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For more than three decades, research on tunneling through planar barriers has focused principally on
processes that conserve momentum parallel to the barrier. Here we investigate transport in which scattering
destroys lateral momentum conservation and greatly enhances the tunneling probability. We have measured its
energy dependence using capacitance spectroscopy, and we show that for electrons confined in a quantum well,
the scattering enhancement can be quenched in an applied magnetic field, enabling this mechanism to function
as an external probe of the origin of the quantum Hall effect.
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I. INTRODUCTION

The tendency in semiconductor science and technology
has been to strive for materials with greatly reduced defect
density. This has resulted in tunneling devices such as reso-
nant tunneling diodes �RTDs� �Ref. 1� and quantum cascade
�QC� lasers2 that require nearly ideal translational invariance
in the plane of the layers to impose lateral momentum con-
servation and restrict transport to quantum resonances. There
are times, however, when defects are necessary to observe
new effects. A notable example of this is the integer quantum
Hall effect3 in which defects provide the energy states that
allow the chemical potential to lie between Landau levels—a
necessary condition for observing the effect. Nevertheless,
the possible utility of nonideal planar tunneling has been
largely overlooked. Experimental results have suggested4–8

and theory has shown9–11 that under certain conditions tun-
neling through planar barriers can be fundamentally altered
by electron scattering. Here we use capacitance-voltage spec-
troscopy to measure the energy dependence of this
scattering-assisted tunneling and show that the enhancement
due to scattering can be quenched in a magnetic field. By
enabling simultaneous measurements of the thermodynamic
density of states �TDOS� and the transport characteristics of
a two-dimensional electron gas �2DEG�, this measurement
offers a way to probe the origin of the zero-resistance states
of the integer quantum Hall effect using only transport or-
thogonal to the plane of the 2DEG.

This paper is organized as follows. In Sec. II we present
our method of measuring the quasibound state lifetime and
show how this measurement can be used to probe the energy
dependence of electron tunneling. Section III details the
sample structure used in our measurements as well as general
constraints on the design of samples dominated by
scattering-assisted tunneling. In Secs. IV and V, we present
experimental results of the energy dependence and magnetic
field dependence, respectively, of scattering-assisted tunnel-
ing. Finally, in Sec. VI we discuss possible uses and impli-
cations for scattering-assisted tunneling.

II. MEASURING QUASIBOUND STATE LIFETIME

Our goal is to measure the effects of momentum conser-
vation and nonconservation on tunneling in planar semicon-
ductor heterostructures. Although the tunneling mechanisms
we are investigating are also relevant to general tunneling
between three-dimensional �3D� contacts, the effect of mo-
mentum conservation becomes more apparent when one of
the contacts is a 2DEG. This is because the quantum con-
finement that defines the 2DEG only allows the momentum
perpendicular to the interfaces to have certain, discrete val-
ues. Within each of these 2DEG subbands, different electron
states differ only in their parallel momentum, so monitoring
the tunneling rate while varying the occupation of a subband
can provide a direct measurement of the degree of parallel
momentum conservation.

The rate �T at which electrons escape from a 2DEG by
tunneling is proportional to the tunneling probability T, and
the inverse of �T defines the quasibound state lifetime ��.
Using the WKB approximation, valid for barriers of small
transparency, the tunneling probability in the absence of scat-
tering can be calculated as

T0 � exp�− 2��2m�� − �0�/�� , �1�

where m is the electron effective mass, �0 is the 2DEG
ground-state energy, � is the height of the energy barrier, � is
its thickness, and �=h /2� is Planck’s constant. Note that �0
is the only relevant energy scale. Neither the �in-plane� ki-
netic energy �K nor the total energy �=�0+�K enter in the
description of the tunneling process; in the absence of scat-
tering T is independent of �K. This is a consequence of trans-
lational invariance and conservation of the component of
momentum parallel to the tunnel barrier �TB�, �k� =�2m�K.
Such invariance is an excellent approximation because the
correlation length of interface roughness in state-of-the-art
heterojunctions is small compared to the inverse Fermi wave
vector kF

−1= �2�nS�−1/2, where nS is the 2DEG carrier
density.12
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In the opposite regime, k� is not conserved13 but is instead
coupled into perpendicular tunneling by scattering. This en-
hances the tunneling probability by redirecting the electron
toward the tunnel barrier, effectively reducing the barrier
height by a fraction of the kinetic energy �K. Meshkov9

showed theoretically that the barrier height reduction reaches
the full value of �K in the limit of a very thick barrier. In such
a scenario, the tunneling probability T� depends on the total
energy � rather than on �0 alone and is proportional to

exp�− 2��2m�� − �0 − �K�/�� . �2�

The explicit dependence on �K makes this tunneling mecha-
nism a sensitive function of transport within the 2DEG.

In our samples, tunneling occurs between the ground state
of a 2DEG and a 3D contact. �See Fig. 1�a� for example
sample structure.� Tunneling into 2DEGs is responsible for
the characteristic dc transport resonances of RTDs and QC
lasers; however, dc measurements are not well suited to char-
acterizing this tunneling, especially the energy dependence.
This is because there is no low-resistance path for electrons
to exit the 2DEG once they tunnel into it. The exit path
therefore forms a resistive divider with the tunnel barrier,
and the voltage drop across the tunnel barrier is thus not
accurately known. A similar problem occurs when measuring
the capacitance of metal-oxide-semiconductor field-effect
transistors at high values of perpendicular magnetic
field,14–16 and this difficulty has necessitated sophisticated
capacitive techniques to measure such basic quantities as the
density of states of 2DEGs.17

We therefore design the insulating �INS� barrier in our
samples to block dc transport over the range of dc biases Vdc

used in the experiment. Because the insulating barrier is
opaque to tunneling, the chemical potential �2D of the 2DEG
is able to come into equilibrium with the chemical potential
�I of the 3D injector layer �assuming only a dc bias is ap-
plied�. Vdc can then be used to control the 2DEG Fermi en-
ergy �F and carrier density nS, which we calibrate using com-
parison of simulated and measured capacitance-voltage data,
as well as magnetocapacitance measurements.16,17

We probe tunneling in and out of the 2DEG in our
samples using the complex, frequency-dependent impedance
of the device. This technique has been used previously to
study energy gaps18–20 and density of states21 in 2DEG sys-
tems, as well as tunneling times and density of states in
buried GaAs �Ref. 22� and InAs �Ref. 23 and 24� quantum
dots. We measure the impedance using a sinusoidal ac bias
Vac of frequency f , as shown in Fig. 1. The amplitude of Vac
is kept small �typically 5 mVrms� to cause negligible change
in nS. Vac drives the 2DEG out of quasiequilibrium from the
injector to establish a small chemical potential difference
��=�I−�2D that oscillates with frequency f and causes
electrons to tunnel back and forth between injector and
2DEG. However, the number of electrons that tunnel before
�� reverses sign is limited by the tunneling rate �T. This
results in two frequency regimes of our device: one for f
	�T in which electrons have time to tunnel in and out of the
2DEG to follow Vac, and another for f 
�T in which they do
not. At low f�f 	�T�, electrons in the QW are therefore in
approximate quasiequilibrium with those in the injector, and
�� is negligible. Vac is then effectively applied only across
the insulating barrier, and the capacitance is at its highest. At
high f , quasiequilibrium cannot be maintained and Vac falls
across the series combination of the tunnel and insulating
barriers, thus lowering the device capacitance as shown in
Fig. 2�a�.

