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Abstract. Consider asingle-server multiclass queueing system with K classes
where the individual queues are fed by K-correlated interrupted Poisson
streams generated in the states of a K-state stationary modulating Markov
chain. The service times for all the classes are drawn independently from
the same distribution. There is a setup time (and/or a setup cost) incurred
whenever the server switches from one queue to another. It is required to min-
imize the sum of discounted inventory and setup costs over an infinite horizon.
We provide sufficient conditions under which exhaustive service policies are
optimal. We then present some simulation results for a two-class queueing
system to show that exhaustive, threshold policies outperform non-exhaustive
policies.
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1. Introduction

Hofri & Ross (1987) investigated the following scheduling problem in multiclass queues
with setup times (see figure 1): There is a single server attending to two classes of customers
from two queues fed by independenthomogeneous Poisson processes. The service times for
the two classes are drawn independently from the same (general) distribution. A switchover
time with or without a constant monetary cost per switch made is involved whenever the
server switches from one queue to the other. An inventory holding cost, linear in queue
length and having the same rate at the two queues is also included. Two separate cost
structures are considered:

(1) Sum of discounted switchover cost and inventory holding cost over an infinite horizon

(2) The long-run average switchover cost plus the inventory costs
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Figure 1. A two-class queue with independent Poisson arrivals.

In both cases above, Hofri & Ross (1987) shbwed that the policies to minimize the cost:

(1) are necessarily exhaustive, i.e., server may switch to the other queue only when the
current one is empty, and :

(2) are likely to be threshold policies, ie., the server switches (from an empty queue) only
when the other reaches a critical size.

The first result, in fact, holds for three or more queues. Also, for the two-queue case, a
detailed queueing-based procedure was given for computing the optimal thresholds.

In this paper, we look at the following variant of the problem: The input streams to the
two queues are no longer independent but are correlated in a Markov-modulated Poisson
process (Fischer & Meier-Hellstern 1993) sense. (A Markov-modulated Poisson process
can be informally described as an arrival process in which the Poisson arrivals have their
rate modulated by a finite state, irreducible continuous-time Markov chain. In a K-state
MMPP, the arrivals are Poisson at a certain rate (say, A;) so long as the CTMC is in
state i, Vi € {1, ..., K}. This is a popular model for nonrenewal input to queues.) More
specifically, we look into the system (depicted in figure 2) where the input streams are
the two interrupted Poisson processes generated in the states of a two-state homogeneous,
stationary modulating Markov chain. Consequently, the inputs to the queues are correlated.
The motivation for considering input processes of this type comes from several situations
in manufacturing and communication networks (Fischer & Meier-Hellstern 1993; Frost &
Melamed 1994). For example, under Markovian switching, the output from a multiclass
flexible machine constitutes an MMPP (Hemachandra & Narahari 1995). Similarly, the
output of a failure-prone Markovian queue has the so-called on—off arrival feature — a
Poisson output for an exponential amount of time when the machine is working and zero
output for another exponential amount of time when it is not-working. We remark that the
input to each class is an interrupted Poisson process which is stochastically equivalent to
a hyperexponential renewal process (Fischer & Meier-Hellstern 1993).

The problem and the investigations in this work are directly inspired by the work of Hofri
& Ross (1987). Indeed, we follow the same line of argument and technical conditions
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Figure 2. A two-class queue with modulated arrivals.

to corroborate our results. In this paper, we focus on the discounted cost criterion and
investigate whether the optimal scheduling policies have to be necessarily exhaustive, like
in the case of the Hofri-Ross formulation. Investigation of the correctness of this conjecture
leads us to a set of sufficient conditions under which the conjecture is indeed true.

