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Abstract. Recently, Brownian networks have emerged as an effec-
tive stochastic model to approximate multiclass queueing networks with
dynamic scheduling capability, under conditions of balanced heavy load-
ing. This paper is a tutorial introduction to dynamic scheduling in man-
ufacturing systems using Brownian networks.. The article starts with
motivational examples. It then provides a review of relevant weak con-
vergence concepts, followed by a description of the limiting behaviour
of queueing systems under heavy traffic. The Brownian approximation
procedure is discussed in detail and generic case studies are provided to

. illustrate the procedure and demonstrate its effectiveness. This paper
places emphasis only on the results and aspires to provide the reader with
an up-to-date understanding of dynamic scheduling based on Brownian
approximations.
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1. Introduction

Scheduling as aresearch areais motivated by important resource allocation questions
that arise in manufacturing systems, computer systems, computer communication
networks, and in general, in all situations where scarce resources have to be allocated
to activities over time to appropriate servers (processors, machines, communication
channels, material handling devices, etc.) so as to optimize a performance criterion,
while satisfying a set of given constraints. Scheduling problems can be classified
as static scheduling problems when the jobs to be scheduled comprise a fixed set

~and dynamic when jobs can arrive into the facility in an ongoing and usually, in a

random fashion. Another usual way of classifying scheduling problems is to consider
them as deterministic or stochastic. In deterministic scheduling, job characterstics
such as processing times, due dates, and release dates are known with certainty
to the scheduler before the actual processing occurs. In stochastic scheduling, the
scheduler cannot observe the processing times in advance, but only has knowledge
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of a probability distribution for the various processing times. In this paper, the
emphasis is on dynamic and stochastic scheduling of multi-class queueing network
models of discrete event systems, using a class of heavy traffic approximations, called
Brownian approximations. Also all our motivating scheduling problems come
from the area of manufacturing systems, though the methodology that we discuss
is applicable, in general, to any discrete activity scheduling problem with dynamic
and stochastic characterstics.

1.1 Deterministic scheduling

Much of the research in the area of scheduling has focussed on deterministic schedul-
ing problems. Most of the scheduling problems in this area have been shown to be
NP- hard and researchers have explored several different approaches to confront NP-
hardness.

¢ Determine a lower bound on the cost of the schedule and then use a branch
and bound method to determine the optimal solution (Bagchi & Ahmadi 1987;
Beloudah et al 1988). However, this technique needs exponential amount of
computation time in the worst case.

o Use dynamic programming (Abdul-Razaq & Potts 1988; Baker & Ahmadi

+ 1978). This technique works very well for many scheduling problems, but like
branch and bound technique, needs exponential amount of computation time
in the worst case.

¢ Obtain sub-optimal solutions in polynomial time (Hochbaum & Shmoys 1988).
Such approximation algorithms are, however, applicable only in specific prob-
lem instances and do not yield general methods.

* Use simple heuristics (Gere 1987) such as EDD (Ealiest Due Date), SPT

(Shortest Processing Time), etc. Heuristics are very efficient and have the -

ability to react to dynamic changes and have widespread applicability. In
general, however, heuristics do not offer the guarantee that the solution is
within an acceptable margin of error when compared with the optimal solution.

* Lagrangian relazation based methods (Fisher 1973, 1981) which yield efficient
near-optimal solutions with measurable performance as well as important job
interaction information to accommodate dynamic changes and to handle new
jobs.

* More recently, randomized local search algorithms such as simulated annealing
(Van Laarhoven et al 1992) and genetic algorithms (Goldberg 1986) have been
applied to deterministic scheduling problems. Another paradigm that has also
been used in this context is newural networks (Levy & Adams 1987).

1.2 Stochastic scheduling

In the area of stochastic scheduling, the results are scattered and technically compli-
cated (Lawler et gl 1990); they rely on semi-Markovian decision theory and stochas-
tic dynamic optimization.. Important results in this dynamic optimization are sur-
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veyed by Lawler et al (1990), Weiss (1982), Pinedo and coworkers (Pinedo & Weiss
1980, 1987; Pinedo 1981-1983, Pinedo & Scrage 1982) and Forst (1984).

Single class and multiclass queueing networks constitute an important class of
stochasic models of discrete event systems (see Walrand 1988). The optimal schedul-
ing of such networks has been attempted by several researchers, but only with limited
success. Some of the notable efforts in this area include:

e Priority sequencing in single station queueing systems (Klimov 1974)

®

Optimal dynamic scheduling in Jackson networks (Ross & Yao 1989)

@

Optimal scheduling control in a flexible machine (Yao & Shantikumar 1990)

e Optimal control of interacting service stations (Hajek 1974)

Optimal control of service rates in networks of queues (Weber & Stidham
1987)

o Optimal control of admission to a queueing system (Stidham 1985)

However, according to Harrison & Wein (1989), a satisfactory theory for sequenc-
ing and scheduling in a queueing network setting has yet to be formulated. Discrete
event simulation continues to be the primary tool of analysis and the best hope for
further progress appears to be in the analysis of cruder and more tractable models.

Recently, Brownian networks (Harrison 1988) have emerged as an effective stochas-
tic model to approximate multiclass queueing networks with dynamic scheduling
capability, under conditions of balanced heavy loading (see §3). A Brownian net-
work is a crude model but highly tractable and successful in the context of dynamic
and stochastic scheduling of queneing networks. This paper attempts to survey the
important results in this area. In particular, we present:

o foundational aspects of Brownian networks as applied to the modeling of mul-
ticlass queueing networks, ‘

o methodological details of how sequencing and scheduling problems can be
approached via the Brownian approximation,

o several illustrative case studies to gain insight into specific methodological
details.

Since this paper is intended as a tutorial review, we have used extensively the
results from many important papers in this area. These papers include: Harrison
(1988), Harrison & Wein (1990), and Wein (1990, 1992). Wherever highly relevant,
we shall again explicitly provide a reference to these papers.

1.3 Motivational examples

In this section we describe some scheduling problems that occur in dynamic and
stochastic environments through some simple and illustrative manufacturing system
examples. o '
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1.3.1 A maulticlass make-to-stock queue

Raw material [nventory
Demand
Product 1 Product 1
[ ] ®
D‘ [m: Demand !
Product K _J Product K
Figure 1. A single machine make-to-stock system.
We shall consider a system with K = 5. The class designations summarize all rele-
vant information with regard to processing times and demand patterns of respective
products as given below: x
e Class I: Product’s processing time is low but demands arrive frequently for sb
. H
1t. “HL -
¢ Class 2: Products have long processing times but demands arrive occasionally
for them.

e Class 3: These are high priority products with medium processing times and

nominal demands. Waiting times of customers arriving for these products 1
shold be low. '

o Class 4: These are products with medium processing times but very high
demands.

i

e Class 5: For these products Processing times are medium and demands are
occasional.

An arriving class k customer takes .a product of the same class, if available; oth-
erwise, backorders for one. Linear costs per unit time are incurred for holding
inventory and for backordering. - : A

In a realistic scenario, actual processing times‘are not known with certainty and
one can only have a knowledge of probability distributions of various processing
times. It is common that every such manufacturing system experiences some amount
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of variability in estimated processing times. Also, sometimes these variations turn
out to be unprediclable. For example, variations due to rework, machine failure etc.
fall under this category. These variations will have impact on costs incurred by the
system. For instance, long processing times may reduce inventory holding costs but
at the same time they incur high backordering costs. Also, variations in interarrival
times of demands produce similar effects. Hence, given the stochastic nature of the
problem, deterministic scheduling is less realistic than dynamic scheduling. Further,
scheduling policies which perform well in the determinstic setting may not perform
well in stochastic setting.

A typical dynamic scheduling decision for the foregoing problem consists of choos-
ing among the following options at each point in time:

e cither work on a class k job, k = 1,...,5
e or allow the machine to idle.

Using Brownian analysis methodology, Wein (1992) derived a dynamic scheduling
policy for a make-to-stock system under general service distributions and renewal
demand patterns. The decision as to whether a machine is to be kept busy or idle
at any time point is dictated by the weighted inventory level process (which is a
weighted sum of inventory levels of each class, the weights being mean processing
times.)at that time. The priority decision derived is reminiscient of the well known
cu - rule, which awards priority to the class with the largest value of the index cjug
where ¢ is the holding cost and puy is the service rate. This policy is discussed
in detail in §4.1. Simulation results showing comparison of this policy with other
conventional policies are also presented.

1.3.2 A re-entrant line

Re-entrant lines are queueing network models for wafer fabrication in a semi-condue-
tor manufacturing system. Wafer fabrication involves a large and complex sequence
of processing steps. A charecterstic feature of wafer fabrication is re-entrancy, that
is each wafer visits the same machine centre multiple number of times. Figure 2
depicts a three-station re-entrant line with a single job type.

1 2
S >
3
Z T
M/C 1 » M/C2 =+ M/C3
6
8 T )
9 | 10 1 Exit

Figure 2. A three station re-entrant line.
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Each job has its own deterministic route through the network. We can define a
different customer class for each operation of each job. For example, in figure 2, a job
has to undergo 11 stages of operation and hence, has eleven classes associated with it.
Each job class has its own processing time distribution and different classes contend
for service at the same machine center. If the population size of jobs circulating
in the system is held constant,i.e., a new job is admitted whenever a job leaves

the network, then the above system can be modeled as a three station multiclass:

closed queueing network. A scheduling problem of relevance in this context is to
choose a policy which, at each point in time indicates which class to be serviced at
each station. Some of the conventional policies employed in scheduling a re-entrant
line are FCFS, FBFS (First Buffer First Served), LBFS (Last Buffer First Served),
SEPT (Shortest Expected Processing Time) etc.

In re-entrant lines, processing times of various operations are susceptible to un-
predictable variability mainly because of complexity and precision requirements in-
volved in performing the operations. Furthermore, due to multiple visits of jobs,
many machine centres will be heavily loaded and thus become bottlenecks. In the
example shown in figure 2, stations 1 and two are bottleneck stations. These bot-
tlenecks are precisely where large queues form, where most of the waiting time is
incurred and where scheduling will have biggest impact. Hence, under such scenario,
utilizations of the bottleneck machines should be as high as possible to reduce cycle
times and this can be affected through scheduling decisions which take into account
the state of the system at any point in time.

A similar scheduling problem for two station closed queuneing network is considered
in Harrison & Wein (1990) and the scheduling decision considered there is referred
to as workload balancing rule. It is a static priority sequencing policy, which assigns
priority at any station according to an index rule which aims at minimizing workload
imbalance between the two stations and there by enhancing the utilization levels of
the machines.

This policy works well when the network has more than one bottleneck stations
and not too many non-bottleneck stations. If the network has only one bottleneck
it is difficult to affect utilizations of bottleneck machines because there are no other
bottleneck stations to feed it. Similarly, presence of too many non-bottleneck sta-
tions prevent bottleneck stations to feed one another in an effective manner. Details
of this policy are given in §4.3. A simulation study is conducted using the workload
balancing policy, on the above re-entrant line examples. Section 4.3 also contains
results of these experiments.

In the example of figure 2, one can easily see that hy admitting a new job into the
network, the number of customers of each class goes up by one. Thus, if an open
loop release policy which pushes jobs into the system without observing the state
of the system is followed then the WIP (Work-In-Process) inventory levels shoot
up drastically. From Little’s law, it is known that for a given mean arrival rate,
mean cycle times are directly proportional to mean WIP. However, the relationship
between mean throughput rate and mean WIP is highly non-linear and dependent on
the scheduling policy. Using an effective job release policy and a priority sequencing
policy combination one can achieve high throughput rates while maintaining low
levels of WIP.

An interesting job release policy, known as workload regulating policy, is consid-
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ered in Wein (1990b). This policy injects a job into the system whenever the amount
of work in the system for the bottleneck stations satisfies certain conditions. The
priority sequencing policy uses dynamic reduced costs from a linear program. These
policies along with some results of simulation experiment performed on the above
reentrant line are presented in §4.4.