Each impedance-versus-frequency sweep is fitted using
the equivalent circuit shown in Fig. 2�b�. This equivalent
circuit is derived from balance of charge within the device,
as detailed in Appendix A. Our fitting procedure is discussed
in Appendix B. Within this equivalent circuit model, the fre-
quency dependence is a result of the series combination of
CQ and RTB, yielding a time constant of �rc=CQRTB. We will
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FIG. 1. �Color online� �a� Schematic conduction-band diagram
of a typical heterostructure used in our investigation, shown as the
chemical potential �I of the injector is increasing so that electrons
are tunneling through the TB into vacant 2DEG states in the QW.
The insulating barrier �INS� is opaque to tunneling at the values of
Vdc used in this experiment. �b� Evolution of �I over time for Vac of
frequency f . If �� is much longer than the period 1 / f , then the
2DEG cannot charge or discharge fast enough for �2D to follow �I,
and the device capacitance �measured between the injector and iso-
lated electrode� will decrease. �c� as in �a� but shown with Vac

advanced 1/2 cycle so that electrons are tunneling out of the 2DEG
into the injector.
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FIG. 2. �Color online� �a� Representative capacitance-frequency
curve from an impedance measurement on sample N. �b� Device
equivalent circuit that we use to fit measured impedance traces,
thereby allowing us to determine �rc. Fits are made simultaneously
to both the active and reactive impedance components. CQ is the
capacitance of the 2DEG and RTB=�rc /CQ is the tunneling resis-
tance of the TB, yielding an RC time constant of �rc. CTB and CG

are geometric capacitances of the TB and INS barrier, respectively.
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discuss the relation between �� and �rc shortly. RTB repre-
sents the resistance associated with tunneling through the
tunnel barrier. CQ is the capacitance of the 2DEG—also
known as the inversion layer capacitance25 or the quantum
capacitance—and is equal to q2g2DA, where q is the electron
charge, g2D is the 2DEG TDOS, and A is the device area.26

By fitting an impedance-frequency sweep using the equiva-
lent circuit shown in Fig. 2�b�, we can therefore extract both
�rc and g2D simultaneously.

To provide insight into the physical meaning of the fitting
parameters of our equivalent circuit, especially �rc, it is
worth noting the differences between the analysis used here
�based on Refs. 23 and 24� and the equivalent but distinct
approach used by Ashoori et al.18,19,21 Ashoori et al. fit their
data to a different equivalent circuit than ours, with the goal
of determining the tunneling conductance GTB=q2gsA /��,
where gs is the single-particle density of states. In their case,
they assume �� to be constant and all variations in GTB are
attributed to gs. �As we will show later, this assumption is
justified for their sample design.� In our case, we are inter-
ested in variations in ��, but we actually measure �rc. As is
detailed in Appendix A, �� and �rc are related by

�rc =
g2D

gs
��. �3�

As shown by Ashoori et al., in an applied magnetic field
g2D=gs is not generally true, and in Sec. V we will discuss
how the relative Landau-level filling-factor dependence of gs
and g2D nevertheless allow us to qualitatively determine the
behavior of ��.

It is also worth noting that Eq. �3� allows us to easily
obtain the tunneling conductance of Ref. 18,

GTB =
q2g2DA

�rc
=

CQ

�rc
= RTB

−1 . �4�

The results from this method of determining GTB agree with
the results obtained using the analysis of Ashoori et al., as is
also shown in Appendix A. For our purposes, however, �rc is
a more useful quantity than GTB. This is because our goal is
to observe changes in �� independent of changes in gs, and
the inclusion of g2D, which varies with Landau-level filling
factor in a way similar to gs, partially cancels variations in gs
in Eq. �3�. This makes �rc a less sensitive function of gs and
thus a more accurate approximation to ��.

III. TUNNEL BARRIER DESIGN

As Meshkov showed with a rigorous calculation,9 the tun-
nel barrier morphology is the aspect of the sample that most
directly affects whether or not scattering-assisted tunneling
will dominate. Using a less rigorous but more conceptually
simple approach, we can illustrate the essential physics that
determines the characteristics of transport and can design
samples to operate in each transport regime.

In terms of the WKB formulation of Eqs. �1� and �2�,
scattering enables the kinetic energy associated with motion
parallel to the QW to be coupled into transport in the per-
pendicular direction, thereby increasing the probability that

an electron will escape from the quasibound state of a quan-
tum well �QW�. However, if the kinetic energy �K is small
compared to the barrier height �, this increase will be neg-
ligible. And even if the increase is significant, it requires the
electron to scatter, which may not occur with sufficient fre-
quency to affect the transport. The interplay between these
factors can be captured in a diagram, shown in Fig. 3, that
delineates between types of tunneling transport. To construct
the diagram, we consider tunneling through the idealized
square barrier shown in the inset of Fig. 3.

