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TECHNICAL NOTE

New super-kurtic probability density function for use in
computer simulation

- P KUMARASWAMY
Institute of Hydraulics and Hydrology, Poondi 602 023

MS received 8 November 1977; revised 14 December 1977 -

Abstract. The plnlosophy of computer s1mulatlon and its application to hydrolo-
gical processes is described in this paper. The structure of natural hydrologic time

~ processes is indicated and the techniques to filter out white noise is explained.  The
limitations of the well-known probability density functions (PDF) such as the

' Gaussian, Pearson’s and Johnson’s etc. in hydrologic applications are set forth. A
new super-kurtic PDF developed by the author specially for hydrologlcal processes is
introduced and a numerical example is given. o v

Keywords. Computer snmulatlon probability density f unctlons hydrologxcal pro~
cesses; sine power probablllty dens1ty function.

1. Introductioxi

Whenever an experunental solut10n toa problem is either 1mposs1ble or too expenswe
or the problem too complicated for analytical treatment, Monte Carlo analysis tech-
niques could be useful. This analysis implies the solution of a mathematical model,
which may be either probabilistic or non-probabilistic, through simulation of a
stochastlc process, whose probablhty distribution satisfies the mathematical relations
of the model With the advent of fast electronic digital computers, generation of large
samples within- short t1me iritervals and thelr subsequent analysis through computer
simulation,. has -become  practical for hyd1olog1sts Computer simulation can be
defined as a technique of reproducing real-time phenomena in a time-scaled mathe-
matical model, utilising a digital or analogue computer This paper however deals
only thh digital computer apphca.tmns

2. Computer simulation
2.1. Features of simulation models "

A mathematwal model must necessauly embody elements of two conﬂlctmg attn-
butes—-reahsm and simplicity. Hydrologlc models consist of four elements com—
ponents variables, parameters and functxonal relatlonshlps Examples in a reservmr
system model are glven below o e : : : -
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134 P Kumdraswamy
Components: Reservoir, canal, ayacut.
Variables: Surface water inflow into reservoir.

Subsoil flow into reservoir.
Outflow from the reservoir.
Reservoir water level.

Parameters: Rainfall intensity and distribution.
Soil moisture conditions.
Watershed characteristics such as slopc, ruggedness,
shape, extent. '

Functional relationships: Probability distribution of rainfall, rainfall-runoff
relationships, depth-storage equation of the reservoir.

Variables may be exogenous or endogenous. Exogenous variables are the inde-
pendent or input variables of the model, which act upon the system and are not acted
upon by the system, e.g. rainfall over a watershed. [Exogenous variables can be
grouped into either controllable or non-controllable variables. Infiltration of water
to the aquifers is a controllable variable, whereas rainfall is a non-controllable
variable.

Endogenous variables are the dependent or output variables of the system and are
generated from the interaction of the system’s exogenous and status variables. Status
variables describe the state of a system or one of its components either at the beginning
of a time-period or at the end of a time-period. Soil moisture condition of a water-
shed is a status variable and surface runoff is an endogenous variable.

2.2. Classification of simulation models

Simulation models can be classified as deterministic, stochastic, static and dynamic.
In deterministic models, neither the exogenous variables nor the endogenous variables

are permitted to be random variables, and the operating characteristics are assumed.

to be exact relationships rather than probability density functions. Those models in
which at least one of the operating characteristics is given by a probability function
are said to be stochastic models. Static models are those models which do not expli-
citly take the variable time into account. Mathematical models that deal with time-
varying interactions are said to be dynamic models. Hydrologic models are of the

stochastic and dynamic variety, with significant aspects of determinism and statics
built in. '

3. Structure of natural hydrological time processes

Natural hydrologic time processes are those time series of various hydrologic vari-
ables, viz., inputs, states of the system and outputs. Daily rainfall, groundwater
'le\’le]s, and weekly runoff into a reservoir are a few examples. All these processes are
~ periodic-stochastic processes, with periodicities caused by astronomical cycles, and

stochasticity introduced by random processes of the earth’s environment including the
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atmosphere: For a better understanding and mathematical modelling of hydro-
logic stochastic processes, and for development of computer simulation techniques for
generating new samples of these processes, structural analysis of the time series is to
be taken up first.

