linear functions on Y such that cipo(N1, t)
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=capo(N2, t) Where cy, c2 are complex numbers not both zero. Then Ny=s\; for
some sCW.

Let 8/dx; denote differentiation with respect to x; in C[x] and for any
power series 6(x, £) with coefficients in C[x] let 80(x, t)/dx; denote the series
obtained by differentiating the coefficients of (x, £) with respect to x;. Then

eo(x, 8) I1 «(H) = g:wem exp ((—1)'2sx(H,)).

a>0 8

Differentiating » times we get

———ar——a—x;{m(x, 011 x(Ha)}

8x,~10x,~, e a>0
dsx(H,) dsx(H,)

= 2 ) (=) exp ((—1)2%sx(H,)).

EW 9x;, EZ
Put
. dsx(H,) dsx(H,)
(® ¢ ¢
firige-s,(8) = ((—1)V?)r cee )
axil 6x,-,
a'r
Giyig- i, (%) = ———————— T #(H.).

ax;lax,-2 ¢ ax,-, a>0

f@() =1and g(x) = [Jasox(Ha). Since g(x) 0, it is clear that there exists an
r =0 such that g;liz...ir()\l);éq for some 1y, 5, - - -, 7,. (We define g;,...; (x)
=g(x) if r=0. Similarly for fif)....',(t).) Choose the least such r. Then

3 e(5)fivtpe - -i,(8) exp ((— 1)\ (H))

sEwW
ar
- e 0 I )} |
A+« + 0xy, a>0 zi=Ny (H{)
= Biyig- - .,"(X1)<po()\1, t).

Since gi,g...,\,) #0,

2 e we(s)fina-4(8) exp (= DMisM(H0)
Biyig- - 'ir()‘l)

oAy, 8) =

Similarly

T we( )i - iy (1) exp ((—1)2sho(H )
gir---ir(Ne)

eo(As, 1) =

where g;jseeje(N2) 0. It is clear from the definition of ©o(x, t) that
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A(H,)
Ha>0p(Ha) ’

where ¢(x, t) is defined by (10). Since the coefficient of 1 in ¢(x, £) is x.(1) =1,
it follows that ¢(Ay, £) #0 and therefore @o(A1, £) #0. Similarly @o(\s, £) #0.
On the other hand c,@o(A1, £) —c200(N2, £) =0 where ¢i, ¢; are not both zero.
Hence from Lemma 41, s;]\; =s2\2 for some sy, s2E& W. Therefore N\, = sA; where
s=s5"51.

Now we can complete the proof of Theorem 5. Let x(x, £) be defined as
in (13). Then xa, =x», implies that x(Ay, £) =x(Ns, £), and therefore go(\1+p, )
=po(A\2+p, t). Hence from Lemma 42, \;+p=s(\1+p) for some s& W, and
Theorem 5 is proved completely.

Notice that in the definition of the series x(x, ¢) on p. 71 we made use of
the positive roots rather than of the negative roots. We could have equally
well considered the series

2« we(s) exp ((—1)Y%sx”(H)))
/ Ha H
Tlacon”"(H)A'(H) g o'(H)

o =xtp (H), 1S5S0, 0" =271 Y acoa= —p, A’ = [Jaco (6772 — g=-1'2al2y
Then

(21) x (—x,£) = x(x, t) = x(x, —1)

where x(x, t) is obtained from x(x, ¢) by changing the coefficients to their com-
plex conjugates. Let ((—1)Y2)mi+ - - - +miy = (H™ - - - H}*) denote the coefficient
of tf - - - " in x~(x, ). We define x, () (A€ D) by linearity and extend x,
to a linear mapping of Binto C[x] exactly as in the case of x by setting x; (2)
=x; (h) where z=h+b (hED, bEDB'=[B, B), 2E8). Let N= D oco BX..
Then corresponding to Lemma 36, we prove that z—g-1(x, (2)) ER (:E]).
Let ¢ denote the linear mapping X——X (XE&EQ) of € into itself. Since
o([X, X']) =X, X]=[e(X"), ¢(X)] (X, X'ER), ¢ can be extended uniquely
to an anti-automorphism of 8. Clearly ¢(8) =8. Now for any z& 3,

3 — B (x.(2)) €B.

‘Po(xr t) = ¢(x’ t)

x(x,t) =

Hence

2 — B (x:(3) = 2 2aXa

a>0

where 2, is of rank—a. Hence

0(z) — (B (x=(2)) = 2 o(Xa)p(2a)-

a>0

But
[Hi (p(za)] == [¢(H)1 ‘P(Za)] = ¢( [Hr Zd]) = — a(H)¢(2.)
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for any HE. Hence ¢(2,) is of rank —a« and therefore lies in 9. Hence

(22) X=(e(2)) = Ble(B7(x=(2)))) = x-=(2)

where the polynomial x_.(2) is obtained from x.(z) by the substitution
xi——x;, 1=1=1. For any AEF, we denote by x» the linear function on B
such that xx (2) =f(\) where f(x) =x; (2) (2E3B). We prove exactly as in the
case of x) that x, is a character. Therefore from Theorem 5, x5 =x, for some
wEF. But then

my

1/2 myt- - 4my — m mi m
)= X (=D B RS - S - i A
0

my, e, m=

Il

/2. mi+- - 4m m mp. m .m
> ="TTI@T BOE 6 = ).
my, .. ,m20

Hence from Lemma 42, A—p=s(u+p) for some s& W. Changing X\ to —N\,
we get the result that xZy=x, if and only if

(23) = (N4 p) = s(u+p).