Apart from the seminal work of Hofri & Ross (1987), the literature that is relevant
to this work is concerned with optimal scheduling in the presence of setups. The classic
economic lot scheduling problem (Elmaghraby 1978) is the deterministic version of the
multiclass scheduling problem with setups and has very elegant closed-form solutions. In
the stochastic version which is more relevant here, two separate formulations exist. In the
setup cost problem, a setup cost is incurred on each setup and in the setup time problem, a
random setup time is incurred when the server switches class. The setup time problem is
more realistic than the setup cost problem (Reiman & Wein 1994) but is also more difficult
to solve.

Several researchers have studied the setup problem with more than two classes of
customers, using a variety of techniques such as dynamic programming and heavy traf-
fic queueing theory. A comprehensive survey appears in Reiman & Wein (1994) and
Ravikumar (1996). All the authors however assume independent arrival processes into
the individual queues. In § 2, we present the notation for the multiclass queueing model
considered in this paper and describe the objective function to be optimized. In § 3, we
investigate the conjecture that exhaustive policies are optimal and this leads to a set
of sufficient conditions under which this conjecture is indeed true. In order to explore
the validity of the conjecture, we carry out simulations on a two-class queueing sys-
tem in §4, which show that exhaustive, threshold policies outperform non-exhaustive
policies.

2. The model

We consider a 2-class queue, representative of multiclass queues as a whole. Let the rates
of the interrupted arrival processes to the two queues be A; and A, respectively, so that
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the overall arrival process is a two-state MMPP. Let o1 («2) be the rate from State 1 tc
State 2 (from State 2 to State 1) of the two-state Markov chain modulating the arrivals.
Let 71 and 7 be the stationary probabilities of the modulating Markov chain so that
m = ap/(e] +op) and my = o1/(0; + ). Service time distribution for a customer
from either of the queues is the same and let Sy, 57, S3, - - - be the sequence of service
times (i.i.d.) for customers of Queue 1 and 77, T», T3, - - - the sequence of service times
(i.i.d.) for customers of Queue 2. Note that {S,} and {7} are from the same service time
distribution, with finite mean. Let {Cj ,} and {C> ,} be two (possibly different) sequences
of i.i.d. positive random variables with some general distributions, corresponding to the
sequence of setup times at Queue 1 and Queue 2 respectively. The state of the system is
then a four-tuple (u, x1, x2, v), where,

e u gives the status of the server taking values in the set {/;, I2, 1,2, 12, 21} where I;
means server is idle but setup for class i (i = 1, 2); 1 denotes that the server is currently
serving Class 1 customers; 12 means that the server is switching from Class 1 to 2, and
the other symbols have similar meaning.

e x; is the number in the queue (including the one in service, if any) i (i = 1, 2), taking
integer values.

o v takes values in the set {1, 2} giving the state of the mcdulatmg Markov chain.

Let S be this state space. As in Hofri & Ross (1987), the decision epochs will be at service
completions, switch completions and arrival instants. The actions at each such decision
epoch are from the set A with A = {S, C, I} where these symbols successively mean that
the server chooses to serve, change and idle. So the problem is a semi-Markov decision
problem with state space S and action space .4 given above.

Let X? %(¢) be the number of customers in queue i (i = 1, 2) at time ¢, given that the
initial state of the system is z, and a policy 7 is used. Let

X = X7 + X700

be the number in the system at time 7. Let R™%(¢) be the number of switches made by
the server up to time ¢ under policy m. Then, the expected discounted cost, with discount

factor 8 > 0, V (z), incurred when a policy 7 is followed for a system starting in state z,
is given by

Va(x) = [ fo Pt 4 a /0 ” e—ﬂ’dR”’Z(t)]_ (1)

assuming that the holding costs per customer per unit time in both the queues are the same
and are normalized to 1 and that a is the one-time switch charge 1ev1ed at the start of each
switch. A policy 7/ is said to be optimal if it attains

V(@) =Vyp(2) = 12f Ve(z) Vzes.