Long-range trends (of a century, for example) in natural hydrological processes
are basically results of systematic errors and man-made changes. Trend and cyclicity
in samples of data may be produced by chance combinations of low and high values
in a series. Powerful discrimination techniques of mathematical statistics are
utilised to remove such pseudo-trends and pseudo-cyclicities.

Annual series of natural hydrological processes are treated as temporary stationary
stochastic processes, with no periodicities. However daily, weekly and monthly
series show periodicities with harmonics of the annual period of revolution of the

“earth around the sun, the period of self-rotation of the earth and the period of revolu-

tion of the moon around the earth. , )

Annual hydrologic series do not indicate any  persistence’ or Markov effect.
But daily, weekly and monthly series show a great deal of persistence due to the capa-
citance effects of the hydrologic system. The atmosphere has a memory of about
one to two weeks; and the watersheds and aquifers possess much longer memories,
sometimes even for six to ten months (Markovic 1965).

When the periodic components in the mean, standard deviation, autocorrelation
coefficients and skewness coefficients are identified and removed from a hydrologic
time-process, a serially-dependent stationary stochastic component is produced. This
component can be modelled as a linear Markovian type, with the residue as the
serially-independent stochastic component, otherwise called ¢ white noise ’.

The basic technique in computer simulation of stochastic hydrological processes
is to fit a suitable probability distribution function to this white noise, and use it for
generating samples of the hydrological process.

Multiregression methods are employed to correlate the white noises of the related
variables, and use the estimated parameters for prediction of future variables. This
paper deals with the development of a new PDF suitable for hydrological processes.
It is considered that this PDF may play a successful role in many non—hydrologxcal

. processes also.

4, Pfobability' density functions used in hydrology

The usual probability density functions used in hydrology are Gaussian, gamma, beta,

Pearson’s, Johnson’s lognormal, double exponential and Poisson (Quimpo 1967).
It has been observed that many hydrological processes, especially short-period pro-
cesses, such as daily rainfall, do not follow any of the PDFs mentioned above. The
processes are highly skewed and super-kurtic (Todorovic 1969). Given the four
important statistics of a hydrological white noise; namely mean (z), standard devia-
tion (s(z)), skewness coefficient (g;(z)) and kurtosis coefficient (gx(2)), it is not possible
to fit the data satisfactorily to any of the well-known PDFs so that all the four para-
meters are in agreement. The numerical example given in § 6 will bring out this point
clearly. - Therefore hydrologists were in need of a PDF whose parameters could be
reliably estimated from only the four statistics given above. It should also be possible
to compute the random variable, given its cumulative probability, through a closed
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mathematical equation, without recourse to any tables. This last feature is very
important for reducing the cost of computer time for simulation experiments since,
in practice, von Neumann’s rejection technique is found to consume too much of
computer time, in the inverse process of getting the random variable, given the CDF.

-Noteworthy is the fact that only PDFs have been defined for the well-known types,

and not CDFs which invariably are complicated integral expressions, and are not

-directly useful in simulation work, because these values can be obtained only through
-tabular interpolation and not through straightforward equations.

_5. Sine power probability density function

An important feature of a hydrologic_al process, such as daily rainfall, is that its

“Jower bound is zero and no negative values are physically possible. The CDF of its

lower bound need not be zero. It can have any value between 0 and 1. For example,

in the month of April, the number of rainless days may be 25 at a given locality,
‘which means that F, (CDF of lower bound) is equal to 0-83. The CDF of daily

rainfall at this place can vary only between 0-83 and 1-00.

- This process has also an upper bound. The maximum probable daily rain at any
place cannot be infinite, but should be finite and larger than the so-far-observed
maximum. The PDF may have a mode occurring between the two bounds, or its
mode may lie at the lower or upper bound.

To satisfy all the criteria given above, a new PDF suitable for hydrological purposes,
entitled ‘sinepower probability density function’ was developed by the author
(Kumaraswamy 1976). If zmin, Zm, Zmax represent the lower bound, mode and
upper bound of a rando'n variable {z}, the CDF and PDF equations are derived as
given below. Let

¥ =(—min)/(Zmax—zmin), -
m = (em—zmin) Cmax—Zmin) o @)
n o= —In@2)lnxm 0
m =gt 1—(1—1/n)tan 1, | @
y  =x/m D NG
F() = Fyk(1—Fy) sinv , N )

where F(z) is the CDF of z; and

1—F,

Zm—2Zmin .