Let 7 be a representation of B and x a character of 8. We shall say that
7 has the character x if w(z2—x(2)) =0 for all 2&8. From the corollary to
Theorem 5 it is clear that = has a uniquely determined character provided
m(z) is a multiple of 7w (1) for every z& 3.

We shall now apply the above results to the situation considered in
Theorem 4. From now on we adhere strictly to the notation of Part II. In
particular &, g, g%, £x, B, U, and X have the same meaning as there. A+ is the
algebra generated by g* and 1. The isomorphisms ¥ and ¥+ of ¥ with g
and g+ respectively have been defined on p. 53. Then y(hk) is a Cartan sub-
algebra of g and every linear function A on hx can also be regarded as a linear
function on <vy(hx) and conversely by the rule A(y(H))=NH) (HEbk).
Under this correspondence roots of x with respect to hx are also roots of g
with respect to v(hx). Hence the Weyl group W of 2k is also the Weyl group
of g. Similar remarks hold for g*. Since ® is the direct sum of g and g*, b
=1vy(bx)+v*(bx) is a Cartan subalgebra of £. Every linear function » on f) can
be regarded as a pair (A, u) of linear functions on hx by the rule

v(H) = NH1) + p(He)

where H=v(H,)+v(H.) (HEY, H:, H:Ebg). It is easily seen that the roots
of £ are exactly those pairs which are of the form (e, 0) or (0, &) where e is a
root of Lx. Let {al, cee, a;} be a fundamental system of roots of k with
respect to bx. Then the set (a;, 0) (0, @;), 1 7=/, is a fundamental system of
roots of & with respect to ) and therefore the Weyl group of ® is the direct
product WX W.

Let (A, u) be a pair of linear functions on hg. This pair defines a linear



1951] UNIVERSAL ENVELOPING ALGEBRA OF A LIE ALGEBRA 81

function on §) and therefore a character of 8. We denote this character by
xruo Let X, be a root element in fx corresponding to the root a. Put
[Xa, X_a]=Ha, H,":Ha;, lé’tél Let X1, * X, Y 0ty Yy ll, sty t[,
%y, + + +, #; be independent variables. Then corresponding to (12) we have to
consider the power series

X(x’ ¥, t, u)
{ I1 p(H)}z 2o we(s)e(o) exp ((—1)W2sa'(H) + (= 1)y (H.))

24
( ) Ha>0x/(Hm) Ha>0y,(Ha)A(Ht)A(Hu)

a>0

]

x(%, x(y, £

where the notation is analogous to that of pp. 71-72. x! =x;4+p(H.), ! =v;
+p(H:), and p= 271 .50 . We define the linear mapping x.,, of B into
Clx, y] exactly as on p. 72. Similarly let x, and x, denote the corresponding
linear mappings of ¥into C[x] and C[y] respectively. Whenever necessary we
shall also regard x. and x, as linear mappings of ¥ and A+ so that

X=(v(@)) = x2(0);  xu(vH(@)) = xy(w) (0 €X)

where the isomorphisms v and ¥+ have now been extended (uniquely) on ¥%.
It follows from (24) that

(25) Xay(Y(HL - HiYy (HY - HDY)) = xo(Hy - - HD)xo(HL - -+ HY),
mi, s = 0,

Let x denote the linear mapping of 8 into C[x, y] such that x(aat)
=x:(a)xy(at) (@€Y, atEA+). Then clearly x([b1, b2]) =0 for any by, b,EB.
Also x coincides with x,, on the algebra $ generated by § and 1. Hence
from Lemma 34, x =x.,, and therefore x. ,(aat) =x.(a)xy(at) (@€Y, atEA).
We express this relation symbolically in the form Xz, =Xz XXy. It is clear that
xu(aat) =xa(a)x.(a*). Hence we again write xx . =X XXu-

Let 3, €, and €+t be the centers of B, U, and A+ respectively. Clearly
Xzw(2) =x(2) if 2E€ and x.,(zt) =x,(z%) if 2+EE*. Hence x.,(8) contains
xz(€) and x,(€). Let Q be the set of all elements x.,(2) (€ 3) such that (*%)
v(2)(1X1%)=0.

LEMMA 43. Let A;, 01 =< N, be all the distinct weights of Da,. Then the coeffi-
cients of the polynomial

Fx,y,) = II 11 (oy(Ho) + op(Ho) + su(H.) + sp(H:) — Ai(H.))

0S:SN  8,0EW
regarded as a polynomial in (t) are all in Q.
Exactly as in the proof of Lemma 40, we show that these coefficients lie

(2) We recall that v is the representation of 8 on AXX* (see p. 59). Ao is a fixed dominant
integral function on g and E*=%/APa,.
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in the ring generated by x.(€) and x,(€*) and therefore in x:4(3). Therefore
we can write

F(a, 9,0 = 2 xewlalmy, -+ m))a by -+ 7 z(m, -+ -, my) € 3.
my, e ,m20

We have to show that v(z(m,, - - -, my))(1X1*)=0, m,, - - -, m;=0. Sup-

pose this is false. Then for some z among z(m,, - - -, m;)

v(z)(1 X 1*) = 0,
Choose w;, 1 £i<p, in X such that w form a base for ¥*. Then
y@A X 1%) = 2 0 X wr a; €.
1SiS»p

Since »(2) (1 X 1*) 0 we can find an a;, say a1, such that ¢;#0. By Theorem 1
of [9] there exists a finite-dimensional representation 7 of % such that 7(a,)
#0. Clearly we may choose 7 so that it is irreducible.