The tunneling rate in the case of momentum-conserved
tunneling is simply �0T0, where �0=�0 /h is the tunnel-
attempt frequency of an electron in the bound state and T0 is
the tunneling probability calculated according to Eq. �1�.27 In
the case of scattering-assisted tunneling, the relevant
tunneling-attempt frequency is �S, the scattering rate, so the
tunneling rate is given by �ST�, where T� is the tunneling
probability of a scattered electron given by Eq. �2�. The
transport through the barrier will therefore be dominated by
scattering-assisted tunneling when the following inequality
holds:

T�

T0



1

�
, �5�

where �=�S /�0 can be thought of as a nondimensional scat-
tering rate. We wish to determine the values of barrier height
and thickness for which Eq. �5� is valid. Using Eqs. �1� and
�2�, we find
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FIG. 3. �Color online� Diagram depicting the energy depen-
dence of the tunneling as a function of scaled barrier thickness �
=� /�0 and scaled electron kinetic energy 
=�K / ��−�0�. For small
� and 
 �i.e., the lower left, unshaded area of the diagram�, transport
is predominantly momentum conserving and is approximately de-
scribed by Eq. �1�. In the opposite regime �shaded region�, transport
is dominated by scattering-assisted tunneling and varies with �, as
in Eq. �2�. Using Eq. �8� and the scaled scattering rate �, one can
find values of 
 and � for which the two transport mechanisms yield
approximately the same tunneling rate �broken line, calculated for
�=0.1, corresponding to an approximate sheet mobility of 5
�104 cm2 V−1 s−1 for an InGaAs QW with a 30 meV ground-state
confinement energy�. The overlaid lines indicate the approximate
regimes of operation of several different samples over a range of
�K; only samples S and S2 extend into the scattering-assisted tun-
neling regime. Inset: partial schematic band diagram of a sample
showing parameter definitions.
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1

2
log� 1

�
	 	 �

�2m�� − �0�
�

�1 −�1 −
�K

� − �0
	 . �6�

We can now nondimensionalize this equation to allow
easier comparison between systems. We scale the thickness �
of the barrier by the characteristic decay length in the barrier
�0=� /�2m��−�0�, yielding �
� /�0. We also scale the ki-
netic energy �K by the effective barrier height, �−�0, giving


�K / ��−�0�. Using these definitions, Eq. �6� can be re-
written as

1

2
log� 1

�
	 	 ��1 − �1 − 
� , �7�

which can easily be solved for �,

� 

1

1 − �1 − 

log�1

�
. �8�

For an electron with scaled kinetic energy 
 undergoing scat-
tering with a scaled scattering rate �, this equation can be
used to estimate of the minimum scaled barrier thickness �
that is necessary for the transport to be dominated by
scattering-assisted tunneling.

Overlaid on the diagram of Fig. 3 are the estimated trans-
port characteristics of several different tunnel barrier designs.
As an initial check, we confirm that the tunneling through the
barrier of Ref. 17 is dominated by momentum-conserved
tunneling, as was seen experimentally. In the diagram, the
expected transport of this sample remains fully within the
regime of momentum-conserved transport for the entire ex-
perimental range of �K. In reality, the sample of Ref. 17 is
expected to have a scattering rate � that is orders of magni-
tude lower than what is plotted in Fig. 3, so it is even less
likely that scattering-assisted transport would be observed in
that sample than is suggested by our diagram.

The other samples shown in Fig. 3 were designed using
the diagram, and the transport properties of these devices are
the focus of this report. Of the relevant characteristics, the
primary difference between samples was the thickness and
alloy content of the tunnel barrier; these differences, as well
as those of two other relevant characteristics, are summa-
rized in Table I. Schematic band diagrams of the samples are
shown in Fig. 4.

Three samples �N, NU, and NTU� have been designed to
exhibit momentum-conserved tunneling. As in the sample
from Ref. 17, the barriers in these samples are relatively tall
and thin, making �K / ��−�0� small for the range of �K we
can access experimentally ��K�30 meV�. Therefore, as can
be seen in Fig. 3, we expect these samples to exhibit
momentum-conserved tunneling.

In contrast, the two samples �S and S2� designed to show
transport dominated by scattering-assisted tunneling have
relatively short, thick tunnel barriers. This makes the experi-
mentally accessible values of �K a significant fraction of the
effective barrier height �−�0, leading to a much larger en-
hancement of the tunneling probability for scattered elec-
trons at high �K. As a result, the transport characteristics of
these two samples cross into the regime of scattering-assisted
tunneling in Fig. 3.

TABLE I. Comparison between samples highlighting the InAlAs/InGaAs alloy fraction of the tunnel
barrier �X�, the conduction-band offset of the tunnel barrier ��EC�, the thickness of the tunnel barrier ���, the
level of Si � doping within the quantum well ��� as estimated by capacitance-voltage and magnetocapaci-
tance measurements, and the thickness w of the undoped layer adjacent to the tunnel barrier.

Sample X
�EC

�eV�
�

�nm�
�

�1011 cm−2�
w

�nm�

NTU 1.0 0.52 10 0 5

NU 1.0 0.52 13 0 5

N 1.0 0.52 13 1.5 5

S 0.2 0.10 40 2 10

S2 0.25 0.13 40 2 10
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FIG. 4. Schematic band diagrams of the samples used in this
experiment. The thickness and alloy composition of the QW and
insulating barrier are the same in all samples. �a� Sample NTU. �b�
Samples N and NU �they differ only in QW � doping, which does
not significantly affect the diagram on the scale shown here�. �c�
Sample S. Sample S2 �not shown here� is identical except that the
TB is slightly higher �0.13 eV compared to 0.1 eV�.
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All samples were grown via molecular-beam epitaxy
�MBE�, lattice matched to n+ InP substrates. The relevant
structure of the samples was nominally identical except for
the parameters listed in Table I. In order of growth, the struc-
ture was 500 nm n+ In0.53Ga0.47As doped 3�1018 cm−3 with
Si; 5 nm undoped In0.53Ga0.47As; 30 nm In0.53Al0.47As gate
barrier; 10 nm In0.53Ga0.47As QW �with or without Si � dop-
ing in the center�; tunnel barrier of thickness �; undoped
In0.53Ga0.47As spacer layer of thickness w; and 300 nm n+

In0.53Ga0.47As doped 3�1018 cm−3 with Si. Samples S and
S2 included an additional, subsequent layer of 50 nm n+

In0.53Ga0.47As doped 1�1019 cm−3 with Si to facilitate mak-
ing high-conductivity contacts to the top of the structure.

The samples were patterned using conventional photo-
lithographic techniques and were etched into 200 �m diam-
eter mesas. Contacts to the substrate and top of each mesa
were formed by sputtering �10 nm Ti and �35 nm Au.
The mesa sidewall was insulated with �300 nm SiN depos-
ited by plasma-enhanced chemical vapor deposition. The
stray capacitance of the contact to the top of the mesa con-
tributed �10 pF capacitance in parallel with the device that
was constant with frequency to within 50 fF in our measure-
ment range and was therefore easily subtracted from the data.
We measured device impedance using an Agilent 4284A
LCR meter.

IV. EXPERIMENTAL RESULTS: ENERGY DEPENDENCE

The presence of scattering-assisted tunneling can qualita-
tively alter the energy dependence of tunneling, as illustrated
in Eqs. �1� and �2�. Here we show how our capacitance mea-
surement of the �rc enables us to determine this energy de-
pendence, thereby enabling us to determine the dominant
transport mechanism in each of our samples.