To suit the analysis ahead, we cast the objective function as in Harrison (1975): Let
A% (t) be the number of arrivals up to time ¢ and D{"?(f) the number of departures up to
t1me t for the queue i (i =1,2) when a policy 7is followed In a system starting at state

z. Let x1 and x?_ be the number in Queue 1 and Queue 2 respecuvely attime ¢ = 0. Then,
we have,
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X7y =x) + AP*(1) = DFG) i=1,2, (2)
so that from (1) and (2) we have,

x? +xg . TiAL + oA
B B?
lm i ~ f
& DT + DI 0)dt = aR73(5) | 3)
0

Vi(2) =

where R7:2 (B) is the Laplace—Stieltjes transform (LST) of the distribution R (). Since,

. )
. U e"P (DT (1) + DI¥(1))dr — aR”’Z(ﬁ)]
0 )

==%E[§:€“¢”—wwkm%ﬁﬂ,

k>1

where, T,f’z is the kth departure epoch from the system under policy 7, we have,

0 0
Xy +x 1Al +mohy 1
2y ~ < Jx(2),

Va(z) = =
)= 7 8

with J5 (z) defined as,

Jz(z) :=E [Z e BT clﬁén’z(ﬂ)J-

k>1

The optimizing problem is now equivalent to maximizing J (z). If J(z) is the supremum
of J (z) over all policies, then by Lippman (1973), there is an optimal pure policy which
achieves J(z).

3. Optimality of exhaustive policies

Let g be any non-exhaustive policy; we shall argue below that the performance of any such
policy could be improved upon. This means that non-exhaustive policies are suboptimal.
Thus, optimal policies have to be necessarily exhaustive,

First, we synthesize from the existing arrival process, a new arrival process that depends
on the scheduling policy followed. Let f be any such policy.

Let Ny(r) and Ny (z) be the arrival processes to Queues 1 and 2. Assume that N :=
(N1(t), Ny (2)) is stochastically equivalent but independent of N (z) := (N1(2), N2(t)). Let
(€2, F, P) support the independent processes N(t), N(z) and the sequences {S,}, {T,},
{C’;y,,,_}., {C2.n}. As in Hofri & Ross (1987), form a new arrival process from these N )
and N (r) by collecting customers from N (¢) or N (t) as described below. Let 7/ be the
first instant that the server begins to serve a customer from Queue 1 under policy f. Let
S1 be the service time of this customer from Queue 1. Define a new arrival process Af (1)
as:

AT =N@, 0<t<1/,
=N@H+Ne-1h), /<<l +5, - 4
=N(S1)+N(l‘--51), tth-i—Sl. '
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That is, collect customers from N (¢) until /. then on from N(¢) until =/ + $1; and
revert back to N (¢) indefinitely after zf + S;. Note that AS (¢) is defined pathwise and its
construction depends on policy f.

Since g is non-exhaustive, there exists some state, z, such that either g causes the server
to idle at a nonempty queue or abandons a nonempty queue. Without loss of generality,
assume that this occurs at Queue 1. Then, if g(u, x1, X2, v) denotes the scheduling decision
in the state (u, X1, X2, V),

x>0 3g(lx,x,0)#FS,
1.e.,

g(1, x1,x2,v) € {C, I} with x1 >0.
Let this zg := (1, x1, x2, v) be the initial state in the sequel. Let Z f20(¢) denote the state
of the system at time ¢ when a policy f is followed by the system starting in a state zo.
Write Z7 (¢) for Z™20(¢).

We now exhibit a policy 7 that outperforms the policy g in minimizing the total cost.
Policy 7 says that the system beginning in state zo should first immediately serve a job
from Queue 1 (let S; be the service time of this customer). Then, 7 follows policy g for
a random amount of time 78 from 1 to T8 + Si with a lag of S1. From 74 + 51 onwards
it simply follows policy g with no delay. So, 7% = 0. Writing out A™ () and A% (), the
arrival processes corresponding to policies  and g using (4), we have that they are related
as:

AT (ty= A8 (t + 78) — A5(r8), 0=1=S,
— A8(t — S1) + AT(S1), S1=t=TE+ S,
=A8(t), t>18+ 5.
Note that the departure processes, D” (¢) and D7 (1), are related as
D" (1)=0, 0=<t=<51,
=14+ D8 —S81), Si1<t<t8+5, ®)
=D8(t), t>7t8+ S5

Essentially, we have states coupled (stochastically) by the policies g and 7 in such a

way that ;
Z7 () =2Z8(@) fort > 8 + 57.