Let 6 denote the linear mapping of g* on g given by (y+(X)) = —y(X)
(X EL). It is easily verified that

o[z, 23] = — [0(2), 6(Z3)) 5 zZie ¢h.

Hence 6 can be extended uniquely to an anti-isomorphism of A* onto .
Let ¢ denote the representation of B on () defined by

o(@)n(a) = n(d'a), o(X)n(a) = (X, a]) (X €8;d,ac).
Then

It

o(ZH)w(a) = o(Z1)o(a)x(1) = a(a)a(Z+)7(1)

m(a)w(8(Z1)) (Zregha€¥)
‘since [Z+, a]=0 and Z+=X—vy(X) if Z+=vH(X) (XEL). From this it
follows easily that

o(at)w(a) = w(a)7(6(a"))
o(a)w(a) = n(a)w(a) (et €Aty g, 0 €N).

Since 7 is irreducible, w(¥) is a simple algebra. Therefore it has no ideals
other than {0} and itself. Hence o is an irreducible representation.

Let Px be the set of all dominant integral functions on hx. For any
Ay, A;EPxk let ¢1, @2 be two irreducible representations of x belonging to
Da, and Dy, respectively. Extend ¢1, @2 to representations of £ by setting
01(Z+) =0 for all Zt&gt and ¢:(Z)=0 for all Z&g. The representation
@142 of 8 is then known to be irreducible. We denote by Dy, ,a, the class of
all representations of & equivalent to ¢14¢2. It is known that Da,,a,7Da;, a2
unless A;=Aj, A;A;, and every irreducible finite-dimensional representation
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of € is contained in some D, ,a,- Hence s €Dy, for some N\, u&Pg. By Schur’s
lemma, o(z) =x(2)o(1) (2&€3) where 2—x(2) is a homomorphism of ¥ into
C. Hence by Theorem 5, x can be extended uniquely to a character of 8.
From the theory of finite-dimensional representations it is known that this
character is x»,.. Finally we note that the zero representation of ¢ occurs in o
since o(X)w (1) =0 (X ELk) and w(1) 0. Hence again it follows from known
theory that

X(#, t) = X()\y t)

where x(\, t) is obtained by changing the coefficients of the series x(\, ¢) (re-
garded as a series in (£)) to their complex conjugates. Applying Lemma 42,
we get immediately

ut+po=—s\+p) sew).

Now consider the representation 7+ of 8 induced on = () XX*. It is given
by

H(X)(w(a) X o*) = 7([X, a]) X o* + 7(a) X (Xw)*,
HZ)(n(a) X o*) = m(Z)7(a) X o* XEk wEXeEY ZEC ).

Let N, be the kernel of 7 in Y. It is easily seen that if £ is the natural mapping
of AXE* on AXE*/N.XX* then w* is equivalent to the representation of B
induced by » on AXX*/N,X%* under the isomorphism 7(a) X w*—£(a Xw*)
(@€Y, w*EX*) of T(A) XX* with AXE*/N, XX* We may therefore identify
w(A) XX* and AXE*/N.XX* under this isomorphism. Since =(a;)=0,
(@) (r(1) X1*) = D 1<isny m(a:) Xw*#0. Since w(A)XX* is finite-dimen-
sional it is fully reducible under 7+(B). Then it follows easily that we can find
a maximal invariant(®)subspace My of 7 (A) XX* such that =+(z)(w(1) ¥X1*)
GEMe. Let 7’ be the irreducible representation of B induced on
(w(A) XE*) /M. Let 7' EDrvwr (N, p’ EPx). Since the representation of B on
X* is of the type Do,a, it follows from known results that N’ =\ and p’ =p+A;
where A; is some weight of ©,,. Since p+p=—sA+p) (sEW),

sN'(H) + sp(Ho) + w'(Hy) + p(Hy) — Ai(Hy) = 0.
Therefore F(\’, u’, t) =0. On the other hand

my m m
F(x, 9, 1) = Z Xzp(a(my, - -+, mp))h ‘12’ I 71 !
my, e ,m20
Hence
m my
F()\/, M,, t) = E x)‘,'“,(z(ml’ cee, ml))tll RN 7
ml,...,ml;o

() M4 is maximal independently of the property of not containing =+(z)(x(1) X1*).
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Since 7+ (2) (r(1) X 1*)E My, 7'(2) 0. Therefore as zE 3, 7'(2) =xa+.u(2)7' (1)
#0. Hence x» ,/(2) #0. Since z is one of the elements z(m;, - - -, my), it fol-
lows that F(\’, u’, ) #0. Thus we get a contradiction. This proves the lemma.

Let 7 be any representation of 8 with the character x such that D, oc-
cursin . Let f(x, ) € Q. Then f(x, ) =x..4(2) where 2E 8 and »(2) (1 X1*) =0.
Let V be the representation space of w. By hypothesis Vj3,#0. Choose ¢
E Viagap ¥ 70, and let M be the left ideal in B consisting of all bEPB such that
w(b)y =0. Then MDOAYa,. Since »(2)(1X1*) =0, 2&AYa, from Lemma 27.
Hence z&I and 7 (z) =0. Therefore f(\, u) =xa,.(2) =0. Applying this to the
polynomial F(x, v, t) of the above lemma we find that

SN(H:) + sp(Hy) + ou(Hy) + op(Hy) — Ai(Hy) = 0

for some 5,0 €W and 7, 0=7=< N. Now for every A; and 7€ W, 7A; is also a
weight of Dy, Hence

)‘(Ht) + P(Ht) + TM(Ht) + TP(Ht) - Ai(Ht) =0

for some & Wand some j,0<j< N. Put 7(u+p) = — (u'+p). Then N\—p' =A;
and x,=x_, from (23). Thus we have proved the following theorem.