As discussed in Sec. II, the insulating barrier prevents dc
flow and allows �2D to come into quasiequilibrium with �I
�although quasiequilibrium is only actually achieved in the
absence of Vac�. The dc bias Vdc, instead of driving a dc
current, alters nS, resulting in direct control over �F. Because
tunneling in our device occurs predominantly for electrons
with energy near �2D, these electrons have a kinetic energy
�K in the 2DEG that is approximately equal to �F. Thus, our
method gives us direct control over �K �and parallel momen-
tum �k�� of the tunneling electrons, and this enables us to
directly measure the energy dependence of the tunneling by
varying Vdc.

A. Capacitance-frequency and capacitance-voltage

A representative series of sweeps of capacitance versus
frequency at different Vdc is shown from sample N in Fig. 5.
Two regimes of bias dependence can be seen in panels a and
b of Fig. 5. In Fig. 5�a�, the principal change is an overall
shift to higher frequencies for increasing Vdc �and therefore
decreasing nS�. In Fig. 5�b�, however, Vdc becomes large
enough to deplete the QW, reducing the low-frequency limit
of the capacitance until the QW is fully depleted, at which
point the capacitance becomes constant with frequency.

The complementary measurement is shown in Fig. 5�c�,
where we report the voltage dependence of the capacitance at

constant frequency. At low frequency �500 Hz�, the measured
capacitance mimics the energy dependence of the thermody-
namic density of states g2D of the 2DEG, which would be a
step function in the absence of impurity-induced subband
broadening. For comparison, we show simulations of the
low-frequency capacitance of the device, which were calcu-
lated within a charge-step model28 using a self-consistent
Schrodinger-Poisson solver based on Ref. 29. The only input
to these calculations was the expected sample structure; there
were no free parameters. Near Vdc�0 V, electrons have suf-
ficient energy to access the 2DEG, and the capacitance is
maximal. As Vdc is increased past �0.25 V, however, �0
becomes greater than �2D. Electrons can therefore no longer
access states in the QW, and the capacitance drops.

Also shown in Fig. 5�c� are capacitance-voltage sweeps at
higher frequency. The maximal capacitance of these traces is
lower than that of the 500 Hz trace because Vac is oscillating
too rapidly for electrons to tunnel between the injector and
2DEG to maintain quasiequilibrium between �2D and �I. As
can be seen in panels a and b, even 10 kHz is well above the
low-frequency regime of the device. For an oscillation fre-
quency f of 1 MHz, there is negligible tunneling because the
tunneling rate is orders of magnitude smaller than f , and the
capacitance therefore has very little dependence on Vdc. �This
range of Vdc leads to negligible change in the thickness of the
depletion region of the 3D regions because of the high dop-
ing level; otherwise some decrease in capacitance with Vdc
would be expected even for high frequencies.�

We expect the behavior of samples S and S2 to be domi-
nated by scattering-assisted tunneling, which should lead to a
qualitatively different dependence on Vdc in these samples.
This is confirmed in the capacitance-frequency sweeps on
sample S shown in Fig. 6. In particular, the roll-off frequency
abruptly drops by two orders of magnitude for Vdc near 210
mV. Also, the capacitance-frequency trace taken in the
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FIG. 5. �Color online� ��a� and �b�� Capacitance-frequency data
from sample N taken over a sequence of Vdc for T=4.2 K and
Vac=5 mVrms. Points are data, lines are fits to data using the
equivalent circuit of Fig. 2�b�. According to our bias convention, nS

decreases with Vdc. �a� 100 mV steps in Vdc. The QW is occupied in
all traces. �b� 25 mV steps in Vdc. This range of Vdc depletes the
QW, reducing the low-frequency limit of the capacitance. �c�
Capacitance-voltage data from the same device taken at various
values of f �lines with symbols�. Also shown are two charge-step
simulations of the low-frequency capacitance with different QW �
dopings: 1�1011 cm−2 �solid line� and 2�1011 cm−2 �dashed
line�. The abrupt step of the simulations is not observed in the data
because the added impurities make the ground-state energy nonuni-
form across the sample.
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middle of the transition at Vdc=210 mV �the trace labeled X
in Fig. 6� is not as well described by the equivalent circuit as
the traces taken at Vdc higher or lower by �30 mV. In
sample N, in comparison, the equivalent circuit describes the
data accurately for all values of Vdc. To more quantitatively
analyze these effects, we extract the values of �rc that result
from the fits. These are plotted, along with data from samples
N, NU, and NTU, in Fig. 7.

B. Quasibound state lifetime versus energy

The values of �rc in Fig. 7, obtained from fits to the
capacitance-frequency curves of Fig. 6, are plotted versus �F,

which was determined for each sample from calibrations of
nS versus Vdc, as described in Sec. II. Data from all samples
are shown, except for sample S2, which is omitted for clarity.
Also plotted are calculations �labeled “Calc”� of �� for
momentum-conserved tunneling that are described in Appen-
dix C. Because there is no applied magnetic field, it is rea-
sonable to assume gs�g2D �at least at high nS�, and thus we
should be able to directly compare these calculations of ��

with the measured �rc. These calculations are self-consistent
and include effects such as band bending, wave-function
penetration into the barriers, and position- and energy-
dependent effective masses. Equation �1� provides a simple,
intuitive framework through which we can interpret the gen-
eral features of the data and numerical calculation. While �K
does not explicitly enter into the description of tunneling in
Eq. �1�, the calculations of �� shown in Fig. 7 increase with
�F. This is because both �0 and, to a lesser extent, the tunnel
barrier potential energy � must decrease relative to the po-
tential energy of the injector to accommodate an increase in
nS in order to satisfy the Pauli exclusion principle. The ef-
fective barrier height �−�0 of Eq. �1� therefore has an indi-
rect dependence on �F, causing �� to increase with �F in the
calculations. This effect is more pronounced in the calcula-
tion of sample S because of its thicker tunnel barrier.

As is evident from Fig. 7, measured �rc from samples N,
NU, and NTU all agree with their respective momentum-
conserved calculations of ��. This is in agreement with the
expected transport behavior of these devices from Fig. 3. In
contrast, for sample S the data and the momentum-conserved
calculation do not agree. In this sample the measured �rc
actually decreases with �F, indicating that, in agreement with
the predictions of Sec. III, the tunneling in this sample is
dominated by scattering-assisted tunneling.

