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Abstract 

 

Temperature dependent magneto-transport measurements in magnetic fields of up to 12 

Tesla were performed on thin film vanadium dioxide (VO2) across the metal-insulator 

transition (MIT). The Hall carrier density increases by 4 orders of magnitude at the MIT 

and accounts almost entirely for the resistance change. The Hall mobility varies little 

across the MIT and remains low, ~0.1cm
2
/V sec. Electrons are found to be the major 

carriers on both sides of the MIT. Small positive magnetoresistance in the 

semiconducting phase is measured.  
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Vanadium dioxide is being actively investigated due to its potential in switching devices 

as well as fundamental scientific interest in understanding correlated electron systems. 

This compound undergoes a metal-insulator transition (MIT) upon temperature decrease 

through TMIT=67˚C, as well as a sharp change in optical properties [1] and crystal lattice 

transformation near TMIT. The importance of the contribution of electron correlations to 

the phase transition has been demonstrated [2], and mechanisms responsible for the MIT 

are being actively researched. In the Peierls model, the atomic distortion due to the lattice 

transformation at MIT from rutile metallic phase to monoclinic insulating phase causes 

the band gap opening [3]. In the Mott-Hubbard model, electron correlations alone can 

induce an insulator [4]. A correlation-assisted Peierls model where atomic structure 

aspects are considered on equal footing with intra-dimer V-V correlations has been 

suggested as well [5].  

 

Recently, experiments by Cavalleri et al. based on ultrafast spectroscopy provided 

evidence for the bandlike character of the low-T insulator and suggested that the atomic 

arrangement of the high-T rutile unit cell is necessary for the formation of the metallic 

phase of VO2 [6]. On the other hand, Kim et al. relied on femtosecond pump-probe 

measurements and temperature dependent XRD to put forward the picture where the 

metal-insulator transition and structural transformation from rutile to monoclinic lattice 

occur separately at different temperatures [7]. In this picture, there exists an intermediate 

metallic monoclinic phase between MIT and the structural phase transition. The fact that 

there is no lattice transformation to rutile phase at the MIT excludes the Peierls model 

and the driving mechanism of the MIT is considered to be the Mott transition. The origin 
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of the metallic monoclinic phase was explained with hole-driven MIT theory [8, 9] and 

Hall effect measurements of the hole density were presented in support [7]. Evidence in 

favor of the Mott transition was presented also on the basis of infrared spectroscopy and 

nano-imaging [10]. 

 

Carrier density is an important parameter in the Mott theory and yet data for this 

parameter are very scarce, especially for thin films. Thin films are of particular interest 

for applications in electronics and electro-optic devices. Early Hall effect measurements 

in VO2 showed that electrons were predominant carriers on the both sides of the MIT [11, 

12, 13, 14, 15]. The values of the electron density reported by research groups could 

differ by 2 orders of magnitude both in the semiconducting phase at room temperature 

[11, 15, 13] and high-T metallic phase [11, 13]. As mentioned in the literature [15], the 

Hall effect measurements in VO2 is a challenging task due to the following difficulties: 

low Hall mobility, high carrier density resulting in low Hall voltage, and unusually large 

amount of noise ascribed to be due to the strain present in the sample arising from the 

discontinuous lattice transformation at the structural phase transition (SPT).  

 

When in the rare cases the temperature dependence of the carrier density across the MIT 

was measured in single crystal VO2, low magnetic fields and non-direct methods (e.g. AC 

magnetic field) were used to overcome the noise issue mentioned above and low Hall 

signal, and the temperature dependence of the resistance displaying the MIT was not 

presented [15]. In light of this, direct DC measurements of the Hall effect in thin film 

VO2 in high magnetic field accompanied with other electron transport data across the 
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MIT are of great relevance. Carrier density determination in high-quality vanadium oxide 

films is particularly important, given the recent interest in exploiting the Mott transition 

for computational elements that may overcome limitations due to Si CMOS scaling [16]. 

 

In this paper we present the results of Hall and magnetoresistance measurements in thin 

film VO2 in DC magnetic field of up to 12Tesla. The temperature dependence of the 

electrical resistivity, carrier density, and Hall mobility across the MIT are shown. The 

measured n-type conductivity in the semiconducting phase is shown to be consistent with 

recent photoemission spectroscopy results [1]. The novelty and importance of this work 

is that our high field measurement technique allowed for reliable Hall coefficient 

determination in both semiconducting and metallic states of high quality thin film VO2.  