THEOREM 6. Let 7 be a representation of B with the character x such that
D, 0ccursinm (Ao EPk). Then x =x\Xx_, where N —u is an integral function on
bk which is a weight of Da,.

COROLLARY. Let ™ be any representation of B with the character x =x
XxZ, For any ACSPk, Dy cannot occur in w unless (N+p) —a(u+p) is a weight
of Da for some s EW.

Let & and Lk, be the Lie algebras over the field R of real numbers as
defined on p. 52. Henceforward we suppose that L&, is compact, that is,
the quadratic form sp (ad X)? (X &8k, is negative definite. Let B, be the
universal enveloping algebra of &. Then 9B, is an algebra over R and B can
be regarded, in the obvious way, as the extension of By over C. Then every
bEB can be written uniquely in the form b=>5b;+(—1)2b, (b1, b2EBo). Let
Bo be the center of By. It is easy to show (see [9, p. 914]) that the elements of
Bo span over C the center 8 of 8. Let ¢ denote the linear mapping of &, into
itself given by ¢(X) = —X (XEL). ¢ can be extended uniquely to an anti-
automorphism of By. We now extend ¢ on B as follows. If b=05b,+(—1)12b,
(b1, 5:E8B) we put ¢(b) =¢(b,) —(—1)"2p(b,). Let x be any character of B.
We shall denote by x* the linear function on 8 defined as follows:

(26) x*(8) = x(e(3)) (CASRY)

where the bar denotes complex conjugate. It is easy to verify that x* is also a
character.

Let bk,o be a maximal abelian subalgebra of %«,0 and hx the complexifica-
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tion of bx,. Then Y& is a Cartan subalgebra. If « is any root of £x with re-
spect to hx and H, the corresponding element in hx then it is known that
(—1)'2H, &Yk 0. In particular if {al, SRR a;} is a fundamental set of roots
and H,,=H,;, 1=i=l, H{=(—1)"2H;Ebx,. Moreover ¢(y(X))=—vHX),
e(yH(X)) = —v(X) for any X &8, Hence

m m + n n
x(e(y(H™ - - H WY (H - - - HI™Y))
_ (_1)m1+“~+7nz+n1+-'-+nl

+ m m n ny
X H - (T HTY),

since ¢ is clearly an anti-automorphism of 8 over R. Hence
1my

x*(,y"'(H{"“ o H

mi

Jy(H - HLY)

(27) — (_1)m1+~~+m+n1+~~'+nt X(‘Y(H;ml .. H;m’)‘y+(H;”l . H;M))
(mly"'rmlynh"')nlgo)'

For any linear function \ on hx define X by X(H;) =\(H,), 1 £¢=!. Further if
¢ is any polynomial (or series) we denote by ¢ the polynomial (or series) ob-
tained by changing the coefficients of { to their complex conjugates. Suppose
x=x3Xxux and x*=xy*Xx,* where \, u, N*, u* are linear functions on Pg.
Then from (27) it follows that

X(x*r f‘*) t %) = X(/"'r >‘1 -1, _u)
in the notation of (24). But, from (21), x(u, \, —¢, —u) =x(&, X, ¢, u). Hence

XN, 1%, 1, 4) = x(&, X, ¢, u).

Therefore from Lemma 42, x* =xxx Xxu* =Xz Xxr. Thus we have the follow-
ing lemma.

LEMMA 44. Let x =x\ XX, be a character of B. Then x* =xi XX

COROLLARY. x =x* if and only if x =xaXx» for some linear function \ on

bx.

Part IV. Representations of a complex semisimple Lie group in a
Hilbert space. So far we have considered only abstract representations of the
Lie algebra 2. Now we come to the representations of the corresponding
group in a Hilbert space. Let G be the simply connected Lie group whose
Lie algebra is &, the latter being defined as in Part II. We assume that fx,o
is compact and bk, is a maximal abelian subalgebra of fx,0 and hx=Dbhx,o
+(—1)2hg 0. We shall adhere closely to the notation of Parts II and III.

Let V be a Hilbert space and 7 a mapping which associates to each gEG
a bounded operator m(g) on V such that 7(gigs) =7(g1)7(g2) (g1, £2EG) and
m(1) =1, where 1 is the unit element of G and I is the unit operator on V.
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w is called a representation of G on V if for every ¢ € V the mapping g—w(g)y
(gEG) is continuous. Moreover it is called an irreducible representation if
there exists no closed subspace other than V and {0} which is invariant under
w(g) for all g&G.

Since G is a Lie group it is also an analytic manifold. Let C;’ (G) denote the
class of all complex-valued functions on G which are infinitely differentiable
everywhere and which vanish outside a compact set. For any X &%, and
fECT(G) we define _Xf& C;”(G) by the rule

d
(28) (X/)(g) = {Ef((exp (—zX»g)}

t=0
It is easily verified that if X, X, X3E% and [X;, X.]=X; then
X1(Xof) ~Xa(Xaf) = Xsf.