We can use Eq. �2� to predict the energy dependence �that
is, the slope of the line in Fig. 7� of the scattering-assisted
tunneling lifetime for sample S. �Note that this estimate as-
sumes that the scattering rate �S is constant with energy; we
will discuss the additional energy dependence of �S below.�
The slope of this estimate �S: Eq. �2�� is slightly steeper than,
but a reasonable approximation of, the slope observed ex-
perimentally. The magnitude of the estimate �i.e., the vertical
position of the line� is proportional to the scattering time �s
=1 /�S,

�� = �
�s

TS
, �9�

where � is an unknown proportionality constant. We can
estimate what we would expect for �s from the Lorentzian
half width of the Landau levels30 �not shown�. The half width
��� is approximately 3 meV and is approximately indepen-
dent of field �as in Ref. 30�. This yields �s=� /��2
�10−13 s. The other parameter from Eq. �9�, �, is unknown,
so we simply use it as a fitting parameter. The fit shown in
Fig. 7 was achieved for �=0.005. To gauge whether this
value for � is reasonable, we note that a similar expression
for �� is true of the momentum-conserved approximation
from Eq. �1�: ��=� /�0T0, where �0=�0 /� is the semiclassi-
cal tunneling attempt frequency and � is some unknown pro-
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is decreased, states in the QW become available, thus increasing the
low-frequency capacitance, although the roll-off frequency remains
relatively constant. As Vdc is decreased near the conditions of trace
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portionality constant. Agreement with experiment requires
��0.01, in approximate agreement with �.

As discussed in Ref. 9, Eq. �2� provides an estimate of the
tunneling probability in the asymptotic limit of a very thick
barrier. Although the TB in sample S is only 40 nm, this
estimate provides a good description of the energy depen-
dence of �rc, at least over a large range of �F. For �F near 0
meV, however, �rc changes abruptly by two orders of mag-
nitude. We believe this change is due to two effects not cap-
tured by Eq. �2�: the possible formation of a Coulomb gap in
the single-particle density of states at low nS �Ref. 19� and
the energy dependence of �S.

The formation of a Coulomb gap would increase the ratio
g2D /gs, leading, via Eq. �3�, to an increase in �rc. However,
we do not expect the formation of a Coulomb gap to cause
g2D /gs to increase by nearly two orders of magnitude �one
order of magnitude or less would be more consistent with
previous results19�. Our results therefore suggest that �S has a
strong energy dependence near �0, regardless of whether a
Coulomb gap is formed.

In general, �S represents a sum of individual processes
such as impurity, alloy, electron-electron, and electron-
phonon scatterings. These various scattering mechanisms
each depend on quantities such as �K or temperature, and
thus �rc will also depend on these quantities in samples
dominated by scattering-assisted tunneling. This offers a pos-
sible explanation for the abrupt change in �rc that occurs at
low �F. For low nS �and thus low �F�, the nonuniformities in
potential energy that occur across the device become large
compared to �F �which is simply an average value across the
device�, and as nS is further decreased, carriers in the QW
can become strongly localized in isolated “pockets” of
electrons.31 Well-width fluctuations of a single monolayer �
�0.6 nm� have been shown to lead to such localization in
thin QWs,32 and in our system additional potential fluctua-
tions result from the QW � doping. Once the electrons are
strongly localized, the system is said to have undergone a
metal-insulator transition.31,33

If the electrons are localized to effectively zero-
dimensional quantum dots, then the density of states avail-
able for scattering will be restricted and scattering will be
quenched, leading to a large decrease in the tunneling rate
through the barrier. In this case, �s should increase greatly as
the QW is depleted. As �s increases, so should �rc, but only
in devices dominated by scattering-assisted tunneling. Al-
though we can only speculate as to the scale of localization
in our devices and whether it is sufficiently small to quench
scattering in our devices, we do observe such an abrupt in-
crease as the QW is depleted but only for samples S and S2.
These two samples are also the only two we measured in
which �rc decreases with �K, the hallmark of transport domi-
nated by scattering-assisted tunneling.

Because this localization will not occur uniformly across
the device, we also expect it to alter the line shape of the
frequency dependence of the capacitance. As scattering is
quenched in some regions of the device and not in others,
large variations in �rc will occur across the device. The char-
acteristic capacitance roll-off that we observe from a single
value of �rc will be broadened by the distribution in �rc, as is
observed for trace X in Fig. 6. This could therefore also

explain the poor agreement between this trace and the fit
using our equivalent circuit model.

A similar form of localization-induced quenching of scat-
tering occurs in the presence of a perpendicular magnetic
field; it is the origin of the quantum Hall effect.3 As we show
in the following section, the samples dominated by
scattering-assisted tunneling also display abrupt increases in
�rc at the specific values of Vdc and magnetic field at which
the integer quantum Hall effect is observed in lateral trans-
port measurements.

V. EXPERIMENTAL RESULTS: MAGNETIC FIELD
DEPENDENCE

Our measurements of the energy dependence of
scattering-assisted tunneling suggest that localization can
quench scattering within the 2DEG and cause �rc to increase
by orders of magnitude. To further probe this possibility, we
apply a magnetic field perpendicular to the plane of the
2DEG. This leads to localization effects that are periodic in
1 /H, where H is the applied magnetic field: at integer values
of the filling factor �=nSh /qH, electrons at the chemical
potential are unable to scatter into counter-propagating states
because they are trapped in edge states or along local equi-
potentials. This localization leads to quenching of the scat-
tering within the 2DEG and is the origin of the integer quan-
tum Hall effect.3

At even integer �, the same values at which the integer
quantum Hall effect is most readily observed, �rc increases
drastically in samples S and S2, as shown in Fig. 8�a�. This
effect only occurs in samples that show the zero-field energy
dependence characteristic of scattering-assisted tunneling.
Because these peaks in �rc only occur at specific values of H
corresponding to even integer � within the 2DEG, and be-
cause they are only present in samples dominated by
scattering-assisted tunneling, we believe they result from
quenching of the scattering within the 2DEG by the same
mechanism that causes the integer quantum Hall effect, mag-
netic field-induced localization.

As can be seen in Fig. 8�b�, all of the samples show simi-
lar quantization of g2D into Landau levels. These values of
g2D were determined simultaneously with �rc from fits using
the equivalent circuit of Fig. 2 �recall that g2D is proportional
to CQ�. The values we measured agree well with previous
magnetocapacitance measurements.16 Additionally, there is
quantitative agreement between our results and the model
given in Ref. 34. This model represents g2D as a sum of
Gaussian Landau levels of rms half width �LL. As in Ref. 34,
we find best agreement when �LL is proportional to �H. Our
best-fit prefactor of 1.22 meV /T1/2 is significantly larger
than their �1 meV /T1/2�, which is consistent with our
samples having a significantly lower mobility. The best-fit
value of the effective mass is equal to the bulk value of
0.043m0;35 as expected, the mass enhancement due to non-
parabolic bands in the QW is minimal because the wave
function extends far into the quaternary barrier where non-
parabolicity decreases the effective mass.36 Because these
values of g2D agree quantitatively with both predicted values
and previous measurements and were obtained simulta-
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neously with �rc from the fits using the equivalent circuit, we
can be confident that the peaks in �rc in Fig. 8�a� are real
variations in �rc and are not simply the result of errors in
fitting or analysis.