The remainder of this paper is organized as follows. In §2.1 we describe weak
convergence concepts of relevance and discuss in §2.2, how the heavy traffic limit
theorems are proved invoking these concepts. The description of the Brownian net-
work, followed by the approximation procedure, is given in §3.1. Section 3.2 provides
workload formulation for the Brownian network of §3.1, which describes the system
dynamics of the queueing network in terms of workloads at service centres. Modifi-
cations needed to adopt the approximation procedure to the case of closed queueing
networks are presented in §3.3. Section 4 illustrates the procedure in the context
of various manufacturing systems of practical importance. Section 4.1 deals with a
scheduling problem in a single machine make-to-stock queue. Section 4.2 discusses
the case of a two-station closed queueing network, with an objective to maximize
the throuhput. Section 4.3 gives an interesting scheduling problem in a two-station
network with controllable inputs. Here we mention that no attempt is made to pro-
vide rigorous proofs for the theorems presented and interested readers are referred
to appropriate contributions for a detailed study of the problem concerned.

2. Foundations

9.1 Weak convergence concepts

In this section we describe some relevant notions of weak convergence which will be
used in subsequent portions of this paper. ‘ '

Let {X(t), t € T'} be a stochastic process on a probability space (£2,£,P). Suppose
that the index set T is an interval of the real line R. For a fixed w € Q, the function
X(w,.) of t gives a sample path of the process. If all such sample paths lie in some
fixed collection X of real valued functions on 7', then the process X can be thought
of as a map from Q into X, a random element of X. For example, if a process
indexed by [0,1] has continuous sample paths it will be a' random element of the
space C[0,1] of all real-valued continuous functions on {0,1]. However,the notion of
random element needs to be formalized adding measurability requirement as follows:
DEFINITION 2.1.1 An £/A-measurable map X from a probability space (2,£,P)
into a set X with a o-field A is called random element of &'. _
If X is a metric space, the set of all bounded, continuous A/B(R) measurable, real-
valued functions on X is denoted by C(X,A). Note that if A is the Borel field
generated by closed sets of X', then every continuous function on & is measurable.
A sequence {X,} of random elements of X' converges in distribution to a random
element X, written as X, = X, if

/ f(Xa) AP — j F(X) dP for each f € C(X, A) (1)

A sequence {P,} of probability measures on A converge weakly to P, written as
P,=Pif

/f dPp — ]f dP for each f € C(X,.A) (2)
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As every random element X of X induces a probability measure P on (X, .4)
defined by
P(A) = P(X7'(A)), forall A € A (3)

convergence in distribution of a sequence of random elements is synonymous to
weak-convergence of the corresponding sequence of induced probability measures.

However, note that in the latter case X, and X need not be defined on a same

probability space but must induce probability measures P, and P on the same
metric space (X, .A4).

Now on, unless otherwise stated, assume that X is a separable metric space with
metric p and the Borel o-field .. If X and Y are defined on a common domain, then
p(X,Y) is a random variable (see Billingsley 1968). Thus the following definition
makes sense. .

DEFINITION 2.1.2 A sequence of random elements {Xn,n > 1} converges in

prob‘a,bility to X, written as X, 2 x , if X, and X are defined on a common
probability space (Q2,£,P) and

P
p(Xn, X) ——0.
Here —2+ denotes convergence in probability of random variables.

Now we state a useful theorem whose application is found frequently in weak
convergence results for queueing theory.
Theorem 2.1.1 Assume that {Xa}and {¥,} are sequences of random elements of
A and are defined on a common probability space ,EP) If X, = X and

p(Xn,Yn) 25 0, then ¥, = X.

Stochastic processes of interest in queueing theory such as queue length process -

can often be represented as functions of more basic stochastic processes such as
random walks and renewal processes. Consequently limit theorems for stochastic
proceses in queueing theory are often obtained from existing limit theorems for
these basic processes by showing that the connecting functions preserve convergence.
The functions that appear in such proofs are composition, addition, multiplication,
supremum, etc. Hence, a natural question that arises in such contexts is:  If
Xn = X and f is a measurable mapping from (X, A) to another separable metric
space (X', A'), does it follow that f(Xa) = f(X)? Observe that the result is
trivially true if fis continuous. Interestingly this holds even under slightly weaker
assumption as shown by the following theorem: :
Theorem 2.1.2 (Continuous mapping theorem) If X,, = X and f is continuous
almost surely with respect to the distribution of X, then f(X,) = f(X).
The above theorem can be further generalized as given below.
Theorem 2.1.3 Let f,,n > 1 and f be Borel measurable functions mapping the
separable metric space (X', A) into another separable metric space(X’, AN If X, =
X and fo(2,) — f(z) forallz € A and {zn — z}, then fa(Xa) = f(X).
Most of the weak convergence results in queueing theory rest on the continuous
mapping theorem. For an elegant proof of this theorem see Pollard (1984) or Whitt
(1980). In queueing theory, the metric spaces of particular interest are C[0,1], the
space of all real-valued continuous functions on [0,1] and the space D[0,1] of all
real-valued functions that are right continuous at each point of [0,1) with left limits
existing at each point of (0,1]. The functions of D[0,1] are called cadlag functions.
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Thus, the space D[0,1] contains the sample paths of all queue-related processes.
Obviously, C[0,1] C DI[0,1)].

The metric on C [0,1] is the uniform metric defined by

p(z,y) = sup | z(t)—y(t) | forallz,y € C[0,1].
0<t<1

Under this metric p, C[0,1] is complete and separable. But under the same uniform
metric D[0,1] is complete but not separable and hence the uniform metric poses some
minor measurability difficulties. For instance, under this metric the Borel o-field
turns out to be too large and many interesting stochastic processes fail to be random
elements of D[0,1]. However, if we consider a strictly smaller o-field B generated by
closed balls, an interesting weak convergence theory results. B also coincides with
the o-field generated by co-ordinate projection maps. All interesting functionals
on D[0,1] are B measurable. The lack of a countable dense subset of functions in
DI[0,1] is surmounted when the limit distributions concentrate on a separable subset
of D[0,1] such as C[0,1]. For an interesting theory under the uniform metric, see
Pollard (1984).

If in the space D[0,1], we define fu(¢) = I{t >u}; t€[0,lJandue [0, 1], the
collection {fu(.)} is uncountable and under uniform metric two distinct functions
are at unit distance. Clearly we want f, — f, whenever v — v. However, this
is quite impossible under any topology that leads to a convergence concept which
implies pointwise convergence. Skorohod surmounted this difficulty by defining a
metric, which leads to pointwise convergence after a suitable rescaling of the time
axis that becomes asymptotically negligible. It is difficult to define this metric. It
suffices for our purpose to know that such a metric exists and under this metric
DI[0,1] is separable. Unfortunately, under this metric the space is not complete.
Billingsley (1968) defines an equivalent metric under which D[0,1] is both separable
and complete. Here onwards, we concentrate on D[0,1] (hereafter to be denoted as
D) equipped with the metric under which it is both separable and complete.

Most of the diffusion approximations and heavy traffic limit theorems rely on the
so called Punctional central limit theorem. The functional central limit theorem is an
extenstion of classical Lindberg-Levy’s central limit theorem (see Breiman 1968) for
a sequence of random variables, to the function space D. It is directed at showing
that a normalized sequence of random functions converges to a diffusion process.
The advantage of functional limit theorems lies in the fact that weak convergence
results can be immediately obtained for various functionals of the processes. The
standard method to prove weak convergence of a normalized sequence of processes
is to first show the convergence of finite dimensional distributions. However, this
is not sufficient. A certain tighiness property of the induced measures needs to be
demonstrated and this part poses some technical difficulties.

To get a feel for weak convergence in function spaces, in what follows we state
various functional limit theorems of relevance in queueing theory.

Theorem 2.1.4 (Donsker’s theorem) Let {§;,i > 1} be a sequence of i.i.d. ran—
dom variables with mean 0 and variance o® < oo, defined on (Q2,&,P). Let

Sp=& +-+& forallk>1 and So =0
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From the {S,}, form random elements {X.} of D as:

Sty
Xa(t) = Yy for allt € [0,1]

~ where [z] is the greatest integer less than or equal to z. Let W = W, 0<t<1}
be the standard Brownian motion. Then ‘

Xo=>W inD

For a proof of this see Billingsley (1968).

A generalization of the Donsker’s theorem is due to Prohorov and is given by:

Theorem 2.1.5 (Prohorov’s theorem) Suppose for each n 2> 1 there exists a
sequence of i.i.d. random wvarigbles {nf, i > 1} with mean 0 and variance o?.
Define partial sums

Sy = M +---+nfand S? = 0.

Assume that

o','“; — o?asn — 00, 0 < 0? < 0o
and
sup E{| n? |**} < oo for some ¢ > 0
n>1
Let
qﬂ.
— C“Int]
Xa(t) = s
Then,
Xn = Win D.

In the above theorems the partial sums S, are defined for fixed indices n. Sometimes
we encounter cases where the index is random and such a phenomenon is common
in renewal processes. Suppose v, is a random integer such that v, is large with
high probability. Define random elements X,, of D as given in Donsker’s theorem.
Further, define another random element Y,, of D by, ‘

SV nt] (W (w)
Valt) = =2

Now we seek conditions under which {Ya} weakly converges to some limit. Observe

that Y, (w) results from Xn(w) by subjecting X, to a random time scale. If we
define ¢, (¢, w) by

¢n(t:w) = V[nt](w)/n
then it follows that -
Ya(t,w) =X, (on(2, w),w).

Thus Y, is X,, with the time scale subjected to a change represented by random

function ¢,. Such cases can be dealt with using the following theorem, known as
the Random time change theorem. :

e
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Let Dy denote the set of elements ¢ of D that are non-decreasing and satisfy
0<¢(t) <lforallt €[0,1]. For X € D, ¢ € Do, let (X 0 ¢)(t) = X(4(t)). Suppose
that in addition we have random elements X, and ¢, of D and Dy respectively,
where, X,, and ¢, have the same domain (which can vary with n). Note that X o'¢
and X, o ¢, for each n lie in D. If Dy is topologized by relativizing the Skorohod
topology of D, then it is easy to see that (X, ¢) and (X, ¢,,) are random elements
of D x Dy with product topology. The following result is given by Billingsley
(1968).

Theorem 2.1.6 (Random time change theorem) If (X,,¢n) = (X,¢) and
P(X € C)=P(¢ € C) =1, then

Xnodn=>Xo¢

where C = C[0,1]. .
The proof of the above theorem is based on continuous mapping theorem and also
on the fact that Skorohod topology relativized to C' coincides with the topology
generated by uniform metric on C. The theorem is useful in deriving functional
central limit theorem for renewal processes.

Theorem 2.1.7 Let ny,ns- - - be an i.i.d. sequence of random wariables with mean
p and variance 02 < oo. Define,

k
vy = maz{k: ; <t}, withvyy, =0 m >t
]

=1

Thus v; gives number of renewals upto time t. Define

~ Vpi(w) —nt/p ‘
Zo(t,w) = TN /
Then, Z, = W in D.
For a proof of this refer Billingsley (1968).
These notions of weak convergence are used in proving heavy traffic limit theorems
for queue related processes as we shall see in §2.3.

2.2  Brownian motion

As discussed in the previous section the limit process in the functional central limit
theorem is the standard Brownian motion. In this section we define the standard
Brownian motion and the reflected Brownian motion which is a functional of Brow-
nian motion. Many of the interesting queue related processes converge to the latter,

DEFINITION 2.2.1 A standard Brownian motion or Wiener process. is a stochas-
tic process {X(t),0 <t < 1} on (Q,&,P) having continuous sample paths, and sta-
tionary independent increments such that for any fixed ¢t € [0,1], X(t) is normally
distributed with mean 0 and variance t.

Thus, a standard Brownian motion starts at level zero almost surely.
DEFINITION 2.2.2 A process {Y(¢), 0 < ¢t < 1} is called a (¢, c) Brownian
motion if it has the form: - ‘ S

Y () =Y (0)+ put + o X (t). (4)
where X (t) is the standard Brownian motion and Y'(0) is independent of X.
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It follows that Y (t4-5) - Y (t) ~ N(us, o2s). s called the drift and o2 the variance
of Y (2).

The normality requirement in the above definition is superfluous because if Y is
a continuous path process and has independent, increments, then Y is a Brownian
motion and normality follows as a consequence of these assumptions. Refer Breiman
(1968) and Cox & Miller (1965) for further properties of Brownian motion.