Here is the crucial assumption.

Assumption A.  Let the arrival processes A™(¢) and A8 (¢) formed above be stochastically
equivalent, so that the systems when driven by any of these processes have the same
performance measures when the same policy is used for both the systems.

Remark. This assumption is satisfied by independent Poisson processes as noted by Hofri
and Ross (1987). The validity of this assumption in the case of general arrival processes
is an interesting issue to be looked into. '
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PROPOSITION 1
Let (i) at least one of the values a, E [C1], E[C3] be strictly greater than zero and (ii)

the processes AT (t) and A8(t) be equal in law. Then, any non-exhaustive policy g is
non-optimal.

Pfoof. Using (5) above, we show that the difference,
Tz (z0) — Jg(20)
— BE [ f e P D™ (t)— D8 (t)]dt] — aBE [ f e PLIAR™ (1) — ng(t)]],
>0 t=0
(6)

is positive. This difference has two terms on the RHS, the first one capturing the holding
cost and the other the switching cost.

Let o€ be the first time that g switches from Queue 1 when the initial state is zg. On
each of the sets

Ay = {18 <08}, Mp:={rf=08=00}, A3:= {r8 > 08 < o0},

we compute this difference assuming that E [Cy] > Oora > 0.

Case 1 (18 < o¥8). Here we have R™(t) = R8(t), t = 0 and hence the difference in
switching costs as captured by the second term above is zero. Since

D™ (t)=D8(t)+1, t €[S, 78+ 51,
__:Dg(t)’ t¢[51,fg+S1],

we have,

pE U oe_ﬁt“yr (#) - Dg(f)ldtlm} —E[e P51 — e P7*) A1)
=

—E[E[e P51 (1 — ¢P7) A1, TETIAL]
—E[(1 — e P™)ELe P! |Ay, 7811 A L]
=E[e PSIEL(1 — e P7) A1)
Now, E[e~#51] =: §(B) and since 78 is strictly positive a.s. we have this term greater than

zero and thus (6) is positive in Case 1.

Case 2 (t8 = o0& = 00). Policy g simply idles forever and hence the difference in
switching costs is zero and the difference in holding costs is given by

BE \:](;OO e PIID™ (1) _ Dg(t)]dt|A2] = E[e-ﬁsilAZ] —38)

so that, here also (6) is positive.
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Case 3 (18 > 08 < 00). Many scenarios are possible here with policy g deciding to opt
for a switching before taking up a job from Queue 1 (in finite time a.s.). In all of them,
however, R” () lags behind Ré(z) by S till ©& -+ Sy and from then on they are the same.
Here, we show that the difference (6) is strictly positive by showing that the first term
(holding cost difference) is strictly positive if E[C2] > 0, and the negative of the second
term (switching cost ditference) is also strictly positive, if & > 0.