In sample N, the measured g2D is slightly noisier than in
samples S or S2; this is due to the significantly thinner TB in
sample N, which results in a smaller change in capacitance
as the QW is depleted. Also, the low-field value of g2D in
sample N is slightly larger than in samples S and S2. This
difference corresponds to an effective mass that is �10%
larger in sample N, which is due to nonparabolic band en-
hancement of the effective mass for stronger confinement
within the QW. The size of this enhancement is consistent
with that observed in cyclotron resonance measurements on
similar structures.37

There are two small dips in g2D in samples S and S2
adjacent to the minimum at �=4; these are fitting artifacts
that occur because �rc is varying rapidly, leading to signifi-
cant variations across the device and poor fits using the
equivalent circuit, as in trace X of Fig. 6. The fits �and hence
values of g2D� at �=4 are more accurate because d�rc /dH
=0 at the local minimum.

We also observed a strong temperature dependence of the
peaks in �rc. Although we have not yet made a thorough
investigation of this dependence, we note that for the peak at

�=4 in sample S in Fig. 8�a�, �rc decreased by an order of
magnitude as the temperature was raised from 1.85 to 5 K.
Values of �rc adjacent to but off of the peak stayed relatively
constant at �rc�1 �s.

The data shown in Fig. 8 were taken by sweeping H at a
single fixed value of Vdc. The complementary measurement,
sweeps of Vdc at fixed H were also performed, an example of
which is shown from sample S at higher temperature �T
=5 K� in Fig. 9�a�. Note that the peak in �rc at �=4 is an
order of magnitude smaller than the corresponding in Fig. 8,
which was measured at T=1.85 K.

To confirm that the features we observe are correlated
with Landau-level filling, we performed several sweeps ver-
sus Vdc and H. The locations of the peaks in �rc were re-
corded in a fan diagram, as shown in Fig. 9. Also shown are
the locations of minima in magnetocapacitance traces, which
have been shown to be related to minima in the density of
states between Landau levels.38 The slopes of the least-
squares fits yield estimates of � that confirm that the effect
we observe occurs at even integer �. We see an additional
smaller peak in �rc that appears to be related to �=1, al-
though additional measurements at higher H are needed to
make a more accurate characterization of the feature. There
is no intrinsic reason that peaks in �rc should not also appear
at odd �; however, as in the quantum Hall effect, features at
odd � require the electrons to become spin polarized and
therefore typically appear at higher H than features at adja-
cent even values of �.3 The onset of these features may be
further delayed by the strong disorder in our system.39
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state lifetime ��rc� and �b� the 2DEG thermodynamic density of
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by orders of magnitude in samples S and S2. The features at �=6
and 8 are less pronounced because the Landau-level splitting is
smaller at lower H. �b� We also see pronounced dips in g2D at even
integer �, indicating that all three samples show the expected for-
mation of Landau levels. The fit represents the expected behavior of
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Few mechanisms other than quenching of the scattering
seem adequate to explain the observed peaks in �rc. The for-
mation of a field-induced Coulomb gap �that is, a decrease in
gs� has been observed in 2D systems such as ours,18,19,40 and
this would modify �rc via Eq. �3�. However, �rc also depends
on g2D, which has been shown to vary much more strongly
with Landau-level filling factor � than does gs.

18 As a result,
the ratio g2D /gs should vary with � in a way qualitatively
similar to g2D, with possibly a additional slowly varying
change due to gs. We therefore expect that if �� were con-
stant, we should observe dips in �rc at even integer �. This is
what is observed in sample N in Fig. 8 as well as in sample
NU in Fig. 10. �Incidentally, this validates the analysis of
Ashoori et al.18,19 in which �� is assumed to be constant.�
Such dips are also observed in samples S and S2 in Fig. 8 at
low H and in the regions adjacent to even integer � at higher
H. This suggests that the effects of g2D and gs are similar in
all of the samples, as is expected since it is a characteristic of
the 2DEG �the characteristics of which are nominally iden-
tical in all the samples� and not of the tunnel barrier.

Furthermore, the temperature dependence of gs has been
shown to be independent of �. In sample S, in contrast, we
observed that the peaks in �rc �which occur at even integer ��
were strong functions of temperature in the range 1.85–5 K,
whereas values of �rc adjacent to but off of the peaks stayed
relatively constant.

The scale of resistance change we observe also does not
seem consistent with the presence of weak points or defects
in the tunnel barrier. Such defects would have a much lower
tunneling lifetime than the rest of the QW, leading to signifi-
cant lateral current spreading within the quantum well that
would be suppressed at even integer � and low nS. However,
it is clear from the frequency dependence of the impedance
in sample S at �=4 �plotted in Appendix B� that the frac-
tional area occupied by weak points is a few percent or less.
This implies that the conductivity of the weak spots must be
at least four orders of magnitude larger than that of the rest
of the barrier to explain the 100-fold increase in conductivity
away from integer �. It seems implausible that such a large
variation in tunnel barrier conductivity would occur system-
atically across multiple devices in high-quality MBE-grown
material. Moreover, samples with thin tunnel barriers �N,
NU, and NTU�, which would seem most prone to growth
problems such as dopant diffusion, never exhibited the large
spikes in �rc that were observed in samples S and S2. Fur-
thermore, such highly conducting defects were not observed
in the insulating barriers of samples S and S2, and the qua-
ternary barriers in those samples were grown as a digital
alloy of ternary layers �1.5 nm superlattice period� in order to
avoid any problems specific to the growth of quaternary al-
loys.

Another aspect of our data that cannot be explained by
defects in the tunnel barrier is the dependence of �rc on nS in
samples S and S2 at zero magnetic field. If our measurement
were probing the tunneling resistance of a defect and
scattering-assisted tunneling were not a factor, then the tun-
neling lifetime should increase with nS as in the control
samples, which is not what we observe. On the other hand, it
would also be immediately evident if the defect had negli-
gible resistance and we were probing the lateral resistance of
the quantum well �i.e., current spreading from the weak
point, which would become more conductive with nS and
therefore at first glance might seem to explain our data�. In
that case the effective/active area of the 2DEG would be-
come frequency dependent, resulting in very poor agreement
with our equivalent circuit model, and the measured 2DEG
thermodynamic density of states would become strongly de-
pendent on carrier density, which we also do not observe.