DEFINITION 2.2.3 Let f D — D be defined for all Y € Das f(Y)=2Z
where
26)=Y() - inf {¥()},0< <1,

where Y (t) is (g, )Brownian motion with Y(0) = 0. Then {Z(t),0 < t < 1} is
called reflected Brownian motion, denoted by RBM(g, o).
Whitt (1980) proves that f above is continuous in Skorohod topology.
For processes in RX | the limit processes of the functional central limit theorem is
a K-dimensional Bownian motion, {?(t), 0 <t < 1}, specified by a K-dimensional
drift vector,  and a K x K covariance matrix A, denoted by BM(c, 4), i.e., Y(t)
is a K-dimensional vector stochastic process with continuous sample paths in RX
with Y (0)=0 and stationary independent increments.

Similarly, a reflected Brownian motion on the non-negative orthant RX was de-
fined and characterized by Harrison & Reiman (1981) and is discussed in detail by
Harrison & Williams (1987). It behaves like Brownian motion on the interior of its
state space Rf and reflects instantaneously in a fixed direction at each boundary
hyperplane. The reflection directions are given in K x K reflection matrix R, where
the k-th row of R gives the reflection direction for the boundary corresponding to
Xi(t) = 0. This process is thus completely specified by (¢, A, R) where ¢ and A
correspond to the drift vector and covariance matrix of the underlying Brownian
motion,

2.3 Heavy traffic limit theorems

A queueing system is stable if the mput rate is less than the output rate, i.e., if the
traffic intensity, p is strictly less than unity. If p > 1, the system is unstable and
the queueing processes tend to blow up. For example, in a GI/G/1 queue, if p > 1,
then for any K < oo,

nlingoP{Wn > K}=1,

where W), is the waiting time of the n-th customer. Thus if p > 1 the queue is said
to be under heavy traffic. However, even under heavy traffic conditions, properly
normalized sequences of queueing processes converge weakly to diffusion processes.
Heavy traffic limit theorems formalize this fact. The diffusion approximation pro-
cedures stem from these limit theorems.

In this section, we discuss a simple case of GI/ G/1 queue under heavy traffic and
give an intuitive feel for how the heavy traffic limit theorems are proved invoking
the weak convergence concepts discussed in §2.1. :

Consider a standard GI/G /1 queue determined by two independent sequences of
1i.d. random variables {u,, n > 1} and {va,n > 0}. Assume that the 0-th customer

- arrives at time t = 0 to find a free server. Let v, represent the service time of the n-
th customer and u,, represent the inter-arrival time between the (n - 1)-st customer
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and n-th customer. We define,

p = E(v1)/E(u1)
Yn=vp_1—us
Wit = [Wa + Yaual™, foralln >0 and Wy =0.

W, gives the waiting time of the n-th customer. It is well known that if p < 1, then
there exists a non-degenerate random variable W such that :

W, = Wasn — oo.

Under appropriate moment conditions one can show that

(azn)"l/z[iWk - nE(W)] = N(0,1).
© k=1

In this case, the events {Wj=0} are regenerative points for {Wn,n > 1} and
{W,=0} occurs infinitely often, w.p.1. Thus, {W,,n > 1} is a regenerative process
and {3 p—; Wi, n>1}is a cumulatlve process. Thus, {Wy,} can be broken up
into i.i.d. blocks and consequently, eventhough {W,} is itself not i.i.d., the theory
of sequence of i.i.d. random variables can be applied for a proof of the above
convergence.

But, in the case when p = 1, the situation is more delicate and in the context of

‘Markov chains this case corresponds to null recurrence. If p = 1, W, < K for K

finite, infinitely often w.p.1. But the expected time between epochs when customers
arrive to find a free server is infinite. However, observe that,

W,=28, — min{Sk‘,O <k<n},n>0 (5)

where S, = Y p_, Y& and Sp =0.

It is apparent that the limit behaviour of {W,} is closely related to the limit
behaviour of {5, } and not the same, because W, is a function of the initial segment
{Sk,0 < k < n} and not just the single S,. This relation between initial segments
{W,0 < k < n} and {S},0 < k < n} can be established by inducing, for each n,
an appropriate stochastic process in D. Let:

U S,
S, = S, = c[l’], 0<t<1.

n

where a,, is a normalizing constant such that a, — oo asn — co.
W,, and S, are continuous time processes w1th sample paths in D. It is apparent
from (5) that:

Wn = f(Sn )
where, f : D — D is defined by,

£ = X - inf X(s), 0<t<1,
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Hence the desired limit theorems follow from the Donsker’s theorem and continu-
ous mapping theorem. Thus, S, converges weakly to a Brownian motion and hence
W, converges to a reflected Brownian motion.

For the case when p > 1, min{S;, 0 <k < n} inequation 5 converges weakly to a
non-degenerate random variable. The limiting behaviour of W, is obtained from the
known results for random walks because from the convergence together theorem it
follows that with normalization {W,} and {Sn} have the same limiting behaviour.

Thus, heavy traffic limit theorems for queueing processes are proved in general by
expressing them as functions of some basic processes for which limit theorems exist
and then invoking theorems such as the continuous mapping theorems. See Whitt
(1974) for an interesting exposition of heavy traffic limit theorems. In the above
case, the basic process turiied out to be a random walk.

Instead of concentrating on a single stochastic process, Reiman (1984) considgred
a sequence of GI/G/1 queues indexed by n = 1,2,... such that the traffic intensity
Pn approaches to 1 in the limit. As a consequence, he obtained heavy traffic limits
for various queue related processes. Using this approach we discuss in some detail %
about heavy traffic limit of unfinished work process in a GI/G/1 queue and only
state the results for other queue related processes. '

Consider a sequence of GI/G/1 queues on probability spaces {(Q,,&,, Pn)} with
FIFO service discipline. For each n > 1, let {ui(n),i > 1} and {vi(n),i > 1} be
11.d. sequences of positive inter-arrival times and service times respectively, with

e
E S

M= Elui(n)] a, = varfuy(n))

uil= Elvi(n)] s, = var[y, (n)].

Let

o Tk = Vil ui(n) ,k>1 ,n>1 and Ta(0) =0
be the arrival time of the k-th customer in the n-th system. With the inter-arrival
time sequence and service time sequence, we can associate the following renewal

processes respectively: . ‘;
An(t) = mas{k > 0: Ta(k) < 1), (6) |

S (z‘)—{ 0 if vi(n) >t

T maz{k > 1: Zle vi(n) <t} if v(n) <t

T -

Further, let

An(t)
La(t) = ) w(n), (7)
. i=1
Va(t) = L) —t. (8)
The unfinished work process U, (t) is the sum of the service times of the customers %

in the queue and the remaining service time of the customer in service, if any. It is
easy to see that

Un(t) = Vaft) ~ inf Va(s) | (9)
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Consider the following normalized processes: For 0 < £ < 1,

An(t) = n~Y?[An(nt) — Annt] (10)
§n(t) = n"1/2[ Sn(nt) — pnnt] (11)
Va(t) = n7'2[Va(nt)] (12)
n(t) = n“l/z[U (nt)]. | (13)
In addition we need the following: Let
tn = VAl = ) (14)
[n1]
Xa(t) = n7V2Y (wi(n) — ppt) (15)
: 1=1
an(t) = ntA,(nt) (16)
m(t) = n7'Sp(nt), for 0<t<1 and n>1. (17)
Assume that
Cn =+ C, Ap = A, [y — [y, Gp — @, Sp — § a8 N — 0. (18)
Further, assume that
sup E[(u1(n))?*¢] < oo for some ¢ > 0 (19)
n>1
sup E[(v1(n))**¥] < oo for some ¢ > 0 (20)
n>1

Theorem 2.3.1 If (18), (19), and (20) hold, then
U, = U = RBM[c/p,Ma+s)] in D.

A
Proof: Combining the normalized processes An(t), Xn(t), and an(t), we can write
Valt) = Xn 0o an(t) + p '[An(t) +eut] for 0<t<landm>1.  (21)

From the functional central limit theoremjor renewal processes, it follows that
An(t) = A(t) = BM(0,A%a). Hence, p;'[An(t) + cat] = BM[c/p, A°u~?a]. Now,
an(t) = n~124, (t) + Aat. Hence, an(t) = At because the first term on the RHS

converges to zero functional.
Thus, from the random time change theorem, it follows that

X, 0 an(t) = BM(0, Xs)

_ From the asymptotic independence of the two terms on the RHS of (21), it is easy -

to see that 5 _ .
Vo(t) = V = BM[c/p, A(a+s)] in D

as A/p=1 is a necessary condition for ¢ to be finite. |
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If f : D— Dis defined as: )
f(X)=X(t) - infocs<e{X(s)}, O St<1, forall X €D,
then, from the continuity of f on D in Skorohod topology, we get

U =T = f(V) = RBM[c/p, A(a+5)] in D.

using the continuous mapping theorem of §2.1.. 0.
Under the assumptions (18), (19), and (20), the normalized waiting time process

W, and the normalized queue length process Q, converge weakly to the following
limits respectively: :

Wa = U=RBMlc/u, \(a+ )] (22)
@n = Q=RBM[c,(a+5)]. (23)

For a proof of this see Flores (1985). Reiman (1984) extended these results to
queueing networks in which K GI/G /1 queues are inter-connected to form a network
and the servers serve customers in FIFO order. In this case, the vector queue length
- Process converges weakly to a K-dimensional reflected Brownian motion on the non-
negative orthant Rf . Also results are available for sojourn time process, which is
more important than queue length process in communication networks. Also results
are available for the case where different types of routing and where dependencies-
between the arrival and service processes exist. See Reiman (1982, 1984) for details.
Flores (1985) gives a survey of the results available in heavy traffic theory.

Now, suppose that we want to approximate the behaviour of the queue length
- process Qn(.) when the n-th system is stable but only just so. If we set v, = ’\—“?—‘A,
then nl/2 ~ 1 /7 for large n so that expansion of time scale by a factor n and
normalization of the process @n(.) that appeared in heavy traffic limit theorem is

equivalent to expansion of time scale by a factor of 1/42 and normalization by a

factor of 1/7,,. Thus, we can interpret equation (23) as v, Qn(./72) converges weakly
to RBM[c, A(a + 5)]. For each fixed t, the distribution of TnQn(t/72) converges
in distribution to Q(t). Hence, for large n, we might consider approximating the

behaviour of v,Qs(./¥2). Moreover, the limiting distribution of Q(t) is given by,
lim,, o P{Q(t)< £} = 1 — e~ ¢l o/0® g, eachz >0.

Thus, if Q. (1) = Q,' ast — oo, then for sufficiently large n we might approximate
the distribution of ¥, @n’ by the exponential distribution with parameter 2 lc| /a2
Diffusion approximations are based on this idea and when queueing systems are
under heavy traffic such approximations yield good results. Lemoine (1978) gives a
tutorial introduction to diffusion approximations.

However, when a queue is stable and if we approximate its behaviour by its limit-
ing behaviour under heavy traffic, the effectiveness of such approximations depends
on the parameters of the approximating diffusion process. Different approximating
diffusions may lead to limiting diffusions with identical parameters because, in the
limit, traffic intensity is equal to 1 and hence, several parameters are equal. Further,
the diffusion approximations of different processes are related and thus, may lead
to different approximations for the same quantity. Then these approximations need
to be evaluated by their performance relative to various consistency checks. Three
such approximations are given for mean in Flores (1985). These are are evaluated
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according to the existing upper bounds for mean delay. Whitt (1982) discusses
several possible refinements to these approximations._ '

In the case of queueing networks, the situation is more complicated. Here also
the parameters of a limiting diffusion can be written in several ways because in the
heavy traffic, the arrival and service rates are equal and can be interchanged. This
gives different approximations for stable systems. However, by a careful selection
of the parameters of the limiting diffusion, the exact behaviour of stable queueing
systems are obtained in simple cases. For example, diffusion approximation gives
exact value of mean queue length for Jackson networks. See Flores (1985) for further
details.