First, it follows as in Hofri & Ross (1987) again, that the negative of the switching cost
difference in (6) above can be lower bounded,

—apBE [ f > e PHAR™ (1) — dRE(1) J[Ag} > aBE[e™P7¢ (1 — e™B51)| A5]
0

and hence, is strictly positive if a > 0.
If E[C,] > 0, it follows that the holding cost difference in (6) is strictly positive as
shown below. Write

BE [ [erro- Dg<z>]dz|A3]

k>1

=p fo Tt (Z[P(D”(r) > k, W|A3) — B(D4(1) = &, ‘I’IAs)]) dr

where ¥ = {t < 87 + 78)}. Note that departure processes are stochastically equal for
t > Sy + t&. With Tig denoting the ith departure epoch from the system under policy
g, (Tég = 0),setU; := Tl*’ — Ti{l. Then, with Uy >4 S1, we have,
PUL+Uz+- -+ U1 + 51 <) 2PWU I+ Uzt -+ U <1)
Vi>0,k>0
= P(D7 () >k, YV|A3) >=P(DE() > k, W|A3) Ve >0,k >0

so that, the above is indeed positive. If, E[C>] > 0, then from the fact that U includes the
service time of a job as well as switchtime or idling time, we have,

P(S1 <, V|A3) = P(U; <1, V[A3) +¢,
for some € > 0 and ¢ in an open interval. This means that
OPDT(1) = 1, W|A3) = P(DE() > 1,¥|A3) +¢,

for some € > 0 and ¢ in an open interval. So, finally, we have (6) strictly positive under
the hypothesis.

Remark 1. 1tis easy to see that the above arguments go throughy for queues with more than
two classes; we require that at least one of a, {E[C; ;]} be strictly positive.

Remark 2. The proof above uses the stochastic coupling idea and the requirement on the
part of the arrival processes, as set out in assumption A, facilitates coupling of the evolution
of the systems following the policies pathwise, after the coupling epoch, & + S;. Since
the technical nature of MMPP is not used in the above proof, we conjecture that the above
result is valid for a much more general arrival process that satisfies assumption A.
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Remark 3. Policy m is more exhaustive than policy g in the sense that it serves one job
from the same queue in the very beginning. As the above argument is sample pathwise,
by induction, this means that exhaustive policies are better than non-exhaustive policies.

Remark 4. ‘We left open here the decisions the server has to take when the queue to which
it is attached becomes empty. One class of policies to use in this context is that of the
threshold policies in which Hofri & Ross (1987) show that such policies are optimal when
arrivals are Poisson.

Remark 5. Verifying the sufficiency condition involving the arrival process (Assumption

A} is difficult; indeed it may be necessary to pursue another track of investigation to get
around this problem (M Hofri 1996, personal communication).

4. Simulation results
Since it is difficult to verify the validity of the sufficient conditions concerning the equiva-

lence of the arrival processes (assumption A), we simulated quite a few systems operating
under different policies and looked at the cost incurred by them. This way, we investigated

Table 1. Setup costs and inventory hoiding costs for a bursty scenario.

nyny Ny No SWi SWo Switching cost Holding cost Total cost
11 23 1337.6 12524 2590.0 798.0 3388.0
12 23 13425 1267.4 2609.9 1526.3 4136.2
13 23 1456.1 1404.4 2860.5 2228.2 5088.7
21 23 1375.8 1506.3 2882.1 1656.1 4538.2
31 23 1817.8 1909.5 3727.3 2142.1 5869.4
22 23 1387.9 1532.7 2920.6 2329.9 5250.5
23 23 1504.2 1675.4 3179.6 3008.8 6188.2
11 22 1342.5 1275.4 2617.9 591.1 3209.0
12 22 1456.1 1412.3 2868.4 1325.2 ~4193.6
13 22 1785.4 1755.5 3540.9 2190.7 5731.7
21 22 1387.4 1540.7 2928.6 1394.6 4323.2
31 22 2001.6 2132.1 4133.7 1780.2 5913.9
11 32 1160.9 1101.5 2262.4 732.5 2994.9
12 32 1259.0 1224.1 2483.1 1507.8 3991.0
13 32 1401.4 1377.6 27790 2441.1 5220.1
15 32 1401.9 1379.2 2781.1 4154.4 6935.5
21 32 1112.3 1275.4 2387.7 1511.3 3899.0
22 32 1225.9 1412.3 2638.3 2245.4 4883.7
23 32 15552 1755.5 3310.7 3111.0 6421.7
24 32 1633.7 1835.9 3469.6 39723 7441.9
31 32 1202.3 1357.6 2559.9 2116.1 4676.0
32 32 1318.6 1499.7 2818.3 28314 5649.8
33 32 1869.5 2065.4 3934.9 3628.2 7563.1
41 32 1816.0 1949.0 3765.0 2501.7 6266.7
42 32 2187.1 2348.6 4535.7 3073.3 7608.9
51 32 22379 2343.8 4580.8 2907.0 7487.8