We therefore conclude that our samples behave as de-
signed: the control samples �N, NU, and NTU� are domi-
nated by direct tunneling, whereas samples S and S2 are
dominated by scattering-assisted tunneling that can be
quenched at even integer � and at low nS.

VI. OUTLOOK

As we have shown, it is possible to utilize scattering-
assisted tunneling as a novel, nonlocal probe of lateral trans-
port within a 2DEG. This opens the door to several new
research directions, such as probing the onset of localization
in 2DEGs in the form of Wigner crystallization41 or Ander-
son localization31 at low nS in zero magnetic field, where
sample resistance becomes too high for lateral transport mea-
surements. It may also enable the investigation of electron
scattering within the interior of quantum spin Hall systems,

10−7

10−6

10−5

10−4

G
T
B
,
G

A
s
h
o
o
r
i

tu
n

(Ω
−
1
)

ν = 4

ν = 2

GTB

GAshoori
tun

−0.3 −0.2 −0.1 0.0 0.1 0.2

VDC (V)

10−11

10−9

10−7

10
−5

10−3

10−1

101

103

105

107

C
Q
(F
),
G

−
1

T
B
(Ω

),
τ
r
c
(s
)

G
−1

TB

CQ

τrc = CQG
−1

TB

FIG. 10. �Color online� Tunneling conductance calculated by
two equivalent models �top panel� and the components of �rc �bot-
tom panel� plotted versus Vdc for sample NU at H=6 T and T
=5 K. The comparison between our analysis technique and that of
Ashoori et al. �top panel� shows that the two yield almost identical
results. The pronounced dips in GTB that occur at �=2 and 4 reflect
dips in gs. These appear as peaks in the plot of GTB

−1 �bottom panel�.
The plot of �rc nevertheless exhibits dips at �=2 and 4 because the
dips in CQ at these values of Vdc are more pronounced than the
peaks in GTB

−1 .

SCATTERING-ASSISTED TUNNELING: ENERGY… PHYSICAL REVIEW B 82, 115322 �2010�

115322-9



which have recently shown edge state transport similar to the
quantum Hall effect at zero magnetic field.42

At nonzero magnetic field, further measurements are
needed to explore the dependence on temperature and carrier
density of scattering-assisted tunneling at integer �. At lower
temperatures and higher magnetic fields, it is also possible
that this technique could be used to probe the fractional
quantum Hall effect. However, proper sample design will be
critical because the fractional quantum Hall effect is only
observable in high-mobility samples43 where there is little
scattering to cause scattering-assisted tunneling. Also, at
lower temperatures it is unclear whether the Coulomb gap18

will become so large as to be an impediment to our ac mea-
surement technique. However, it is possible that our ap-
proach is more sensitive to scattering than lateral transport
measurements, which could enable measurements of local-
ization in regimes of mobility and temperature that do not
exhibit localization in lateral transport measurements.

Beyond characterization of scattering in 2DEGs, there are
other conceivable applications for scattering-assisted tunnel-
ing. For example, a device dominated by scattering-assisted
tunneling could yield spin-polarized transport if the scatter-
ing were spin dependent. The design of the tunnel barrier
would greatly enhance the tunneling rate of scattered elec-
trons �as it does in samples S and S2�, thereby functioning as
a filter for scattered electrons. If carriers of only one spin
species were scattered, then the tunnel current would be spin
polarized.

In sum, we have directly measured the energy dependence
of transport dominated by scattering-assisted tunneling and
demonstrated its sensitivity to scattering within a buried
2DEG. By making transport in one direction a function of
transport in other directions, scattering-assisted tunneling of-
fers a unique coupling that will undoubtedly find additional
applications.
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APPENDIX A: DERIVATION OF EQUIVALENT CIRCUIT

There are two popular approaches that can be used to
analyze capacitive devices like ours, with the primary differ-
ence between the two being the treatment of the capacitance
of the 2DEG �which we will call the quantum capacitance
CQ following Ref. 26�. In the treatment of Ashoori et al.,19

for example, the device is modeled with an equivalent circuit
that does not explicitly include CQ, and CQ �or, equivalently,
the 2DEG thermodynamic density of states� must be calcu-
lated separately. In the analysis of Luyken et al.,24 CQ is
treated explicitly. While the two methods of analysis are ul-
timately equivalent, it is important to not confuse the two

approaches. For example, the lifetime �rc=RTBCQ that we
extract from our equivalent circuit is not able to be described
using the equivalent circuit of Ashoori et al. because that
circuit does not include CQ.

Both approaches begin with an equation �Eq. �1� in Ref.
24 or Eq. �A4� in Ref. 19� describing the tunneling current
between the injector and the 2DEG,

d�2D

dt
=

1

��

qgs�� , �A1�

where �2D=qnS is the charge density in the QW, �� is the
quasibound state lifetime of the QW, gs is the 2DEG single-
particle density of states �which governs the tunneling rate�,
and ��=�I−�2D is the chemical potential difference be-
tween the injector and 2DEG.

We calculate the electrostatic response of the device, fol-
lowing the analysis of Luyken et al., as

qg2D�� = − ��2D + q2g2D�� , �A2�

where ��2D is the net difference between �2D and its time-
averaged value; and �� is the change in electrostatic poten-
tial between the injector and QW, which accounts for both
the effects of electron charging in the QW and the applied
bias Vac=V0ei�t. Note that the thermodynamic DOS g2D is
the relevant quantity here. Without loss of generality, we can
define s such that s=gs /g2D. Multiplying both sides of Eq.
�A2� by s and plugging into Eq. �A1�, we arrive at

d�2D

dt
=

d��2D

dt
= −

s

��
���2D −

CQ

A
��	 , �A3�

where CQ=q2g2DA for device area A.
The difference between the electric fields in the tunnel

barrier and insulating barrier is proportional to the sheet
charge of the 2DEG, which allows us to find ��,

�� =
CG

CTB + CG
V0ei�t −

A

CTB + CG
��2D, �A4�

where CTB and CG are the geometric capacitances of the
tunnel barrier and insulating barrier, respectively. Defining
�rc=�� /s, we arrive at the nonhomogeneous differential
equation

d��2D

dt
+

1

�rc
�1 +

CQ

CTB + CG
	��2D

=
1

�rc

CGCQ

CTB + CG

V0

A
ei�t, �A5�

which has the solution

��2D =
V0

A
ei�t CGCQ

�

CTB + CG + CQ
� , �A6�

where CQ
� =CQ / �1+ i��rc�. Using Eq. �A4�, it is trivial to find

��I, the charge density change on the injector,
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��I =
CTB

A
�� =

CTB

CQ
� ��2D. �A7�

Note that in the limit �rc→0 this relation reduces to
��I /��2D=CTB /CQ, consistent with the calculation of
Luryi.26

We thus arrive at the equation determining the current
response of the device,

I�t� = A
d

dt
���2D + ��I� = i�V0ei�tCG

CTB + CQ
�

CTB + CG + CQ
� ,

�A8�

which is equivalent to that of the circuit shown in Fig. 2,
provided that RTB=�rc /CQ.