3. Brownian networks

. l‘ ' . .
As seen in the previous section, when a network of queues is under heavy traffic,
i.e., when each queue is loaded to its capacity, various queueing processes converge
weakly to multi-dimensional reflected Brownian motion. This is the underlying idea

" in the Brownian network model to be discussed in this section. The approximation,

involved is a system approximation; not just the approximation of one stochastic
process by another, This feature gives dynamic control capability to any problem
under consideration as we shall see in later sections. :

In §3.1, we discuss development of Brownian network model for a multi-class
open queueing network. In §3.2, a useful model in terms of workloads at stations
is derived. In §3.3, we describe how the Brownian model of §3.1 can be modified
to address the case of closed queueing networks. For this we need the following
probabilistic setting which will be used tluoughout this paper.

" A stochastic process will be described RCLL if its sample paths are right continu-
ous and have left limits w.p.1. When we say X is a K-dimensional (u, &) Brownian
motion, it is assumed that there is given a filtered probabzlzty space (Q, F, Fy, X, Pg),

- where (Q, F) is a measurable space, and X = X(w) isa measurable mapping of £

into C(RX) which is the space of continuous functions on RE.Fi=o0(X(s),s < t)
is the filtration generated by X and P, is a family of probability measures on Q
such that the process { X(t),¢ > 0} is a Brownian motion with drift vector p and
covariance matrix ¥ and initial state = under P,. Let E; be the expectation oper-
ator associated with P,. If Y = {Y(¢),t > 0} is a process that is F; measurable
for allt > 0, then we say that the process ¥ is non-anticipating w.r.t X when Y is
adapted to the coarsest filtration w.r.t which X is adapted. (See Harrison 1985).

" Three basic notions in a Brownian network model are: ’

e resources indexed by ¢ = 1,...,1
o activities indexed by 7 = 1,...,J
e stocks indexed by k = 1,..., K

The system dynamics of a Brownian network can be compactly expressed by:

P.3:

Z2(t) = X(@)+ RY({t) €S VYt >0
U(t) = AY(t) isanondecreasing process with U(0) = 0
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where X (t) is a K-dimensional Brownian motion, R and 4 are K x J input-output
matrix and I X J resource consumpiion matrix respectively. In the ensuing sections

we shall see how the dynamics of a queueing network are related to that of the
corresponding Brownian network.

3.1 Brownian approzimations for scheduling maulticlass open queveing nelworks

Consider an open queueing network with I single server stations (index i=1,.. 1)
and with K customer classes, indexed by k=1,...,K. Tt is assumed that the class
designation of a customer, summarizes all relevant and observable properties of

the customer, including possibly its past processing history that may be used in -

dynamically scheduling the network. Customers of class k arrive according to a
renewal process at an average rate of Ak- It is assumed that customers of class k
visit station s(k) for service and service times are 1i.d. with mean m; and finite
variance. The arrival processes and service time sequences for various classes are
assumed to be mutually independent. ' _

A customer of class k after completion of service at station s(k) will turn into-a
class j customer with probability Py; independent of previous history. The Marko-
vian switching matrix (K x K), P = (Pk;j) is assumed to be transient and hence, a
customer of class k leaves the system with a positive probability 1 — Zj Py;. Let
C(i) denote the constituency of server i, Le.,

CH) = {k : s(k) =4}, i=1...]

From the description above, it follows that C(4) NC@) = ¢, i # j. As the number of
classes is allowed to be arbitrary, the above routing structure is extremely general.
The case where a system is populated by various customer types, each of which
has an arbitrary deterministic route through the network can also be handled by
assigning different class for each combination of customer type and its stage of
completion. Further, Markovian switching enables to incorporate probabilistic route
structure arising out of rework, spoilage, etc.

In view of the aforementioned Brownian network model (P.3), it is easy to see
thatqueue lengths correspond to stocks, servers at I stations play the role of resources
and servicing of class j customer corresponds to activity 7. One unit of activity 7 is

- interpreted as one time unit allocated to class j customer by server s(3). Activity j

consumes resource  at rate, '
Ao — I if 4 = s(j)
Y71 0 otherwise.

and total amount of resource availableis, b; = 1, 1=1...7. Queue length of class

.k decreases by an activity j at a rate of,

Rkj = Nj(éjk —_ ij), where M = l/Tnj. (24)
where &, is the Dirac delta function, given by
_J 1 ifj=k
ik = { 0  otherwise.

In the matrix form, (24) can be rewritten as:

R = (I - P)Tp-1 (25)

At
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where D is the diagonal matrix with elements m; ...my, and I is the K x K identity
matrix.
Since P is transient, R is non-singular with:

R '=D[I+ P+ P2 4..] (26)

Thus, there exists a unique solution § = (f) to:
A — RB =0 (27)

where A = (A;) is the K-vector of arrival rates. Here B; can be interpreted as the
average amount of time the server s(k) must assign to class k customer in order to
maintain material balance over the long run.

The traffic intensity at station i, p;, is defined as

pi= 3, B | (28)
ke C(i)
Define @ = (ay), the K-vector of work load proportion by:
B
oL = —, ) 29
L= (29)

oy represents the long run fraction of server’s active time at station s(k) that is to
be devoted to class k customer in order to maintain material balance. ‘
Basic flow processes involved in the queueing network can be given in terms of
number of customers as a K-dimensional vector process, F/ = {Fi(t), ¢ > 0}
indexed by j = 0,1,...K. FQ(t) is interpreted as exogenous arrival process for class

k customer and Fkgj )(t), j=1,...K is interpreted as the flow out of class k resulting
from the ¢ time units that server s(i) devotes to class j.

Denote by R7, the jth column of the K x K matrix R. Using the results of
renewal theory (see Wolff 1989) or Karlin & Taylor (1981), it can be shown that

E[F°(t)] ~ Xt and E[Fi(t)] ~ Ri(t),j=1,...K (30)
Scheduling policy is expressed as a family of allocation processes,
Tp = {Tp(t),t >0}, k=1,...K

where T} (t) gives the cumulative amount of time that server s(k) allocates to class

-k customers during the interval [0,t]. Then the K-dimensional queue length process

{Q(t), t > 0} can be written interms of the flow processes {F7(t), ¢ > 0} as follows:
K .
Q) = F'(t) - 3 FI(T;(1))- | (31)
j=1

Similarly, the I-dimensional cumulative idle time process {I(t), ¢ > 0} can be
defined by:

L) =1t - z Tk(t), i=1,...,L (32)

k € C(4)
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The allocation process T = (T}) reflects a scheduling policy for the queueing
network and thus, we can say T is a feasible policy if it satisfies:

T is continuous with T(0) = 0. (33)
T is is nondecreasing. (34)
T 1s nonanticipating with respect to (). (35)
I is nondecreasing with I(0) = 0. (36)
QW) > 0 Vit >o. (37)

Only (35), (36),and (37) need explanation. (35) demands that scheduling policy is
to be based on observable quantities. (36) expresses that a server has only t — s
units of time for allocation in any interval [s,t]. (37) enforces that the server at
station s(k) must stop allocating time to class k when Qr(t) hits zero.

Thus, having expressed the basic queue processes in terms of the flow processes
and the allocation process, we set out to define centred versions of these processes
s0 as to establish connection between the system dynamics of the original queueing
network and that of the approximating Brownian network, that appeared at the
beginning of this section.

If we set Ti(t) = oy, it is easy to see that such an allocation process T fully
utilizes all available resources. In fact, observe that

Aa = b (38)

Such an allocation is referred to as nominal activity plan. Now, foreach k= 1,... K,
define a centred allocation process by:

Vi(t) = ant — Ti(t). o (39)

expressing the actual allocation to class k, (T} (¢)) as a decrement from the nominal
alocation (ay t) or in vector form ( 39) can be written as,

V(1) = at — T(t). ; (40)
Similarly, we can define centred flow processes as,

() = FO(t) — Xtand /(1) = Fi(t) — Rt, j=1,..K (41)

Using these centred processes the queue length process can be re-expressed as

K '
QM) = ("W +X2t) - Y (T + R TQ) (42)
Jj=1
K
= (10 + A0 - Y W(Te) - RT). (43)
j=1

{(43) can be compactly written as,

QW) = () + RV '( (a4)
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where,

K .
() = ") = YW (TE) + (A — Ro)t. (45)

F=1

A similar representation for the cumulative idleness process is given as follows:
observe that I{t) = bt — AT(t). Hence it follows that

Ity = AV@). (46)

(44) and (46) describe the system dynamics of the original queueing network and
processes involved resemble the corresponding processes that appeared in the ap-
proximating Brownian network described in (P.3), with an exception that a K-
dimensional Brownian motion is present instead of {(t). Thus, the essence of Brow-
nian approximation lies in the approximation for (.

Suppose that in (45), the allocation process Tj(t), is replaced by «; ¢ for all j =
1,...K. Then, it is easy to verify that (45) reduces to, ’

K .
n(t) = F°t) — ZFf(aj.(z)). , (47)

As the allocation process involved in (47) is the nominal one, the process 7(t) is
called the nominal queue length process..

The approximation is carried out in two steps; at the first level { is approximated
by n(t), which in turn at the secondary level is approximated by a Brownian motion
whose drift vector and covariance matrix coincide with the asymtotic drift and
covariance of n(t). If the original queueing network is under balanced heavy loading
conditions and if the relevant processes are normalized in a manner consistent with
the state of affairs, the above procedure provides good approximation.

The asymptotic drift vector T and covariance matrix I' of the process (%) can be
calculated using standard results of renewal theory. Interested reader is referred to
Reiman (1984) or Harrison (1988). Thus,

E{n(t)} ~ Tt and cov{n(t)} ~ Tt, as t — oo. (48)

Using the centrel limit iheo%em for random vectors {Breiman 1968) and the central
limit theorem for renewal processes (Wolff (1989), Karlin & Taylor (1981), it can be
shown that

n~ M2 [pn) - n7Y] L, N(0,T) as n — oo.

Thus, the asymptotic distribution of 7 is the multi-variate normal distribution with
mean ( and covariance matrix I', or more generally , for each ¢ >0 fixed,

&) = 02 ént — nTH] 2, N(O,T't) asn ->:oo. | ‘ (49)

Thus, if B(t) is a K-dimensional Brownian motion with drift 0 and covariance matrix
', then £*(t) and B(t) have approximately the same distribution for each fixed ¢
and for large n. '

Now, we will discuss the scaling operation that appeared in (49). Assume that
the total work load at each station is approximately equal to its capacity in the
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following sense:
there exists a large integer n such that

n'/? | 1 — p; | is of moderate size for i = 1,...1 (50)

In this case the system has balanced-flow and this condition is referred to as balanced
heavy loading condition. This n serves as an essential parameter in scaling various
queueing processes. In most cases scaling expresses time as multiples of n and
queue lengths as multiples of n'/2. For example, K -dimensional scaled queue length
process is defined by,

Z@) = n~ Y2 Q(nt), t > 0. (51)
Similarly, the scaled versions of the processes ¢, V, and I are defined by,
X(t)y = n~Y3¢(nt); Y(t) = n/2 V(nt) and U(t) = n~'/? I(nt) (52)
(44) and (46) can be re-expressed in terms of the above scaled processes as

Z@t) = X(t) + RY() (53)
Ut) = AY(Q). (54)

and the scaled and centred allocation process Y (¢) is feasible iff

Y is continuous with Y'(0) = 0 (55)

Y(t) — Y(s) < n?a(t—s)ift>s (56)
Y is nonanticipating w.r.t Z (57)

U is nondecreasing with U(0) = 0 (58)

Zt) > 0vViE>0 (59)

If we define § = n'/2Y and Ti(t) = n='(Tj(nt)), X(1) can be rewritten in terms
of these quantities as,

K
X(t) = 072 °mt) - ST a7V (aTr()) + 04). (60)

j=1

Using the nominal activity plan for T7(t), X(t) can be expressed in terms of centred
and scaled nominal queue length process £*(t) as

X(t) = €@ + ot | - (61)

As mentioned earlier, for sufficiently large n, £*(t) can be well approximated
by a (0,I') Brownian motion. Hence, from (61), it follows that X(t) can be well
approximated by a (6, I') Brownian motion process. -

Replacement of T} (t) by ; t can be articulated as follows: if n is large, t > 0
is moderate, from the balanced heavy loading condition(50), it follows that total
server idleness at each station over the long interval [0,nt] is small compared to
n, under any policy which calls for all servers to be busy whenever there is work
for them to do. Hence, under such full allocation policies, the relative amounts of
time that servers allocate to customers of their constitunecies must coincide with
workload proportions («vg) over the long run.
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Thus, in the approximating Brownian network model we can take X(¢) to be
the (6, I') Brownian motion and define Z and U in terms of X and Y as given
in (53) and (54). The feasibility conditions (57)—(59) can be further simplified.
With X as a Brownian motionand Z = X + RY by definition, condition (59) is
equivalent to a conceptually simpler requirement that ¥ be non-anticipating w.r.t
X. Constraints (57) and (58) are too stringent to impose. We can replace them by
a weaker requirement that ¥ be RCLL. For a defence of this proposal, consider the
constraint (58). For sufficiently large n, this constraint, which imposes a limit on
the rate of increase of Yj(t), is loose in the sense that we can enforce rapid upward
movements that closely approximate even positive jumps. ,

Thus, in view of the above suggested changes the approximating Brownian net-
work takes the form:

P.3.1.1:
choose a K-dimensional RCLL process Y such that,

Z(t) = X(@) + RY() (62)
Uty = AY() (63)
U is nondecreasing with U(0) = 0 - (64)
Y is nonanticipating w.r.t X (65)
Y0 = o (66)

where X (t) is a K-dimensional Brownian motion.