52 32 3018.9 3158.6 6177.6 3428.1 9605.6
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Table 2. Setup and inventory holding costs for exhaustive policies.

ni 13 Ni Np SW; SWo Switching cost Holding cost Total cost
11 11 1734.3 1683.7 3418.0 294.1 3712.1
11 12 1618.1 1540.7 3158.8 474.4 3633.2
11 13 1606.0 1506.3 3112.3 735.9 3848.2
11 14 1257.2 1149.2 2406.4 964.8 3371.1
11 15 1217.1 1096.6 2313.6 1256.0 3569.6
11 21 1456.1 1412.7 2868.8 433.9 3302.7
11 22 1342.5 1275.4 2617.8 591.1 3209.0
11 23 1337.6 1252.4 2589.9 797.4 3387.3
11 24 1232.9 1137.4 2370.4 936.8 3307.1
11 25 1184.9 1075.7 2260.6 1233.0 3493.7
11 31 1259.0 1224.5 2483.5 616.5 3100.0
11 32 1160.9 1101.5 2262.4 732.5 29949
11 33 1160.1 1082.4 2242.5 930.6 3173.1
11 34 1056.1 970.1 2026.2 1008.6 3034.8
11 35 1008.5 910.2 1918.7 1268.7 31874
11 41 1122.2 1091.3 22134 940.6 3154.1
11 42 1024.7 971.6 1996.3 1027.7 3024.0
11 43 1019.7 950.9 1970.5 1209.7 3180.1
11 44 1019.2 939.8 1959.0 1150.3 3109.3
11 45 1001.0 9055 1906.5 1324.0 3230.5
11 51 1096.3 1067.1 2163.8 1035.9 3199.3
11 52 1016.4 965.3 1981.7 1094.2 3075.9
11 53 - 1015.8 949.0 1964.7 1263.5 3228.2
11 54 1005.1 9273 1932.4 - 1201.0 31334
11 55 998.8 905.2 1904.0 1371.3 3275.3

the performance of the exhaustive policies. Also, we confine our experimentation to the
class of exhaustive, threshold policies motivated by the results of Hofri & Ross (1987)
concerning the optimality of threshold policies in the case of independent Poisson arrivals.
We remark here that exhaustive, threshold policies may not be the optimal policies.

A typical policy we considered is captured by the four tuple (ni,na, N1, N2). Here,
ny and ny are idle thresholds while Ny and N, are switching thresholds. ny (n2) is the
minimum number of jobs required in Queue 1 (Queue 2) for the server to process a job
from that queue when attached to the queue. In other words, even though the server is
attached to Queue 1 (Queue 2) and the number of customers in that queue is less than ny
(ny), it will not process any job from that queue. Note that a service policy is exhaustive
if n; = ny = 1. Ny (N,) is the minimum number of jobs required in Queue 1 (Queue 2)
for the server, currently attached to Queue 2 (Queue 1), to switch to Queue 1 (Queue 2).
Njp and N, are called the switching thresholds.

Note that, in view of the exhaustive nature of the policies, n takes precedence over N.
So, in an empty system, the server when attached to a queue, say Queue 1, potentially idles

there till the number in this queue is greater than or equal to 721. If, during this idling period, .

the number in Queue 2 becomes at least Ny, it switches. Similarly, the server continues
to serve the jobs of Queue 1, till there are less than n; jobs in this queue, upon which, it
switches to Queue 2 if there are more than N5 jobs in Queue 2, otherwise the server idles
till work builds up in one of the queues. We present two such examples below.