f(@= hmy"‘“l cos (") [sin (3] m=1), ) | )
where f'(z) is the PDF of z.
. @iven the CDF, F (z), 1t is posSible tos conipute' z through the following eciu;aAtiAons.

b= (F-F)(—F), I )
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Z = Zmin -+ (Zm—2Zmin) [sin™? ($1/™)]1/", B ©

"Given Z, 5 (2), g,(2), g, (2) of 2 sample, it is possible to estimate the parameters
Zmin, Zm, Zmax and Fy (Kumaraswamy 1977). : -

6. Numerical example
The daily rainfall at a specified locality for a period of 130 days is given below.
No rain on 104 dayS' Rain in mm on the remaining 26 days:

79, 24-0, 36, 6°4, 177, 0'5, 21, 160, 61-3, 165, 55-8, 12-5, 364, 109, 7:0, 56
262, 11-0, 24+9, 38-8, 60-9, 35-4, 53-8, 773, 32:0, 0-1.

The observed CDF has been plotted in figure 1. The values of the four statistics.
are computed to be

Z = 496 mm (mean)
$(z) = 13-83 mm (unbiassed standard deviation)
& = 328 (unbiassed skewness coefficient)

g = 14-29 (unbiassed kurtosis coefficient)

The problem of fitting various PDFs utilising all the above four stat1stlcs is now
discussed.

7 / ® observed
0.6 — : - sine power CDF
/ . —-. = Gaussian CODF
FI2) =1 . '
0.4 /
0.2 -
-
‘O | T [ i | [ | T

o) 20 a0 60 80 100
' . daily roin (mm),2

Figure 1. Cumulative distribution functions
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Gaussian PDF

g,=0 and gy=3 for this distribution. Therefore, for the observed values of g; and g,
equal to 328 and 14-29 respectively, this PDF is not suitable. However for the pur-
pose of illustration, the CDF of this distribution has been calculated using the values
of % and 5(z) and standard tables and plotted in figure 1. It is clear that the Gaussian
PDF does not fit daily rainfall data. :

Lognormal PDF

2-parameter lognormal PDF is computed. Using standard formulae for deriving
p, and o, from Z and s(z), we get p, =063 and o,=1-43. Therefore g works out to
2506 and g,=4578 which are vastly different from the observed values of g; and gs.
This PDF is therefore not suitable.

Pearson’s PDF

Using standard formulae given in Ven te Chow (1964) it can be seen that none of the
seven PDFs fits to give the four statistics z, 5(2), g, and gs. '

Johnson’s PDF
To fit Johnson’s PDF, it is necessary to know the values of the fractiles zq.95 Zo.50 and
Z,.95 10 addition to Z, 5(z), g; and g,. Since in this case the lower bound e==0 and

Z9.05=0, it becomes impossible to fit Johnson’s PDF (Hahn & Shapiro 1967).

Beta distribution

" Since the PDF for daily rainfall is double-bounded, this is a distribution which has

been applied extensively in hydrological work. Computing from the values of z
and s(z) we get a=—0-9105 and B=0-6251, which indicate infinite density at the
Jower bound, which is not valid in hydrology. Moreover for the values of « and B,
g, and g, are computed to be 3-57 and 16-81. 'This PDF has been plotted in figure 2
and it can be seen that the fit is not satisfactory.

Sine power PDF

Based on the parameters g; and gp, Fo is computed to be 0-80 and the other para-
meters as

Zmax = 100:0; m = 12:20;
n  =01507.

Both the CDF and PDF are computed and plotted in figures 1 and 2. It can be
seen that the PDF fits the observed data very well.
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Figure 2. Probability density functions

The additional advantage with the sine power PDF is that, given F(z), z can be
computed through a straight equation which saves computer time enormously in
large scale simulation work, unlike the Rejection method of von Neumann. This
statement is made after testing about 500 samples of hydrological variables.

7. Conclusions

In computer simulation of hydrological variables, the sine power probability density
function can be used to transform uniformly distributed U(0, 1) random numbers
into white noise. After adding the effects of persistence, periodicity and trend, the
original hydrological process can be simulated and experiments conducted on the
generated samples. By using this technique, computer simulation has been exten-

sively adopted at Poondi in working out optimum operating schedules of water re-
sources such as reservoirs and ground water aquifers.
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