In Fig. 10�a�, we compare this analysis with that of
Ashoori et al.18,19 in which they use a different equivalent
circuit �but equivalent overall analysis� to find the tunneling
conductance Gtun

Ashoori=q2Ags /��. By our analysis, this is
given by GTB=CQ /�rc. It is apparent from the close agree-
ment of the two traces that these two analyses are equivalent.

Figure 10�b� provides a visual description of why we ob-
serve dips in �rc at even integer � in samples with
momentum-conserved tunneling. Essentially this is because
g2D varies more strongly with � than does gs.

APPENDIX B: FITTING

The fitting of the complex impedance using the equivalent
circuit of Fig. 2�b� was done using the least-square function
of the mathematical software package OCTAVE. We obtained
identical results using the Fortran library MINPACK from
within the statistical software package R. CG was held fixed
at an estimated, bias-dependent value during fitting. Using
Eq. �A8�, we fit the impedance of the device using CQ and
�rc=RTBCQ as free parameters rather than CQ and RTB inde-
pendently. The 95% confidence interval of the fit parameters
was typically less than 10% of their value. Error in estimated
CG leads to additional uncertainty in �rc ��10%� but such
error results in a systematic shift in �rc and does not signifi-
cantly affect our analysis.

Example fits from samples N and S are shown in Fig. 11.
It is evident that the equivalent circuit provides an accurate
description of device behavior in both cases. Figure 11�a�
shows sample N �a control sample� under conditions of zero
magnetic field and zero applied bias. In Figs. 11�b� and
11�c�, data are shown from sample S over a range of � in-
cluding �=2. At �=2, lateral transport within the 2DEG is
suppressed, quenching scattering. These conditions also
serve to isolate any conductive defects in the barrier, pre-
venting current fan-out from the defect within the QW. Thus,
if a significant area of the tunnel barrier were defective, it
would be manifested as a significant broadening of the fre-
quency dependence in Figs. 11�b� and 11�c�. Although the
fits are not perfect, they are closer than would be possible if
even a few percent of the area of the tunnel barrier were
defective. The slight broadening that is observed �relative to
the fit to the equivalent circuit� is not surprising; any areas of
the sample in which scattering has not been fully quenched

at 6 T will tunnel with a faster rate. Supporting this interpre-
tation is the observation that the quality of the fit at �=2
continually improves as H is increased to 6 T, the maximum
field attainable in our system, and we therefore expect that
the quality of the fit would be even better at higher magnetic
fields. Also, because of the large QW impurity concentration
in this sample, the Landau levels are not fully formed, g2D is
still measurably large at �=2, and thus even at �=2 there is
a capacitance step at low f . Over the plotted range of Vdc,
g2D changes by slightly more than a factor of 6.

APPENDIX C: CALCULATION OF �� IN THE ABSENCE
OF SCATTERING

We can compare our measured values of �rc with theoret-
ical estimates of ��, which we calculate in the absence of
scattering using the energy width � of the quasibound state
resonance. First we found the self-consistent potential-
energy profile of our device using a conventional
Schrödinger-Poisson solver based on Ref. 29. This calcula-
tion finds the quasiequilibrium distribution of charge across
the device, accounting for such effects as conduction-band
bowing within the QW and wave-function penetration into
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FIG. 11. �Color online� Measured capacitance and loss tangent
versus frequency �symbols� and fits to both components of the data
simultaneously using the equivalent circuit of Fig. 2�b� �lines�. �a�
Sample N measured at H=0 T, Vdc=0 V, and T=4.2 K. ��b� and
�c�� Sample S measured at a variety of Vdc with T=5 K and H
=6 T. The bias Vdc=30 mV corresponds to �=2; Vdc=−60 mV
corresponds to midway between �=2 and 4.
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the barriers. Using the equilibrated conduction-band profile,
we then solved the Schrödinger equation for the entire device
�including the 3D conducting contacts, which enter as self-
energies� using a nonequilibrium Green’s-function �NEGF�
formalism within a single-band effective-mass model. Gen-
erally we followed the treatment of Refs. 11 and 44. It should
be noted that the plane-wave eigenstate basis was used for
the transverse directions and no transitions between states of
different k� were allowed, thereby ensuring momentum is
conserved in the plane of the QW.45 �We did not use the
NEGF formalism to find the self-consistent conduction-band
profile because the width of our quasibound state resonance
is so small that the calculation would have had to been per-
formed at a prohibitively large number of energies.� The
NEGF calculation determined the spectral function
A�z ,z� ,�z� of the device, where �z is the energy associated
with motion in the z direction. The diagonal elements of A
�elements for which z=z�� are proportional to the density
matrix of the system.44 For energies near the quasibound
state resonance, the energy dependence of A�z ,z ,�z� for z in
the center of the QW can be approximated with a Lorentzian
function,

A�zQW,zQW,�z� =
�

��z − �0�2 + ��/2�2 , �C1�

where �0 is the energy of the center of the resonance, � is its
characteristic width, � is a proportionality constant, and z
=zQW in the center of the QW.44 We extract � from the cal-
culation of A by fitting A with the function in Eq. �C1�.
Typical values for � were of order 10−11 eV. The tunneling
rate 1 /�� is related to the width of the quasibound state reso-
nance by 1 /��=� /h,46 which allows us to easily find ��.

Adding scattering to this calculation is not trivial because
once the quasibound state is “dressed” by scattering interac-
tions, it will in general no longer have a Lorentzian energy
profile,47 and ��=h /� will no longer hold. Well-developed
methods11,44,45 of calculating transport in the presence of
scattering typically treat only steady-state transport, which is
negligible in our devices. Although fully quantum mechani-
cal calculations of scattering-assisted transport in our device
are clearly needed, they are outside the scope of our experi-
ment.
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