Once the scaling parameter n, satisfying (50) is chosen, the calculation of the
drift vector @ and the covariance matrix T for X (t) entails knowledge of only the
first and second moments of the arrival and service patterns. Hence, the approxi-
mating Brownian network is insensitive to the specifc form of the arrival and service
distributions.

The decision problem in the Brownian network can be transformed into’'a more
intuitively appealing workload problem which, besides being amenable to analytical
tractability, has the advantage that given a performance measure the optimal solu-
tion is easier to interpret than that obtained by solving the original problem.

3.2 Wo'rkload formulation for a Brownian network problem

Define an I x K matrix M = (Mix) by

M= AR = AD[I+ P 4 P?>+...] (67)

. M;y represents the expected total time that server i must allocate to a class k

customer before it eventually leaves the system. Define an I-dimensional workload
process W = (W;) as ,
W = MZ(@). (68)

Wi(t) gives the expected total amount.of work embodied in those customers present
anywhere in the network at time ¢. (Recall that all the processes in (68) are expressed
in scaled units). The state space S of W is, ‘

S={wekR :w=M2 ZeRK)
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Define an I-dimensional Brownian motion B as,
B(t) = MX(¢). (69)

The drift vector and covariance matrix of B(t) are M 6 and M T M7 respectively.
With the above modifications, the decision maker’s problem can be redefined as:
P.3.2.1:

Choose a pair of RCLL processes (Z , U) such that

U is nonanticipating w.r.t B (70)

U is nondecreasing with U(0) = 0 (71)

Z@) > 0 Vt>0 (72)
MZt) = B()+ Ut) vVt > 0. (73)

The allocation process Y () can be expressed in terms of (Z , U) as,
Y(t) = BT [Z(t) — X(2)]

Equivalence of the two formulations (P.3.1.1) and (P.3.2.1) follows from the fact
that Y (t) given above satisfies all the coditions given in (P.3.1.1).

| 3.3 The case of closed queueing networks

In this subsection we discuss how the approximating Brownian network described
in §3.1 can be modified to address the case of closed queueing networks. In a closed
queueing network, a constant population of customers circulates indefinitely through
the network, with no exogenous arrivals and departures. An initial queue length
vector Q(0) is specified apriori. Further, the switching matrix P in this case is
irreducible and hence, is of rank K —1, which further implies that the input-output
matrix is of rank K—1.

Analogous to the case discussed in §3.1, we seek a K-vector (B) of average activity
rates satisfying,

RB = | (M

Equation (74) has strictly positive solution unique only up to a scale constant. Thus
the traffic intensities,

> B, i=1,...0 | (75)

k€ C(i)

are determined up to a scale constant. To resolve this amblgulty, the average activity
rates (81, ...,Px) are scaled so that maz; p; = 1. In this case the traffic intensities
p; express the relative amounts of work that servers at the various stations must
do to maintain material balance. If we call the station k with p; = 1 as bottleneck
station, then p; represents the fraction of time that server i would be kept busy if
the bottleneck station is never idle.
The analog of heavy traffic condition (50) in this case is that:
There exists a large integer n such that

n'/2 | 1 — p; | is of moderate size (76)
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R Qi) + - + Qu(0)] = 1 -

In other words, the total population size N in the network should be such that

| pi — p; |fori 7-6 J, is of order N~! or smaller for each pair of 7 and j and that

we choose n = N? as scaling parameter for the approximating Brownian network.
Following the notation of the §3.1, the vector queue length process is given by,

- K
Q) = Q) - > FI(TE). (78)
Jj=1 )

The components of F/(t) sum to zero so that the queue length remains constant
over time. ,

Nominal allocation for class k over [0, f] can be taken to be o t, as in the earlier
case, where,

oy = -’;’f— Yk € C(i) (79)

2

Embedding the initial queue length vector Q(0) in the definition of {(t), we get

K

() = Q) - Y 7 (T;(t)) -~ Rat. | (80)

i=1

Then the identity (44) remains valid in the closed network case. Similarly, incor-

- porattion of @Q(0) in the definition of £(¢) gives the nominal queue length process

as

£t = Qo) ZF’(aJ t). ' (81)

The asymptotic drift vector and covariance matrix of £(t) satisfy,
efT = 0 and e’ T'e = 0, where eis a K — dimensional sum vector.

Justification for using nominal allocation in the approximating Brownian network,
in this case, can be given as [ollows: in closed queueing networks, the decision
maker’s problem is to maximize rate of circulation, which boils down to maximizing
the fraction of the time that any server is kept busy. Hence, full allocation policy is
justified and the approximation is valid under any such policy.

A few more changes need be taken into account in the case of closed networks.
The underlying Brownian motion X (¢) has now the initial state :

X(0) = Z(0) = n~2Q(0). (82)

It is easy to see that €7 X(0) = T X(t) = €T Z(t) = 1, consistent with
constant population size. Zj (1), hence, can be interpreted as the fraction of the
total population that belongs to class £ at time ¢.

Workload formulation given in §3.2 cannot be extended to the closed network case
because here R is singular. But, using a modeling artifice, a similar transformation
can be achieved as we shall see in §4.2.
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4. Methodology and numerical results for three different queue-
ing systems

4.1 Scheduling a multiclass make-lo-stock queue

In a make to stock production system, products are made according to a forecast of
demand and completed jobs enter a finished good inventory which services actual
customer demand. Here, we consider a simple case of make-to-stock system with a
single machine centre. K classes of products are made and service times of products
of class k have a general distribution with mean mj and finite squared co-efficient
of variation, v,, 2. Demand for products of class k is a renewal process with rate Ag
and squared coefficient of variation, vg, 2. Holding cost of hy units per unit time is
incurred for maintaining inventory of class k products and a back order cost of by
units per unit time is incurred if inventory of class k is not available.

Tt is assumed that ample amount of raw material is available for all types of
products and also that no set up time/cost is incurred when the machine switches
over from one class to another. The scheduing problem is to choose among K+1
options, t.e., '

o cither work on a class kjob, k=1,..., K
e or allow the machine to idle.

with a view to minimize the long run expected cost incurred.

Let {Si(t), t > 0} be the renewal process associated with the service times of
_class k, giving at any point of time ¢, number of service completions in the interval
[0, t]. Let {Dy(t), t > 0} be the point process for demands which gives number of

class k demands up to time t. The inventory level process Z(t) is given by,
Ze(t) = Se(Te(t)) — Dr(t), (83)

where T (t) is the allocation process which at time ¢ gives the cumulative amount
of time alloted to class k in the interval [0,t]. Thus, the decision maker’s problem is

§
4

to
(P.4.1.1) |
choose a K-dimensional allocation policy T' = (Tk) to
, 1 T K |
minimize limsup — E / cr(Zi (1)) dt |
where, |
he ifz > 0 i
| . ck(m)—{—bkm ifz <0
subject to

T is . nondecreasing and continuous with T0) =0 (84) -
T is nonanticipating w.r.t 2 ' . (85)
I is nondecreasing with.I(0) = 0 - (86)
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To develop the Brownian approximation for the problem (P.4.1.1), we consider cen-
tred and scaled versions of all the related processes.
Define the traffic intensity of the system by,

£ A
p = > pi wherepy = ;—'Z— : (87)

k=1

p gives average server utilization required to satisfy the average demand.

Define o, = pi/p to be the proportion of the server’s busy time that should be
devoted to class k to meet average demand. The centred allocation process and the
centred renewal process generated by service completions are given respectively as:

Velt) = at — Tu(t) (88)
m(t) = Sp(t) — pet \ (89)

Furthermore define,

(1) = (meak — )t + mk(Te(t) — Dp(t) + Mgt fork=1,...Kandt >0

: (90)
(Note that ¥(t) corresponds to the process ((t) of (45)). Then the queue length
process and idle time process can be reexpressed in terms of (88) and (89) as follows:

Zr(t) = Wp(t) — pe Yilt) YEk =1,...,K andt > 0. ©(91)
K

Li(t) = Y V() V20 (92)
k=1

Now, choosing the scaling parameter as (1 — p)z, the above basic processes will be

- normalized as given below. (For notational convenience, the same symbols are used

for scaled processes).

Z(t) = Z’“\%), b=1,..,K Y20 (93)
Yol) = Yk\%), k=1,...,K Yt>0 (94)
) = 1 vis o (95)

v

We get the nominal inventory level process by replacing Tk (t) in (90) by axt. Then,
using the central limit theorem for renewal processes(see Wolff 1989), the random
time change theorem and the continuous mapping theorem discussed in §(2.1), we
can show that the nominal inventory level process ¥ k(t) converges weakly to a Brow-
nian motion X (t) with drift v/n (\x — p& i) and variance Ag (vs,2 + va,?)

Thus, the approximating Brownian control problem for (P.4.1.1) appears vas fol-
lows:
P.4.1.2:
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Choose a policy () to

T K
minimize limsup %;Ex [ / Z ex (Zx(t)) dt]
. 0 k=1

0 T—bm
subject to |
Zult) = X)) — V() fork = 1,...,K, Yt > 0 (96)
K .
It = ) Y (97)
. k=1 .
I is nondecreasing with I(0) = 0 (98)
Y is nonanticipating w.r.t X and Y(0) = 0 (99)

Workload formulation:

- The workload process W (t), which gives at.any time ¢ the expected amount of total
work embodied in the system, is given by,

K -
W) = > m Zi(t). - (100)
. k=1 .

Define the one dimensional Brownian motion B by

K
B(t) = > mp Xi(t), Vt > 0,
k=1

so that B has drift § = +/n(1 — p) > 0 and variance "1, A my? (vs,2 + vd",})‘
Then, the workload formulation for the problem (P.4.1.2) is:
P.4.1.3:

choose the pair (Z,I) so as to

T K
minimize lim sup }T~ E, { / Z ek (Zx (1)) dt]
0 k=1 i

T—+ o
subject to |
W(t) = B(t) — It), Yt> 0 (101)
I is nondecreasing with I(0) = 0 (102)
Z and I are nonanticipatingw.r.t B - | (103)

The equivalence of (P.4.1.2) and (P.4.1.3) can be established easily (see Wein 1992b).
The problem ( P.4.1.3 ) is easier to solve and its solution easier to interpret in
terms of the original queueing system, compared to problem (P.4.1.2). We briefly
sketch the solution procedure for (P.4.1.3) and urge the reader to see Wein (1992)
for further details. : -
Observe that given I(t) at each point of timet, which satisfies the constraints (102)
and (103), embedded in the problem ( P.4.1.3) is a linear programming problem. A

simple closed form solution can be obtained in terms of W(t) by reformulating the

s
i

i
|
¥
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problem as a linear programming problem with seperate variables for the positive
and negative parts of Zg(t).
Define the indices j and ! by

h . h. .
mzm <k< K—Ig" = L (104)
mpg mj
b b
mzn1<k<1{——k— = - (105)
mg m )

Because the problem for a given I(t) has only one constraint, it is easy to see that
the optimal solution for the linear programming problem is:

2 = { Lars itk = j and W(t) 20,
0 ifk # j and W(t) > 0.