Thus we get a representation of & (and therefore by linearity a representa-
tion of ) on C;(G). We extend this uniquely to a representation of B.
Then for any 2&8 and fEC;°(G) the function —zf is well defined. Let 7y be
the subspace spanned by all elements ¢ & V of the form

(29) o= fo<g>1r<g>¢dg

where y €V and fEC;’(G) and dg is the left invariant Haar measure on G.
It has been shown by Garding [8] that V; is dense in V and

. 1 ‘
(30) Lim — {x(exp X)¢ — o} = f Xf@eewis  (XEW

t-0
where ¢ is given by (29). Let 7(X) denote the operator on V; defined by
1
(31) m(X)e = Lim " {w(exp tX)o — o} (XEQ o EV,LER).

t-0
Then 7(X) maps V, into itself and it is obvious from (30) that 7([X1, X2])
=m(X)r(X:) —7m(X)m(X1) (X1, X:EQ). Hence we get a representation of
Lo and therefore of B on V; which we shall denote again by w. We shall call
V. the Gérding subspace of V.

Let 3 be the center of B and x a character. We shall say that the repre-
sentation w of G on V has the character x if 7(2)p =x(2)¢ for every ¢ & V3 and
2E B. It is known that if 7(G) is an irreducible unitary representation then
m(2) (2€8) is a multiple of the unit operator on V;. Hence 7 has a uniquely
determined character in this case.

Let Gk be the analytic subgroup of G corresponding to fk,o. Gk is compact
and simply connected. Hence there is a 1-1 correspondence between repre-
sentations of Gx and those of %k, (and therefore of k). Hence for any A &P,
D4 can also be regarded as an equivalence class of representations of Gg. For
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any AEPg we denote by V), the set of all elements Y &V such that either
¥ =0 or the subspace U spanned by all vectors of the form w(g)y (¢EGk) is
finite-dimensional and the representation of Gg induced on U is fully reducible
into components each of which belongs to Dx. Put Vi=V,N\V, and V°
= > V3. It can be shown (Mautner [11]) that V°is dense in V.

Choose a fundamental system {ay, - - -, a1} of roots of 2x with respect
to bx. For any root a we define the corresponding element H.E bk as before.
We may again suppose that a(H,)=2. Put H;=H,,, 1<1=<l. We note that
(—1)YV2H,EYg,o for every root a.

Let m be a representation of G on V with the character x. Since V° is
dense in V, V3,7 {0} for some A¢EPx. Hence Dy, occurs in 7(B). Therefore
from Theorem 6, x =x»Xx_, where A—u is an integral function on hx. The
following theorem shows that the converse is also true.

THEOREM 7. Let X and u be linear functions on Yx such that N —u 1s integral.
Then we can find a representation w of G on a Hilbert space such that & has the
character xn Xx=,.. Moreover if \N+1X is integral, we can find a unitary representa-
tion of G with the character x XXx.

For the proof of this theorem we follow a method which is due to Gelfand
and Naimark [7]. Let P be the set of all positive roots of 2x. We can choose
elements U, V. (@&€P) in Lk, such that U,+(—1)"2V,=X,.#0 and
U.— (—1)12V,=X_,70 are root elements corresponding to the roots @ and
—a respectively. Then the elements (—1)\V2H;=H;, 151=<1, Uy, Vo (¢ EP)
form a base for 2x,0. We define the linear mappings T, v, and * as in Part
II (pp. 52-53) and put

32 We= Uqs— I'Va), We=Va+ I'(Ud),

( Wea=Us+T(Va), Wla=Vae—TIU),
Za=v(Xa) = (Wa+ (—1)12W,)/2,

- Za=v(X-a) = W_a— (—1)12W_,)/2,

Zi =7 (X)) = Wew+ (m1)12W0)/2,
2l =7 (Xoa) = (Wa = (—1)12W,)/2.

Let h=v(bx)+v*(hx), Ho=Dbx,0+T'(bx,0). We have already identified (see
p. 80) linear functions on § with pairs (A, u) of linear functions on hx. X being
any linear function on hx we denote by A+ and A~ the linear functions on }) de-
fined by the pairs (\, 0) and (0, N\) respectively. Also we write AN(T'(H))
=—(—1)""\(H) (HEDbx).

Let N be the subspace of & spanned by W_., W’., (¢ €P). Then N is a
nilpotent subalgebra of &. Put §* =I'(bx,) and S=h*+N. Then

(34) B =fxot Bt N =Leot &
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where all the sums are direct. Let S, 4, and N respectively be the analytic
subgroups of G corresponding to the subalgebras &, h*, and N. Then it is
known (see for example Iwasawa [10]) that the mapping ®: (u, &, n)—uhn
(uEGk, hEA, nEN) is a topological and analytic mapping of Gk XA XN
onto G. The tangent space of Gk XA X N at any point (u, k, n) is the Cartesian
product of the tangent spaces of Gk, 4, and N at u, k, and » respectively. But
for a Lie group the tangent space at any point may be identified under left
translation with the Lie algebra, which is the tangent space at the unit ele-
ment (see Chevalley [6, Chap. IV]). Therefore we can, in a natural way,
identify the tangent space of Gx X4 X N at any point («, i, n) with £,. Let d®
be the differential () of ®. Then for any (u, k, n) EGxk XA XN, (dP)u,r,nis a
linear mapping of &, into itself. Our object is to evaluate the Haar measure on
G in terms of the Haar measures on Gk, 4, and N.