 

Vanadium dioxide thin (~100nm thick) films were reactively DC sputtered in Ar (91.2%) 

+ O2 (8.8%) environment at 10mTorr from a V target. The base pressure in the sputtering 

chamber was 2x10
-8

 Torr. The substrate was kept at 550ºC during the deposition. Thin 

VO2 films synthesized by this sputtering technique were comprehensively characterized 

by a variety of methods [1, 17] and the relationships between VO2 film morphology and 

electron transport and band structure parameters were analyzed in our previous reports 

[18, 19]. In this work, electron transport measurements were performed on VO2 films on 

c-plane Al2O3 substrates (samples A and B). VO2 film on a sapphire substrate (sample A) 

was photo-lithographically patterned into a clover-leaf shape for van der Pauw 

measurements (Fig. 2a). The sample was silver paste mounted on a copper block 

equipped with a resistive heater. This custom made setup with LakeShore 340 
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temperature controller insured sample temperature stability within 0.05C, which proved 

to be a necessary requirement since the sample resistance exponentially varied with 

temperature. Gold wires were indium-soldered to the sample. Another wiring method 

where a second layer of photo-lithography was used to connect 15μm-wide thin film gold 

leads to the VO2 pattern yielded similar results. Electrical measurements on sample A 

were done with a DC current source and voltmeter. The copper block with the sample 

was placed inside a room temperature bore of a 14T cryogen-free magnet, Cryogenic 

Limited CFM-14T-50. Constant current I24 was set through the sample A. The current 

magnitude was set to maximum before the current heating effects became present and 

varied from 35μA at 33˚C to 120μA at 64˚C in the semiconducting phase and up to 

10mA in the metallic phase. Hall voltage V13 was measured while the magnetic field was 

continuously ramped  0 → 12T → –12T → 0 at a preset temperature. The resistivity was 

measured by van der Pauw method and calculated by solving numerically the 

transcendental equation (1) in Ref.[20]. In order to determine the magnetoresistance, the 

voltage V13 (in notations of Fig 2a) was measured at a constant current I13 while the 

magnetic field was swept in positive and negative directions up to 12T in magnitude. The 

V13 vs. B curves were fitted and averaged over all field sweeps (positive, negative sweeps 

and reverse directions).  

 

X-ray diffraction (XRD) measurements were done on a Scintag 2000 diffractometer 

using Cu Kα radiation in θ-2θ geometry. The XRD spectrum from a thin vanadium 

dioxide film on Si substrate is displayed in Fig. 1. The d-spacing values of the observed 

peaks are inscribed in the figure and the VO2 line assignment is done according to 
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Israelsson et al. [21]. A comparison of the measured XRD spectrum with published data 

[21, 22, 18] indicates high-quality polycrystalline stoichiometric VO2 with no detectable 

impurities. 

 

In the magneto-transport measurements on the 12T apparatus, the temperature was 

incrementally increased through the MIT. At each constant temperature, the resistivity 

and the Hall voltage as a function of the magnetic field were measured. An example of 

the Hall voltage curves in semiconducting and metallic phases is shown in Fig. 2b. We 

present the results in terms of the Hall carrier density and mobility (Fig. 3) assuming a 

single band model as a first approximation.  The values of the original measured Hall 

coefficient can be reproduced from the carrier density n(T) plot in Fig. 3 using the 

equation: RH= –1/(n e). Then the slopes of the VH(B) curves were used to extract Hall 

carrier densities using the equation (SI units): n= I B / (VH e d), where I=I24 is the current 

through the sample, B – magnetic flux density directed perpendicular to the sample plane, 

VH=V13 – Hall voltage, e=1.60x10
-19

 C, d=10
-7

 m – film thickness. The measured 

resistivity and carrier density for sample A are presented in Fig. 3. The sign of the Hall 

voltage indicates that electrons are the major contributors to the transport in both 

semiconducting and metallic phases, in agreement with prior results on single crystals 

[15].  

 

The resistivity experiences a drop of over 3 orders of magnitude at the transition 

temperature TMIT=70˚C, which is characteristic to vanadium dioxide. Together with the 

results of the x-ray diffraction analysis this demonstrates the high quality and 
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stoichiometry of our synthesized VO2 films. The mobility μ=1/(e n ρ) was determined 

from known resistivity ρ and carrier density n and plotted in the bottom panel of Fig 3. 