W(t .
2:(0) = { PO ifk =1 and W(t) < 0

0 ifk # 1 and W() < 0.

Hence, the optimal solution to (P.4.1.3) is dependent on I(t) through W(t). Thus,
the work load formulation reduces to choosing an optimal policy I(t), which should
be an RCLL process and non-anticipating w.r.t B. So the resulting Brownian con-
trol problem is to find such an I(t) to

(P.4.1.4):
minimize hmsup [/ f(W(t)) dt]
T—o0
subject to
W(t) = B@t) — I(t) Vt > 0 (106)
where,

h; .
2= iz 20
flz) = { na

s g ¢ < 0.

Observe that from the positive drift of B(t) and the nature of f(t), it is natural
to consider a policy I(t) which keeps W () in an interval of the form [-00, c] while
exerting minimum amount of control I(). The process W (t) under such a policy is
called regulated Brownian motion on {-c0, c]. A candidate policy I(t), glven by

It) = sw [B(s) - q*, vt > 0. (107)‘

satisfies all the requirements specified above [see Chapter 1 of Harrison (1985))].
Thus, if we confine ourselves to the policies of the type (107), the cost function
appearing in (P.4.1.4) can be expressed as a function of ¢. For this, we need the
following proposition from Harrison (1985).
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Theorem 4.1.1 Suppose that B is a (n,0%) Brownian motion, I is as defined in
(107) and thus, W = B — I is an RBM on [-00, c]. Then, W has ezponential
steady state distribution with density, '

per@-9 ifz <e

p(w)z{o ife > c

PFurthermore, for each starting state z < ¢, there exists a constant C such that
E, W) < C, Vt >0

Using the above proposition, the cost function in (P.4.1.4) can be written as

0 ¢
F(c) = -—f brve'®-ds + / hzve’ =9 dz. (108)
, - 00 0

and the value of ¢ that minimizes F(c) is

0_2
2p

=

b
In(l + 'I;)

with F(c*) = %—‘%; In(l + -;;—) For the proof of optimality of the policy I* =
SUPg < 5 < ¢[B(8) — ¢*], see Wein (1992a).

Eventhough the underlying processes in deriving the optimal policy I* are scaled
versions of the corresponding processes of the original problem, still the solution can
provide insights to develop an effective scheduling policy.

" Recall that I(t) represents the scaled cumulative idleness process and under the
optimal policy I*(t), the scaled and weighted inventory process W(t) is an RBM.
The process I*(t) increases only when W(t) is equal to ¢* or in otherwords the server
is idle only at times t when W (t) is ¢* and otherwise is busy. Let w(t) be the actual
unscaled weighted inventory process. Then W(t) and w(t) are related by,

w(nt) S .

\/ﬁ ) —_

Thus, the machine should be kept busy whenever w(t) < +/n ¢ or when

W(t) =

K
Ek:l Ak mkz (Uzk + vczik)
21 —»p

w(t) < In(1 + %)

In a similar fashion, the priority scheduling decision can be in terms of the optimal

inventory level process Z*. Whenever w(t) < 0, only one component of the inventory
is seen to be at the positive level. In particular, no inventory is held and back
orders are all of the class with the minimum value of the index by px and hence
the backordered demands of this class should only be satisfied when this class is
the only one that is backordered at time ¢. In heavy traffic, the scaled number of
backorders of other classes will be negligible and it does not matter in which order
these backorders are satisfied. To resolve this ambiguity in priority assignment for
these classes, an intuitively appealing decision would be to give priority to the class

with the largest value of the index by p among all the classes that are back ordered
at time t.
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Table 1. Data for the model in figure 1

Class Int. arr. time ~ Service Backorder Holding
distribution " distribution cost cost
(mean, [std.dev]) (mean, [std.dev])

T Uniform(24.0, 11.54)  Uniform(2.0, 1.0) 3.0 2.0
2 Exp(150) Exp(150) 10.0 10.0
3 Exp(60.0) Uniform(10.0,2.0)  100.0 5.0
4 Uniform(20.8, 8.66) Exp(5.0) 5.0 10.0
5 Exp(60.0) Normal(15.0, 4.0) 5.0 5.0

Extending the same arguments to the case when w(t) > 0, an effective schedu
ling policy is to process the class with the minimum value of hy p; whenever no jobs
are backordered.

However, the foregiven scheduling policy has a shortcoming that it does not an-
ticipate backorder job classes and does not respond to the class until its inventory
level is negative. To compensate for this, a parametric policy is suggested in terms
of parameters, ¢, k = 1,... K which at any time t indicate which of the classes
are in danger of being backordered. A class k is in danger of being backordered if,
Zx(t) < e at any time t. In terms of the parameters €, the above scheduling pol-

jcy can'be modified as follows: the machine is idle whenever the weighted inventory

process w(t) > /n ¢ and no classes are in danger of being backordered; otherwise,
is busy. Among the subset of the classes that are in danger of being backordered,
priority is based on the value of the index by px and the class with minimum value
of this index is served first. When no class is in danger of being backordered, the
machine processes the classes based on the index hg pi serving the class with the
minimum value of hy py first. For a detailed description of these policies see Wein
(1992b) and Veatch & Wein (1992).

4.1.1 An example: A five class make-to-stock system

A simulation study is performed on the example described in §1.4. The processing
time distributions, the customer inter-arrival distributions and backordering and
holding costs for all the five classes are shown in table 1. High priority for class 3 is
taken into account by assigninig high backordering cost and low holding cost. The
BROWNIAN policy described above is compared against other scheduling policies
such as FCFS (First Come First Served), MIN (MINimum inventory level), SEPT
(Shortest Expected Processing Time) policies. In all these policies the Busy/Idle
decision is according to an dependent (S-1,8) policy for each class. Under this policy,
an arriving customer simultaneously takes a class k product from the inventory (if
not available, backorders for one)and initiates request for a class k product. The
machine centre is busy only when requests é{e queued. Safety stock levels for FCFS
and MIN policies correspond to the optimal stock levels obtained by performing
a Brownian analysis similar to that given above. In the case of SEPT policy, the
safety stock levels are arbitraily selected using some intuitive arguments.

For all the above policies, safety stock levels and total cost achieved for that
safety stock are given in table 2. It can be easily observed that BROWNIAN policy
outperforms all the other policies. :

Another simulation experiment is conducted for different utilization levels of the
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Table 2. Costs for various policies.

Policy Safety Stock  Avg. Cost
FCFS (6,1, 11, 4, 2) 772.2
MIN (6,1.11,4,2) 676.8
SEPT (0,0, 3,0, 0) 527.4

BROWNIAN (0, 0, 2, 0, 0) 432.9

machine center and the costs incurred for all the above policies are presented in table
3. Referring to the results, it is seen that under light load conditions the Brownian
policy is not as effective as the other policies. This behaviour is due to the fact that
under low utilizations, the BROWNIAN policy tries to keep the machine center
busy even though the inventory levels exceed the safety stock levels and the arrival

rate of demands is very low. But at higher utilizations, the BROWNIAN policy
dominates the other policies.

4.2 Scheduling a two-station closed queueing network

Here we consider the problem of optimally scheduling a two station closed queue-
ing network with K customer classes to maximize the long run expected average
throughput of the network. We describe a Brownian model for the problem under
the setting given in §§3.1 and 3.4 and follow the same notation given there.

An approximating Brownian network is developed along the same lines as de-
scribed earlier except for a change in the scaling phenomenon. Here scaling re-

expresses time as multiples of N? and queue length as multiples of N, where N is
the total population size, ¢.e.,

Zy(t)y = Q-k—(i;—?i)" VkeE=1,...,.K (109)

|

Uit) = Li(t) = “—Zfori = 1,2,¥t >0 (110)

The allocation process T'(t) is centred by the vector o = (a3) of workload propor-
tions and then scaled to give,

ap N2t — Tk(N2
N

oy is as given in (79). Recall that in closed queueing networks Zy(t) gives the
fraction of the total population that belongs to class k at any time ¢.

In a closed queueing network, maximizing the long run average throughput rate is
equivalent to minimizing the long run average amount of idleness at either-station.
Without loss of generality, here we seek to minimize U;.

Thus, the Brownian control problem is to,

Y. (t) =

D Ve=1,...,K (111)

(P.4.2.1):
Choose a policy (Y) to

minimize limsup L E [U;(T)]

K Ravikumar and Y Narahari

Ay
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Table 3. Costs at different utilizations.
Utilization FCFS MIN SEPT BROWNIAN
0.03 282.2  282.1 2823 1505.4
0.20 280.6 288.4  288.8 662.4
0.90 - 4994 437.2 3485 303.9
0.99 5365.5 3162.5 1144.7 921.1

subject to
Y is nonanticipating w.r.t X (112)
Z@t) = X() + RY(@t), Vi>0 (113)
Uit) = AY(t), Yt >0 (114)
U is nondecreasing with U(0) = 0 (115)
eFZ@t) = 1, Yt 20 (116)
Z@t) > o. (117)

The drift § and covariance matrix & of the Brownian motion X are

§ = —NRa (118)
K

Yy = Z[ak mk—l Pr; (5j1 - Pkl) + ap mk_l Sk Rjx Rk (119)
k=1

where R is the input-output matrix and P is the switching matrix given in §3.1.
Assume that P is irreducible. As mentioned in §3.4, the above problem defies refor-
mulation in terms of workloads for in this case, the matrix R is singular. However,
the following modeling artifice obviates this difficulty.

As it is assumed that each type has its own deterministic route through the
network, each class, ¥ = 1,..., K, corresponds to a particular stage along a type’s
route. Denote all the classes that correspond to the last stage along the route of
some customer type as potential exit classes. Arbitrarily select a potential exit class,
say K. Let ¢ = (q&) be the Kth column of PT. Thus, the elements of ¢ give the
probability of transitions from the potential exit class K and g is positive only for
classes that correspond to the first stage along some customer type’s route.

Define K x K matrix A as:

A= (PTY forj=1,.. K -1 o (120)
AE = (0) ' (121)

where B? denotes the j th column of matrix B and (0) is the K-dimensional vector

of zeroes.
Since P is irreducible, (I — A)“l exists. Let D be the diagonal matrix with

diagonal elements my, ..., mxg. Define the matrix H by,

H=D(I-A)N

Now, we can define workload profile matrix, M for closed networks as,

M = AH. - (122)
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M ;;, represents the expected total time the server i devotes to a class k customer
until that customer next completes service as a class K customer, z.e., until that
customer ezits. ,

~ Now, define the two dimensional scaled workload process W (t) by

W(t) = M Z(t) : (123)

W;(t) at any time t gives the expected total amount of work for server 7 embodied
in all customers in the network at time ¢ until they next complete service as a class
K customer. Define the two dimensional Brownian motion (B) by,

B(t) = M X(t), Vt > 0 (124)

B has drift 7 6 and covariance matrix M & T\ZfT.

However, in order to calculate the actual workload at any time ¢, we have to
take into account the expected total time, v;, that server z must devote to a class k
customer until he next exits. It is easy to see that

v = My. | (125)
Average number of such newly eziting customers, 6(t), is given by, ’
6(t) = mi~! Yilt) (126)
Then, the workload formulation for the problem (P.4.2.1) is given as follows: s
(P.4.2.2): o
- choose RCLL processes (7, U, 6) to
minimize limsup 1 E[U;(T)) :
, oo T
subject to %
Z,U, 0 are nonanticipating w.r.t X (127) ‘ ng/
MZt = B@) + Ul) —vot), vt 20 -7 (128)
U is . nondecreasing with U(0) = 0 (129) g
eTZt) = 1Vt>0 , (130) ‘

2() =z 0 Vt2>20 (131)

For a proof of equivalence of the formulations (P.4.2.1) and (P.4.2.2) see Harrison
&z Wein (1990).