Let ¢, ¥, x be left invariant differential forms (#0) of degree #, /, and
n—1Ion Gg, A, and N respectively. Here n=dim {k,, and /=dim bg,,. Then
we define a differential form £ of degree 21 on Gx XA X N as follows:

E(Uly R Un; H(l)y c H(l); le Ct Xn—-l)

= ¢(U1v t Un)‘l/(H(”) Ty H”))X(le ) X»—l)
for any U;ERk,0, H?EQe*, XiEN, 1=59=n, 15751, 1=Sk=n—1I. Let %0
denote a left invariant differential form of degree 2# on G and let 6% be the

mapping dual to d®. Then 6® maps @ on a differential form 6’ (of degree 2n)
on Gk XA XN. If 0y, denotes the value of ' at any point (%, k, 1)

(35)

BL,h,n(Uly tt Un; H(l)) R H(l); le Tty Xn—l)

7(1) AU

=0(U{,-~,U,’,,H -+, H ,X{,---,X,'._z)
where U;, H?, and X} are as in (35) and U}, H'®», X{ respectively are their
transforms under d®,,;,,. Therefore we get
(36) Ouin = c(det dBy,hn)bu,nn

where £,,1,. is the value of £ at (u, k, n) and ¢ is a fixed real number 0.
Let f be a function on G which is analytic around ukn. Put F=fO®. Then
F is analytic around (%, k, n) on Gk XA XN. Let X&NR. Then

d
XF(u, by n) = {EF(u, h, 1 exp tX)}

t=0

(37a)

I

{—‘-i—f(uhn exp tX)}
dt
Xf(u h n).

t=0

It

() We use here and in the sequel the terminology of [6].
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Similarly if HE ¥,

d
HF(u, h, n) = {EF(% h exp tH, n)}

ta=0

(37b) = {%f(uh exp tHn)}

=0

_ {% Funh (exp ¢ Ad (n“)H))} — (Ad (=) H)f(uhn)

t=0

where g—Ad (g) denotes the adjoint representation of G, so that
g(exp W)g! = exp (Ad ()W)
for any WESR, and g&G. Finally if UERk,o,

d .
(37¢c) UF(u, h, n) = {-(5 F(u exp tU, h, n)} = {Ad (v YU} f(uhn).
t=0
These relations show that
d®u .U = Ad (n b 1)U (U € Lk.0),
(38) d®, nH = Ad (") H (H € by),
AP X = X (X EN).

Let W—ad W denote the adjoint representation of €. Then it is easily seen
that ad X is nilpotent for all X €N and therefore det Ad (z) =1 for all nEN.
Hence det (d®,,1,,) =det D, where D=Ad () d®,,1,.. Now N is invariant
under Ad (#). Let (Ad (n))n denote the restriction of Ad (#) on 9. Then
again we prove in the same way as above that det (Ad (z))n=1. Also we
notice from (38) that &=h+N is invariant under D. Let D* be the linear
mapping of the factor space 2,/& induced by D. Since det (Ad (n))n=1 it
follows from (38) that det D =det D*. Clearly & is also invariant under
Ad (B™') and the linear mapping of £,/ induced by Ad (k™) coincides with
- D* Now every U&Rk,o can be written uniquely in the form

U=H 4+ > 2a,Us+ 2 2b.Ve
«EP aEP

=H + 3 aa(Wa+ W_o) + }e: ba(WL + W)
alc P

aEP
where H'Ehg,0 and ¢,, b.ER. Now for any HEh* and aE P,
[H, W.] = «(H)W., (7, W] = «(H)W.,

[, W_.] = — a(H)W_o, [H W..]=—a(H)W.,,
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where a(H) = — (—1)V2a(T'-1(H)) is real. Hence if k=exp H (HEH),
Ad (BFYU = H + 3 aa(e*® W, + e2®W_,)

«EP

+ E ba(e 2@ W + ex@W.,)
<EP

B+ Y twee® W, + W_,)
«€EP

+ D bt D (W 4 W) mod &
«EP
=H + D 20,6®U, + Y 2be @V, mod &.
«EP «EP
This shows that det D*=exp (—2 Y acp a(H)) ==&, Hence
Ouhn = ceHEE, 4, (h = exp H, H € )

and it follows that the left invariant Haar measure on G is given by
e D dydhdn

where du, dh, dn respectively are the left invariant Haar measures on Gg, 4,
and N and k=exp H (HE)).

Let x&G and u&EGk. Then xu=uh(x, u)n(x, u) where u, &Gk, h(x, u)
€4, n(x, u)EN. Since A is simply connected there is a unique element
H(x, u) Eh* such that &(x, u) =exp H(x, u). Clearly u,, H(x, u), and n(x, u)
are continuous functions of (x, #) and for a fixed x, u—u, (1 EGk) is a topo-
logical mapping of Gk onto itself. Let y=uhn (EGk, hEA, nEN), and let
dy denote the left invariant Haar measure of G. Then for a fixed x EG,

d(zy) = dy = e *@dydhdn.
On the other hand
xy = xuhn = u h(x, u)n(x, u)hn
= u h(x, u) k(hn(x, u)hn).

Since 9 is an ideal in &, N is an invariant subgroup of S. Hence A='n(x, u)h
=n(x, u, k) EN. Also for fixed (x, u), d(h(x, u)h) =dk and for fixed (x, %, k),
d(n(x, u, h)n) =dn on account of the left invariance of the Haar measures.
Hence

e dy dh dn = d(xy) = e E—%E Wy dhdn
and therefore
(40) du, = e H=W)dy,

Let f be any function on Gg. For any xE€G we define a new functioﬁ i
on Gk as follows:



1951] UNIVERSAL ENVELOPING ALGEBRA OF A LIE ALGEBRA 91

J5(u) = f(uz).