*




Exhaustive service policies in multiclass queueing systems 79

Table 3. Setup and inventory holding costs for a non-bursty scenario.

ni na N1 N, SW SW, Switching cost Holding cost Total cost
11 45 692.3 550.8 1243.1 1189.5 2432.6
12 45 694.2 556.6 1250.9 1766.7 3017.6
13 45 735.0 599.6 1334.5 23299 3664.4
14 45 863.1 732.0 1595.2 2814.6 4409.4
21 45 764.0 618.6 1382.6 2098.3 3480.9
22 45 775.9 634.8 1410.6 2653.2 4063.8
23 45 800.2 663.4 1463.7 3238.8 4702.4
24 45 929.0 796.1 1725.1 3702.2 5427.4
31 45 886.5 737.9 1624.4 3088.9 4713.3
32 45 898.4 754.8 1653.2 3624.8 5278.1
33 45 999.8 857.6 1857.5 4175.7 6033.1
34 45 1129.3 992.0 2121.3 4606.1 6727.4
41 45 888.3 737.9 1626.2 4027.6 ' 5653.8
42 45 900.2 754.9 1655.1 4563.0 6218.1
43 45 1001.7 857.7 1859.4 5113.2 6972.5
44 45 . 11317 992.0 2123.7 5537.7 7661.3
51 45 1222.0 1049.4 2271.4 5140.6 7412.0
52 45 1336.9 1167.2 2504.1 5705.8 8209.9
53 45 1501.0 1342.8 2843.8 6118.0 8961.8
61 45 1323.9 1146.8 2470.7 6124.7 85954
62 45 14429 1270.0 27129 - 6666.4 9379.3
63 45 1711.6 1542.7 3254.3 - 6968.2 10222.6
11 44 835.9 699.1 1535.1 949.2 2484 .3
12 44 876.7 742.2 1618.9 1559.7 3178.5
13 44 1004.8 875.6 1880.4 2074.3 3954.7
14 44 1012.0 890.8 1902.9 2746.0 4648.9
21. 44 917.7 771.3 1695.0 1834.3 3529.3
11 54 831.2 698.8 1530.0 1062.2 2592.2
i2 54 871.5 741.8 16134 ‘ 1685.7 3299.1
13 54 999.2 875.3 1874.5 2217.1 4091.6
14 54 1006.3 890.5 1896.8 2890.0 4786.8
21 54 835.0 699.2 1534.1 1936.9 3470.9
11 55 688.8 550.4 1239.2 1268.1 2507.3
12 55 690.7 556.3 1245.0 1847.2 3094.2
13 55 731.0 599.2 1330.2 24233 3753.5
21 55 691.3 550.8 1242.1 21772 3419.4

4.1 Examples

Here, we look at the performance costs incurredkby two systems as they follow policies
which are more and more exhaustive, i.e., with ny, ny or both, becoming less. For the

systems we considered, the simulations show that the exhaustive policies incur the least
cost.

Example 1. (Bursty arrivals). Recall that a central motivation for the use of MMPP as an
arrival process is to capture bursty arrivals to a queue. We wish to look at such a scenario
now in the context of service and scheduling policies. Let a1, o2, A1, and A have the usual
significance. The numerical data are: o3 = 1/10, ap = 1/60, A1 = 0.2, Ay = 0.04. Let
the setup time be deterministic at a value 10 for both the queues and the mean service time
deterministic at 0.50. The discount factor 8 = 0.001, while the setup cost a = 250.
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Table 4. Setup and inventory holding costs for exhaustive policies.