Interestingly, it turns out that the vector of traffic intensities p is proportional
to the vector v, i.e., pi = c¢v;. This observation facilitates further reduction in
dimensionality of the problem (P.4.2.2). To see this, define the one-dimensional
workload mmbalance process W by

W = pa WA(t) — p1 Walt), Vt 20 (132)

W > 0, then the workload in the system is imbalanced towards station 1. Define |
the one-dimensional Brownian motion B by,

W = p2 Bi(t) — p1 Baft), Vi > 0 (133)
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1, B has drift p = p7 M p and variance o3 = p"*MZHT p, where p = ( : p; ) )
—p1
easy to prove that g = N(p2 — p1). Define one dimensional processes R and

Ty

R = p2Ui(t), V1
L = pUh), Ve

0 (134)

>
> 0. (135)

ad L can be interpreted as right and left movements exerted by the controller
). , :
sing the fact that p = cv, the workload problem ( P.4.2.2 ) can be reformulated
_single dimensional problem as follows:

£.2.3):

'hoose a pair (R, L) to

minimize limsup L E [_}E@]
. T — 0 T P2
ject to
Rand L are nonanticipating w.r.t B (136)
W) = B@) + R@) — L), vt >0 - (137)
Rand [ are nondecreasing with R(0) = L(0) = 0 (138)
x :
W) = > (pMu-p M) Zi(2) (139)
k=1
T2 = 1 VEx0 (140)
Zt) > 0 Vi>0 - (141)

sathwise solution which minimizes R(t) and L(t) for all times simultaneously
,.1 can be found by initially ignoring the process Z(t) and replacing the con-
sints (136)— (141) of the problem ( P.4.2.3 ) by a surrogate condition that the

cess W(t) be confined to an interval [a,]. In view of the constraints (139), and
0), it is easy to see that the interval end points a and b are given respectively by,

a = pz—M_lg - pn —Mzg = ming (pgTVI_lk - P1 sz) (142)
= ppMu — pp M1z = mazy (02 M1 — P11 M a) - (143)

follows that a < 0 < b, and class 1 customers are served at station 1 and class

it station 2. v .
The pair of RCLL processes (R, L) are feasible policies only if the associated

ocess /W'(t) is kept within [a, b]. Among all the feasible policies (R, L), the polices
ven by

R = sp [o- B+ L(s)]" (144)
L) = sup [B(s) + R(s) - B (145)

0<s<Kt
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minimize the valves of R(t) and L(t) for all ¢ simultaneouly w.p.1. (for a proof, see w
Chap. 2 of Harrison (1985)) :

For the polices defined by (144) and (145), R and L increase only when /W(t) =

« and /W?(t) = b respectively. To find out a control process Z (t), that completes the
pathwise solution, define,

() = W) —a s (146)

b—a
Let Z(t) be defined by,

(¢ yifk =1
Z(t) = ¢ 1—9@) ,ifk=2
0

, otherwise.

i

Thus, (Z, R, L) defined by (144) and (145) respectively give a pathwise solution to A
the problem (P.4.2.3). Proof of this can be found in Harrison & Wein (1990). The 1
solution (Z, U, ) for (P.4.2.2) can be found from the existing relations.

From the solution for Z(t), it follows that in heavy traffic limit only two compo-
nents indexed by 1 and 9 are positive. Class 1 is served at station 1 and class 2 at
station 2. This solution can be interpreted to mean that the classes 1 and 2 are to be
given lowest priority at the respective stations. Under the heavy traffic condition,
it does not matter in whatever order the other K~2 classes are served. However,
to be specific, a natural ordering based on workload imbalance indices minimizes
the idle time of any server. To see this, observe that idleness is incurred only when
W(t) = aor b. Order the classes now according to the values

p2 Myx — p1 M. . (147)

Suppose that priority rule assigns highest priority at station 1 (respectively, at
station 2) to the classes with smaller (respectively, larger) values of the index. Then,
the workload imbalance process W(t) is kept within the interval [a,b]. As a result,
idleness will be incurred less often than any other sequencing policy, such as SPT,
SRPT etc. For a formal justification of this fact, see Harrison & Wein (1990). The
foregoing scheduling problem in multi-class case was discussed by Chevalier & Wein

(1993).

4.2.1 An ezample: A closed re-entrant line

We now present the report of simulation studies performed on the re-entrant line
example of §1.4. The service time distributions for all the classes are given in
table 4. In this example, machine centers 1 and 2 act as bottlenecks. The simula-
tion experiment is conducted for different population sizes where WBAL (Workload &
BALancing) scheduling policy is followed at stations 1 and 2 and FCFS is followed b
at the machine center 3. Also the experiment is performed with other conventional
scheduling policies which include FCFS, SEPT, LBFS (Last Buffer First Served)
and FBFS (First Buffer First Served) policies. WBAL policy awards priorty, from
high to low, to classes (1,9,8) at station 1 and (7,4,10,3,2) at station 2 whereas the
priority order for SEPT policy is easily seen to be (9,8,1), (2,7,10,4,3) and (5,11,6)
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Table 4. Data for the model

in figure 2.
Class Service
Distribution
(mean, [std.dev])

1 Exp(9.0)

2 Uniform(1.0, 0.25)
3 Exp(8.0)

4 Exp(6)

5 Uniform(2.0, 0.7)
6 Normal(6.0, 1.0)
7 Uniform(3.0, 0.7)
8 Exp(8.0)

9 Normal(6.0, 1.0)
10 Exp(5.0)

11 Exp(5.0)

ations one, two, three respectively. Mean cycle times and variances of cycle
s for a given throughput rate are then compared in table 5.

le reason for comparing under constant throughput rate rather than under
;ant population size is the fact that many manufacturing systems which use
closed loop input will attempt to produce at the rate at which products are
anded and will choose population sizes accordingly.

le results are tabulated for three different throughput rates which correspond
3.9%, 63% and 99.4% utilization levels. At low and medium utilization levels
1e policies performed equally well but at the utilization level of 99.4% WBAL
.y outperforms all the other policies. Further, table 5 shows WBAL policy
sves the desired through put at lower population sizes compared with the other
ies under heavy loading conditions.

Scheduling a two-station network with controllable inputs

-scheduling problem is relevant for any production system which is obliged to
1tain a specific average throughput rate of a certain product mix but can exert
rol on the timing of inputs. Make-to-stock production systems stand as an
nple to such situations. Advantage of controlling inputs lies in the fact that it
lts in considerable reduction in WIP and in cycle times, there by improving the
bility of the system.

ere we consider a simple case of a two station network with an endless queue of
omers waiting to get entry into the system. Fach customer has an exogenously
ified class designations which are assigned such that the long-run proportion of
s k customers released into the system is gi for £ = 1,..., K, satisfying,

K
Z% =1
k=1

input decision allows full discretion over timing of release of customers into

system but no control can be exerted on the choice of which class to inject.

thermore, there is a lower bound A = (A), k& = 1,...,K on the long-run
. I
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Table 5. Simulation results for the model in ﬁgure 2.
Throughput rate = .0274

Policy Mean Cycle Time Var.of Cycle time Population
WBAL  72.88 40.82 2
FBFS 72.88 40.82. 2
FCFS 72.88 40.82 2
LBFS 72.88 ‘ 40.82 2
SEPT 72.88 | 40.82 2
Throughput rate = 0.0433
WBAL 138.57 - 206.99 6
FBFS 415.59 1789.51 18
FCFS 207.6 - 178.88 8
LBFS 161.58 93.31 7
SEPT - 161.67 _ 128.08 7

average throughput rate. Holding cost of ¢ is incurred per unit time ‘the class k
spends in the system; but no set up costs are incurred during switchovers.

"Let {N(t), t > 0} denote the input process which at any time t gives the
cumulative number of customers released into the network during the interval [0, t].
Scaling and centering of the input process yields 6(2) as,

8(t) = n"Y2[Ant — N(nt)].

Following the notation of §3.1, the Brownian network formulation for the problem
described is as follows:

(P.4.3.1):
Choose a pair (Y, 8) to

minimize Hmsup — 7 Ex [/ ch Zy(t dt}

T —+ 00
subject to
Y and § are nonanticipating w.r.t X (148)
Z() = X(t) + RY(t) - qb(t), Yt >0  (149)
Uit) = AY(@®), Vvt >0 (150)
U is nondecreasing withU(0) = 0 (151)
Zit)y > 0, Vt>0 (152)
limsup 7 B U:(®)] < 7% i=12 o (153)
where ‘
¥ = Vn(l - p). | (154)

Constraint (153) is a surrogate constraint to stipulate that the longrun average
throughput should be greater than or equal to A. As in the open network case (see
§3.1), because of non-singularity of the input-output matrix R, there exists a unique
non-negative K-dimensional vector § = (fi) satisfying flow balance equations,

= Rp

e
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sA = g A
¢ vector of traffic intensities p = (Pi); i = 1,2, and the vector of workload
rtions o = (o), k=1,..., K are defined as in §3.1. The drift § and covariance

ix 3 of the Brownian motion X can be computed as discussed in §3.1 .
e workload profile matrix M is defined by,

M = AR}

gives the expected total amount of time that server i must devote to a class k
ymer before it exits from the system. However, to find out total workload in
ystem, variations due to input control need be accounted for.

 this end, define the two dimensional vector v = (vi) by

v=DMgqg

\at v; can be interpreted as expected total amount of time the server ¢ devotes
ach customer. '

>w, the two dimensional scaled workload process defined by, W(t) = M Z(t)
the additional workload due to input control, given by, v 8(t), gives the total
doad in the system at any time ¢. Thus, the workload formulation for (P.4.3.1)

:‘3.2):
ose RCLL processes (Z,U, ) to

! 7 K _
. . . . el E Z t dt
mintmize l;nls‘l:op 7 Pe [ _/0 kz=:16k K (1) }

ject to
Z, U, and @ are nonanticipating wrtX (155)
U is nondecreasing with U(0) = 0 (156)
Zt) = 0, ve=0 (157)
lim sup -1—Ex U(T)] < %, fori =12 (158)
T — 0 T . ‘
MZ(t) + vo@) = B +UQ, ¥t 20 (159)
are B(t) is defined by, '
B(t) = M X(t)

| thus, has drift M6 and covariance matrix MEMT. For a proof of the equivalence

'P.4.3.1) and (P.4.3.2), refer Wein (1990b).

Jiven the policy U(t) at any fixed time ?, embedded in (P.4.3.2) is a linear pro-
mming problem in Z and §. As the RHS of the constraint set of (P.4.3.2) varies
)h t, it would be easier to consider the corresponding dual LP, which has a static
\straint set. Thus, the dual program for (P.4.3.2) is:

magimizes,(omo B1l) + Ui®]m(t) + [Ba(t) + Ua(t)] ma(t)]
sject to o

Mlk Wl(t) + Mgk 7l'2(t) S Ch, Vi = 1,1{ (160)
V1 7r1(t) + ’li/glﬂ'z('t) = 0. (161)
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It can be shown easily that p; = v X, ¢ = 1,2. This fact renders it possible to
simplify the dual LP further. To see this, deﬁne the workload imbalance process

W (t) by,
W(t) = pa Wi(t) — pWa(t), Yt 20 (162)
Then, the dual LP reduces to, '

0
mazimizer, (1) [ ) Wl(t)}
P2
subject to
- ¢t (pa Mux — pr M) mi(t) < po. (163)
Order the classes k = 1,..., K so that
argy mazr Ck_l (pz My = m1 Mzg,) = 1 (164)
argr min c'k'1 (p2 Myy — p1 Mag) = 2. (165)

From the complementary slackness condition, it follows that,

Zu@) = 0, Yk #1,if W) >0 (166)
Zut) = 0, Yk #2,ifW(t) <0 (167)

Using this, it is easy to derive that when W(t) > 0,

W) .
Zk(t) = p2 M1y — p1 May if k
0 if &

S

W (t) I
Zk(t) = p2 M2 ~ p1 Mao lf k=2
0 itk # 2.
Thus, the optimal queue length process Z(t) does not depend on the control process §
and depends on the control process U only through the workload imbalance process.

The cost function corresponding to the optimal queue length process is given as a
function of W(t), i.e.,

ZCka = KWW ())

where,

_ ) k2 iz <0
A=) = { haz  ifz >0
Wiﬂl h]_ = Cg/(pl M22 - P2 M12) and h]_ = Cl/(pl Mll - P2 Mgl).