Let Ly(Gk) be the Hilbert space consisting of all measurable functions f on
Gk such that [eg|f(u)|%du< o. Then if fEL:(Gxk),

z 2duy = 2du, = 2040 (H (2,u)) d. 0
[l = [ |sfae.= [ | recean <

since the function e*®@%) being continuous, is bounded on the compact
set Gg. Notice that if yEG,

yeu = yuh(x, uyn = () h(y, w)h(x, u)n’

where #n, n”’ €N. Hence %y, = (#.), and H(u, yx)=H(y, u.)+H(x, #). v being
any linear function on hx and xEG, fE Ly(Gk), we define w(x)f =f € Ly(Gk)
as follows

f,(uz) = e:(H(z.u))f(u) (u & GK)

Then by using the above relations it is easily verified that = is a representa-
tion of G on Ly(Gk). We shall write w(x)f(x) for f'(u) (uEGk).

For any x&G and WESL, put W?=Ad (x) W. Then we have the following
lemma.

LEMMA 45. Let uE Gk and ¢ E Ly(Gk). Then if xEuNu=, w(x)o(u) =¢(u).
Moreover if x=exp H* (HEY*), m(x)o(u) =e" Dp(u).

Let x=unu"! (nEN). Then xu =un. Hence u,=wu and H(x, ) =0. There-
fore w(x)o(u) =mw(x)e(u.) =¢(u). Now let x=exp H* (HEh*). Then xu
=y exp H. Hence u,=u, H(x, u) = H. Hence w(x)o(u) =m(x)o(u,) =e@p(u).

Let Ax be the analytic subgroup of Gk corresponding to the subalgebra
bk .0 of Lk 0.

LEMMA 46. Let u&Gxk and h&EAk. Then for any xEG,
(uh)» = uh, H(x, uh) = H(x, u).

Notice that elements of 4 x and 4 commute and N is invariant under ad H
for all HE Yk 0. Hence A ' NAC N. But

xuh = u h(x, u)nh = uh(x, w)h(knh)
where n & N. Hence
Uy = Uh, h(x, uh) = h(x, u).

This proves the lemma.

Let A be any integral function on hg. Then for some A¢&EPk, —A is a
weight of Da,. Since every finite-dimensional irreducible representation of
Gk occurs in the right regular representation of Gk we can find a continuous
function ¥ 20 on Gk such that ¢ transforms according to D4, under the right
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regular representation of Gk and belongs to the weight —A. Then ¢(x exp H)
=e~ A Y (y) for any uEGg and HEhg 0.
LeMMA 47. Let x€G, uEGk, and HE Yk 0. Then
w(exp H*)w(x)¥(u) = eA@x(x)p(u).
Now
m(exp H)w(x)¥(u) = m(x)¥((exp (—H*)w) = w(x)p(uh™)
where h=exp H. But from Lemma 46,
m(x)Y(uk™') = exp ((H(x, (uh™) ) W((uh™) )
exp (V(H (%, u1h™)))Y(sz)et

exp (s(H (%, t22)) (s ) A ®
A () (u).

Hence the result.

LEMMA 48. Let Vy be the set of all o & Ly(G) which are of the form
o = [ f@r@was e
G

Then m(z)p=x(2)¢ (2€83, ©&EVy) where x=x2Xx_, and A=(A+»)/2,
p=(—4)/2.

It is clear that Vy is invariant under 7(8) and w(G). Also it follows from
Lemmas 435 and 47 that

(exp tWia)o(u) = w(exp tW.a)p(u) = o(u) (« € P),
x(exp tH")p(u) = e p(u) (H € ),
(exp tH)p(u) = e'A®p(u) (H € o.x)

for any ¢ &€ Vy and 4 EGk. Since Vy is invariant under 7(8), the same rela-
tions hold true if we replace ¢ by 7 (b)¢ (bEB). Hence it is clear that

T(WZab)o(u) = m(Wb)e(x) = 0 (a € P),
x(H"b)p(u) = v(H)x(b)o(u) (H € by),
T(H 0)o(u) = A(H)7(b)o(n) (H € %o.x).

Now for any Z =W+ (—1)12W,EL (W, W:EL) put

Z'=wi+ (-0"w; (x €G).
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Then from (33) it follows that

m(Z2ab)e() = 7(Za D)p(u) = 0 (« € P)
(H"b)e(w) = (\'(H) — & (H))m(B)e(w) (H €1)
where A\=(A+4»)/2, u=(@w—A)/2. For any xEG, the mapping Z—2Z* (ZER)
is an automorphism of ® which can be extended uniquely to an automorphism
of B which we denote by b—b* (b&EB). It is clear that if 2E 8, s2=2. Let §

be the subalgebra of B generated by 1 and h=v(hx) +v*(hx). Let 8 denote the
isomorphism of  with the ring C[x, ¥] of polynomials in the indeterminates

(41)

(%1, + + +, %1, ¥1, * + +, ¥1) with coefficients in C given by
B(y(HT" - - - H’,"’),YJ’(H;" o H YY) =ty ey mi, i = 0.

Then if we take(®) (ai; 0), (0, —a;), 1=74=/, as a fundamental system of
roots of & with respect to §, for every 2& 8 we can find a unique element
f«(x, y) EClx, y] such that

2= BNfu%, ) € 2 BZ0+ 2.BZ..
aEP aEP

Hence

2= B fu% 9)) = 2 0-aZat 2 buZia  (4_a ba EB).
«EP aEP

Since the left-hand side is of rank zero, we may suppose that a_, is of rank
(—a, 0) and b, is of rank (0, &) with respect to §. Then we can show exactly
as in the proof of Lemma 3, that a_. € Y acr Z-oB, ba= Y acr Z4B. Hence

2= B Yo% 9) = 2 Zsba + O Zada (6ar A EB)
«EP aEP

and therefore
+.u u

2=12"= (6 (fulx, )" + é:ziac': + g Z9'de  (u EGx).