Positive magnetoresistance, i.e. a resistance increase upon application of magnetic field, 

was measured in the semiconducting phase at room temperature. Specifically, the 

magnetoresistance is ΔR/R= (0.09 ± 0.02)% in the ±12T field at 26˚C, where R=V13/I13 

(in notations of Fig. 2a).  

 

One can see in Fig. 3 that the Hall electron density increases by 4 orders of magnitude 

from 1.1x10
19

cm
-3

 at 64˚C to 1.7x10
23

cm
-3

 at 75˚C upon the MIT. The increase of the 

number of carriers accounts almost entirely for the decrease of electrical resistance which 

is also manifested in the small change in the mobility μ. Assuming the density of the 

vanadium ions to be 3x10
22

cm
-3

 [23], the measured Hall carrier density in the metallic 

phase of a thin film corresponds to 4.7 itinerant carriers per vanadium ion and is 

consistent with previous reports for bulk single crystal VO2 [15]. The fact that in the Hall 

measurements there appear to be more than one itinerant carrier per V ion may be 

explained by the presence of two types of conduction, n- and p-type, with electrons being 

the majority carriers [23]. 

 

The carrier density was carefully measured upon temperature increase at the onset of 

MIT. The electron density starts increasing continuously toward the value in the metallic 

state. The Hall effect measurements done with 12T technique on two different samples 

yielded consistent results. The error bars in Fig. 3 come from the uncertainties of the best 

slope VHall(B) fit.  
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For sample B, a VO2 thin film on Al2O3 substrate, the carrier density was estimated using 

an alternate experimental setup. In this apparatus, the temperature dependent Hall effect 

was measured with a fixed magnetic field of 1.4Tesla. An unpatterned film on a square 

(1cm x 1cm) substrate was wired for van der Pauw measurements. The data were 

collected using both polarities of current and magnetic field and were averaged to 

compensate for electromagnetic effects [24]. The calculated carrier density is displayed in 

Fig. 4. The resistivity is shown in the inset and exhibits the MIT of same order as for 

sample A. The noise is larger than in the 12T results (Fig. 3) which highlights the 

advantages of high magnetic field and patterning technique described above. The 

temperature dependence of the carrier density in the semiconducting phase below the 

MIT agrees for 12T and 1.4T data. There is an exponential rise of n up to the threshold of 

the MIT near 60˚C then n starts rising faster and there is a jump at 67˚C. The results in 

Figs. 3 and 4 agree also in the metallic phase above 80˚C. However the jump of the 

carrier density is sharper in the previous measurement. Whereas in Fig. 4, the MIT jump 

is smaller, little over 2 orders of magnitude, and n continues to increase up to 80˚C. The 

analysis of the VHall vs. B curves measured by 12T sweeps method shows that the curves 

exhibit extra noise and deviate from linear behavior in the region from 67 to 80˚C. For 

this reason the data in Fig. 4 are important to take into account in order to evaluate the 

behavior of the carrier density near the MIT point.  

 

In summary, Hall effect measurements were performed across the metal-insulator 

transition in polycrystalline thin film vanadium dioxide in fields up to 12T. The electron 
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density is found to change from ~10
19

 to 10
23

 cm
-3

 at the MIT (comparable to that of 

single crystals) which accounts almost entirely for the drop in the resistivity. The positive 

magnetoresistance at room temperature is measured to be 0.09% in a 12T field.  

 

We acknowledge NSF supplement PHY-0601184 for financial support. DR and SR are 

thankful to Dr. Jagadeesh Moodera (MIT) for several helpful discussions on the Hall 

measurements.  
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Figures 

 

 

 

Figure 1. (Color online) XRD spectrum from a VO2 thin film on Si(001)/SiO2(native 

oxide) substrate. d values (in Å) of the peaks are inscribed and for VO2 lines 

corresponding Miller indices of the Bragg planes are given in brackets according to Ref. 

[21].  
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Figure 2. (Color online) a) VO2 sample mounted on a copper base and set up for Hall 

measurements. Dark clover-leaf pattern is a VO2 film on transparent square sapphire 
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substrate of 1cm x 1cm size. b) The Hall voltage V13 in the metallic (upper red dot group) 

and semiconducting (lower blue dot group) state. 
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Figure 3. (Color online) Electron transport properties of a thin film VO2 on an Al2O3 

substrate (sample A) measured by 12T sweeping field apparatus. The Hall coefficient 

sign corresponds to electrons as the dominant current carriers.  

 

 

Figure 4. (Color online) Carrier density of a VO2 film measured using 1.4T fixed field 

apparatus. The resistivity of the film is displayed in the inset. 

 

 