Hence, the workload problem is reduced to finding out optimal two dimensional
cumulative idleness process, U. Further simplification is possible if we define the
Brownian motion W and the right and the left control processes R and L by,

——

W = p Bl(t) - M Bz(t), Vi > 0 (168)
R(t) = p2 Ul(t), Vi > 0 (169)
L) = pUs(t), Yt 20 (170)
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Then, W = B(t) + R(t) — L(t), vt = 0. Further, notice that W has drift
4 = /n(p1 — pa)- Using the relation (154), it is easy to see that,

R pi) i
P — P2
Now, the limiting control problem is,

(P.4.3.4):
Choose a pair (R, L) to

T
minimize limsup %—Ex {/ h(W (t)) dt}
0

T — 00

subject to
. 1 pa(l — pr)
limsup — E; [R(t)] £ —— 171
mewp 2B, 1R0] < 22 am)
. 1 -
limsup = By [L(1)] < pn -k (172)
T — 00 T P11 — P2

The problem (P.4.3.4) can be solved using Lagrangian Multipliers method. For this
we need the following Lagrangian cost function:

: 1 T .
K(z) = limsup T Ey \:/{; W) dt + r R(T) + lL(t)] (173)

T — oo

where r and [ are the Lagrangian multipliers corresponding to the constraints (171)
and (172). Call this problem as Lagrangian problem. With the aid of the following
theorem, the constrained problem (P.4.3.4) can be solved by making an appropriate
choice of multipliers and then minimizing the cost function K(z).

Theorem 4.3.1 Suppose r and l are nonnegative real numbers and suppose (R*,L*)
is a solution to the Lagrangian problem. Furthermore, suppose

o1 . pa (1 = p1)p
limsup = By [R*()] = —————— 174
imsup 7 [R*(t)] = po (174)
, 1 . p1 (1 — pa)

1 Z B [L*t)] = B—m—tm 175
imsup 7 z [L* (1)) pa—_— (175)

Then, (R*,L*) is a solution to the constrained control problem (P.4.8.4).
See Wein (1990a). Taksar (1985) developed sufficient conditions for the optimality
of the Lagrangian problem. The optimal policy is one among a special class of
policies called control limit policies. Such a policy brings the controlled process
W (t) within a certain interval [a, b] instantaneously and keeps it within that interval
while exerting minimum amount of control. The process W (t) under such a policy
is an RBM in the interval [a, b]. et

The control limit policy on [a, b] is defined by,

R() = sup o= Bty + Lis)" (176)
L) = oggpﬂ[z?(s) +I(s) - b (177)
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Taksar (1985) gives sufficiency conditions for a control limit policy on [a, 3] to be a
solution to the Lagrangian problem. Wein (1990a) using this result and the theorem
(4.3.2) derives sufficiency conditions for a control limit policy to be a solution to
problem (P.4.3.4). Thus, the problem is reduced to finding out candidate interval
end points a* and b corresponding to R* and L* of the theorem (4.3.2).

In order to find these points a* and-b*, the following lemma from llarrison (1985)
is needed. ~
Lemma 4.3.1 Let B be a (u,0?) Brownian motion and R and L be as in (176) and

(177) and thus, W = B + R — L is an RBM on the interval [a,b]. Then, W has
truncated ezponential steady state distribution with density,

ve! @79 <b 178
p(m)_m oragx_. ( )
where v = %éi Furthermore,
lmsup = By [R(T)] = —o— (179)
T—»oop T " T ev(b-a) — 1
. 1 L I
1;}25201) = E[L(T)] = 1 — ev(b-a) (180)

In view of the theorem (4.3.1), the interval end points can be found by solving the
following problem: '
(P.4.3.5):

Among the class of control limit policies, find a policy (R, L) to

T
minimize limsup %; E; [/ h(W (1)) dt]
0

T —+ oo
subject to,
: 1 pa (1 = p1)p
limsup — E; [R(T)}] = —— 181
msup = B (AT) = P (181)
limsup = E, [L(T)] = pl=p)p (182)
T — - P2

The above lemma enables to express the constraints in (P.4.3.5) directly in terms of
the end points a and b and thus, establishes a relation between a and b. As a result,
the problem reduces to a search over values of a. :

For a detailed description of the solution procedure, refer Wein (1990a). Now,
in the optimal solution only ¢l mers have positive queue length whenever
W(t) > 0 and class 2 customers itive glieue length whenever W < 0. This
can be interpreted to mean that s 1 are given the lowest priority
whenever W(t) > 0. As for the pri her classes, a natural policy would
be to award highest priority at each statior ny timet to the customer with largest
reduced cost. The reduced cost for a class k customer at time ¢ gives the increase
in the objective function value of the problem (P.4.3.3) per unit increase in RHS of
the corresponding constraint. These dynamic reduced costs, cx (k = 1,...,K) can
be easily found out from the dual program (P.4.3.4). For further details, see Wein

1

B

£
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90b). Since w = M Z, the optimal solution Z* implies that the workload process
des on the boundary of a cone in R?;. Further, the optimal control policies R*
| I* are such that the control, Uy (respectively, Us) is exerted only when W(t) =
respectively, b*). In other words, idleness is incurred when W = a*. This can
expressed in terms of the workload process W (t) using the optimal queue length
1CEss. !

[Che interval end points a* and b* are the reflecting barriers on the boundary
the cone beyond which W (t) may not enter. W (t) must reside on a portion of
. boundary of the cone as shown in figure 3. The optimal solution tells that
\trols U; and Us are exerted only when Wi(t) = cf and Wa(t) = c5 re-
sctively, (See figure 3). Otherwise, only the input process 6(t) is used to keep
s workload process on the boundary of the cone. To be more precise, input
‘ncreased relative to the nominal input rate whenever the process W(t) lies
the shaded regions and input is withheld whenever W(t) is inside the cone.

¢3
c} ci
Figure 3. Cone of confinement for " Figure 4. Inner cone to adopt
the process W(t). input control.

[owever, in the actual queueing system, the process W (t) may reside outside the
one in figure 3. This is because the state space of the workload process is the cone
W = MZ, Z > 0} and its extremal rays are generated by the two customer

lasses with
i Mlk
arg mary ——

Moy,
My

arg ming Vot
vhich may not coincide with the classes 1 and 2 of the priority rule described earlier.
In the idealized Brownian model, when the scaled workload process is on the lower
-ay and Wa(t) < i, then there are zero customers at station 1; but station 1 is not
\dle according to the input rule described above. This apparent paradox is due to
the scaling process involved in heavy traffic limit. Eventhough, in the actual system
there are enough customers at station 1, these customers vanish in the scaled space

of heavy traffic.
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Table 6. Data tor the
model in figure 5.

Class Service Dist.
Uniform(2.0, 1.7)
Normal(5.0, 1.0)
Exp(4.0) .
Exp(8.0) ; ‘
Normal(6.0, 1.0)
Exp(9.0)

O OV W D

In order to adopt the input Tule to the actual system, it is necessary to consider
a cone which is generated from the original one by building up a boundary layer of
thickness, say ¢, (see figure 4), inside the original cone. Now, the input rule admits .
customers as long as the workload process is in the enlarged shaded area. Selection '
of such a suitable ¢ is dependent on the network topology and also on how balanced .
the network is. Further, in the whole description given above, we have considered
only the scaled workload process W(t). In order to adopt the policy, this has to be
reexpressed in unscaled terms. The procedure is the same as that has been done
in the make-to-stock case.(See §4.1) and for further details, interested readers are

referred to Wein (1990b). The case of multi-station closed networks is discussed in
detail in Wein (1992a).

4.3.1 An ezample: A two-station re-entrant line.

A two station re-entrant line shown in figure 5 is considered for the performance
study of workload regulating release policy and dynamic reduced cost based priority
sequencing policy through simulation. The service distributions for the classes shown
in figure 5 are given in table 6. All ¢;’s are assumed to be equal to 1.0. To achieve a 4
throughput rate of 20 jobs per unit time, the values of ¢} and c} (see figure) should *%
be 87.6 and 56.3 respectively. The boundary layer thicknesses €; and €z are set at L

1.0. Different combinations of input release policies and priority sequencing policies
are experimented. The results are presented in table 7.

|
I,
|

4l 2 ;
3
M/C1 |fe—t M/C2 |
5 B
. 6 . Exit {i@

Figure 5. A two station re-entrant line



Brownian approximation for scheduling 935

Table 7. Simulation results for the model in

tigure 5.
policy Policy - Time Cycle Time
DRC WR 137.3 1499.4

FCFS Deterministic 184.3 5861.1
SRPT Deterministic 172.0 4135.2
LBFS Deterministic 182.7 3842.6
FBFS Deterministic 181.1 10397.0
FCFS Poisson 255.0 16544.8
SRPT Poisson 227.8 12025.9
LBFS Poisson . 228.9 12025.9
FBFS Poisson 372.9 53683.6
FCFS Uniform 190.7 7292.3
SRPT Uniform 181.2 5398.4
LBFS Uniform 188.7 4560.2
FBFS - Uniform 191.4 13591.3

One can sec that DRC in association with WR release policy performed better
than other policies in reducing cycle times where as under poisson input release
policy, large cycle times are incurred. As poisson release policy can be thought of
as representative to open loop release policy that is independent of the state of the
system, one can say that by exercising control over input.release, and thus regulating
the amount of work at bottleneck stations, WIP levels can be reduced considerably.

5. Future work

The use of Brownian motion in the dynamic scheduling of multiclass queueing net-
works is now well established. In the past five years, there is a large body of literature
on this subject. Much of the early work focussed on single station and two station
networks (see Harrison & Wein 1989, 1990) and Wein (1990b, 1992b), but results are
now available for multi-station networks (see Wein 1992a), Chevalier & Wein (1993).
On the theoretical front, a heavy traffic limit theorem for very general networks is
still eluding researchers. Also, recently, multiclass queueing networks that do not
have a satisfactory Brownian network approximation in heavy traffic have been pre-
sented (Dal & Vien Nguyen 1992). This explains the need for characterizing classes
of networks having Brownian networks that approximate them satisfactorily under
heavy traffic assumptions. It is also an interesting open issue to investigate the
range of values of traffic ‘ntensitiies for which a given network can be satisfactorily
approximated by a Brownian network.

There are several interesting scheduling problems that can be attempted using
Brownian approximations. There is a large variety of scheduling problems that
one sees in the real world since every factory or manufacturing setup has its own
peculiar and unique scheduling problems. The following gives a list of real-world
features that are worthwhile to be taken into account while scheduling resources in
a manufacturing facility. ' :

o Delayed or stochastic availability of raw material: Since the raw materials are
usually procured from sources external to the machine shop, one is never sure
unless the raw material is in hand. Brownian models have so far assumed
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a perennial supply of raw material and also do not account for raw material
holding cost.

In a real-life factory, machines or tools are prone to breakdowns and these
ovents are non-deterministic. Also, the processed parts need not always con-
form to the required quality standards. Usually, periodic inspection of pro-
cessed parts will decide whether the quality of parts is acceptable or not. Parts
identificd for reworking cause extra load on the system whereas every rejected

part entails complete reprocessing and also material waste. Modelling such
features is important.

In a multiclass production system, switchover times or set-up times can have
a significant effect on the way parts are scheduled. Existing Brownian models

do not address the issue of scheduling in the presence set-up times and set-up
costs. ‘

e The objective function chosen for minimization in the existing literature usu-
ally takes into account factors such as inventory costs, backorder costs, mean
waiting times, and machine utilizations. Since variability of performance mea-
sures is also a very important criterion, there is need to include it as part of
the objective functions. There are also other measures of performance such as

makespan and total tardiness. This also brings out the issue of modeling due
dates.

It is also important and useful to evaluate the performance of Brownian policies
and derive performance degradation of Brownian policies when the underlying net-
work does not satisfy heavy traffic conditions. Finally, one has to look into the
computational effort involved in arriving at Brownian policies for various networks.

"This research was supported by the Office of Naval Research and the Department
of Science and Technology grant N00014-93-1017. We would also like to acknowledge
the encouragement and comments of Professor N. Viswanadham and several critical
comments of the reviewers of this paper.
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