But then it follows from (41) that
m(2)o(u) = f.(\, —p)e(u).
Since this is true for all «EGk,
7(2)e = f:(\, —w)e.

But it is clear that f,(\, —u)=x(2) where x =xxXx_,. Hence the lemma is
proved.

(®) As already mentioned earlier, we identify linear functions on § with pairs of linear
function on bg.
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The next two lemmas are due to Mautner. We use the usual terminology
of Hilbert space. If Q is an operator with a dense domain we denote by Q* its
adjoint. Also if Q1, Q; are two operators we say that Q;CQ; if the domain
D, of Q. is contained in the domain of Q: and Q, and Q: coincide on D;.

LeEMMA 49. Let Qo and Q be two operators on a Hilbert space V such that Qo
and Q* are densely defined and Qo C Q. Then if Qo is bounded so also is Q.

Since QoCQ and @, is bounded, Q*CQ¢* and Q¢ is also bounded. Hence
Q* and therefore Q** is bounded. But Q** D Q. Therefore Q is also bounded.

LeMMA 50. Let m be a representation of G on a Hilbert space V. Then for any
bESD, (7(b))* has a dense domain.

Let Vi* denote the set of all vectors ¢ in V of the form
o= [ romwvae (JECE),¥vED)
where 7*(g) is the adjoint of w(g). Also for any X&&, and fEC;’(G) put
N = {5 g ewp 130}

t=0

Now

*(exp (—1X))p = f (g exp (—1X))ydg

= f Gf(g exp tX)w*(g)ydg

since the Haar measure on G is both left and right invariant. Hence

Lim — {r*(exp 100 — o} = = [ X0 (eig € V1
t+0 [ed
From this it is clear that for any X &8, (w(X))* is defined on V;* and leaves
it invariant. Hence it follows immediately that for any 6E®, (w(b))* is de-
fined on V*. Since Vi* is dense in V the assertion follows.

Now we return to the notation of Lemma 48. Let U be the closure of
Vy. Then U is clearly invariant under 7(G). Let 7, be the representation of
G induced on U. Let U, be the Garding subspace of U.

LeEMMA 51. w(2)o =x(2)¢ for any 2E 8 and ¢ & U,. Hence mo has the char-
acter x =xx XX,

Clearly VyCU,. For any fixed 2& 3 let Qp and Q be the operators in U
with the domains Vy and U, respectively such that Quo=7(2)¢ (¢E V)



1951] UNIVERSAL ENVELOPING ALGEBRA OF A LIE ALGEBRA 95

and Qp=m(2)¢ (¢& Ui). Then QoC Q and @y is densely defined. Moreover by
applying Lemma 46 to the representation my of G on U we see that Q* is
also densely defined. On the other hand we know from Lemma 48 that Qup
=x(2)¢ (¢E V). Hence Qy is bounded. Therefore from Lemma 46, Q is also
bounded. Hence Qp and Q have a unique common extension on U which
must be x(z)I where [ is the unit operator. Therefore Qp=x(2)¢ (o< Ui)
and the lemma is proved.

We are now in a position to prove Theorem 7. Put A—u=A, Au=v.
Since A is integral by hypothesis, the first assertion of the theorem follows
from Lemma 51. Notice that if ¢ & L,(Gx) and xEG we get from (40)

T 2dy = v(H (z,u)) 2dy, =
fol () (u) l 7 faxl e o(u) | u fax

where »'=v+2p. Now suppose »'=(—1)"%¢ where ¢ is a real linear function
on bg (that is, o(H;), 1 =1=1, are all real). Then v'(H) is pure imaginary for
all HEY* and it is clear that the representation 7w of G on Lo(Gk) is unitary.
Moreover in this case Adp=A+(—1)"%0)/2, —(u+p)=(A—(—1)"%7)/2.
Hence — (u+p) =X+p and so from equation (23) of Part III, xZ,=xx. There-
fore mo is a unitary representation with the character xa Xxx. Since A can be
any integral function and ¢ any real function on g it is obvious that N is arbi-
trary apart from the condition that A4+X=A — 2p be integral. This completes
the proof of Theorem 7.

From the theory of representations of compact groups it follows that the
function ¢ of Lemma 48 is a linear combination of the matrix elements of
some representation of Gx which belongs to Dy, Let Dag=Da, (A1EPk)
be the equivalence class of representations of Gx which are dual to the repre-
sentations in Dy ,. It is easily seen that under the left regular representation
of Gk, ¥ transforms according to Da,. Hence Dy, occurs in the representation
mo of Lemma 51. Moreover it is clear that —A is a weight of D, if and only
if A is a weight of D4,. Therefore we get the following extension of Theorem 7.

e” H (2,w) p(yy) lzdu

THEOREM 8. Given any Ao&Px such that N —u is a weight of Da, we can find
a representation w of G on a Hilbert space such that ™ has the character xn Xx_,
and Dy, occurs in w. Stmilarly if N+X+2p is a wezht of Da,, we can find a
unitary representation w of G with the character xn Xxx such that Dy, occurs in .

This is a sort of converse of Theorem 6. We have mentioned earlier that
every irreducible unitary representation m of G has a character x. It is not
difficult to prove that in this case x =x* in the notation of Lemma 44. Taking
into account the corollary to Lemma 44, we see that Theorem 7 provides a
partial answer to the problem of determining those characters of ¥ which
correspond to some unitary representation of G (see also Gelfand and
Naimark [7]).
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