n na Ny Na SW, SWo.  Switching cost Holding cost Total cost \{,_
11 17 1486.9 1360.7 28475 183.0 30305 >
11 12 1426.8 1286.4 2713.2 334.7 3047.5 "
11 13 1149.1 1001.1 2150.9 . 644.3 2794.5 i
11 14 1047.6 8974 1945.0 782.3 2727.3
11 15 392.4 737.9 1630.4 1085.1 2715.5

11 i6 813.7 653.6 1467.3 1346.2 2813.5 .
11 21 1482.0 1360.5 2842.5 247.0 3089.5 {
11 22 1422.2 - 1286.3 2708.6 395.4 3103.9 |
11 23 1145.3 1001.1 2146.4 694.0 23404

11 24 - 10439 897.3 1941.2 831.3 2772.6

11 25 890.2 737.9 1628.0 1114.6 2742.7

11 26 811.9 653.5 1465.4 1367.2 2832.7

11 31 1236.1 1119.6 2355.7 394.3 2750.0

11 32 12189 1090:5 2309.4 483.1 2792.5 ;
11 33 943.0 806.8 1749.8 744.0 2493.9 E
11 34 918.6 777.3 1695.9 846.6 2542.5
11 35 765.0 618.6 1383.6 1110.7 2494.3
11 36 681.7 533.0 1214.8 1338.9 2553.6 ,
11 37 644.5 4942 1138.7 1478.8 2617.6 :
11 41 1013.5 900.2 1913.7 ' 543.8 2457.5 i
11 42 1006.3 882.2 1888.5 511.0 2499.5
11 43 876.7 743.0 1619.7 824.1 2443.8 !
11 44 8359 699.1 1535.1 949.1 2484.2 |
11 45 692.3 550.8 1243.2 1189.6 2432.8 ;
11 46 615.7 469.7 1085.5 1392.7 2478.2
11 47 579.1 4309 1010.0 1522.9 2532.9 :
11 48 576.2 424.6 1000.7 1646.8 2647.6 |
11 49 499 .4 348.2 .847.6 . 1968.9 2816.6 |
11 51 1007.5 899.8 1907.3 698.9 2606.1
i1 52 1000.4 881.8 1882.2 764.7 2646.9

11 53 871.5 742.6 1614.1 950.0 2564.1

11 54 831.21 698.8 1530.0 1062.1 2592.1

11 55 688.76 550.4 1239.2 1268.0 2507.2 -
11 56 612.5 469.7 1082.1 1473.2 2555.4 ¥
11 61 986.0 881.7 1867.7 902.5 2770.2 :
11 62 979.0 8650 1844.0 957.3 2801.3

11 63 850.3 726.3 1576.5 1131.5 2708.0

11 64 827.3 698.0 15254 1150.9 2676.3

11 65 685.31 550.0 1235.3 1352.4 2587.8

This system was simulated over a sufficiently long simulation run length of 10,000
time units and the total cost (as given by (1)) was computed for different sets of values of
ni, hz2, N1, Na. It was found that the run length of 10,000 was an adequate indicator of the
infinite horizon discounted cost since the accumulated cost became virtually saturated for
this run length. The simulation clock was made to start ticking only after ensuring that the
modulating Markov chain was well into the steady state.

Table 1 shows for different values.of ny, ny, Nj, N, the values of the accumulated
discounted switching costs from Queue 1 and Queue 2, respectively, as SWy, SWa, the
total switching cost (SW1 + SW»), the accumulated (discounted) inventory holding cost,
and the overall discounted cost. Observe that three sets of values have been explored for




Exhaustive service policies in multiclass queueing systems 81

Niand Ny, namely, Ny =2, N =3; Ny =2, N, =2; N1 =3, Ny = 2. From table 1
we see that in all these three sets, exhaustive policies as given by n; = n, = 1 have the
best performance. '

Next, having seen that exhaustive policies perform better, we investigate the effective-
ness of threshold switching by looking at the cost incurred for different values of thresholds
N1 and N, (see table 2). For this system, the threshold Ny = 3, Ny = 2 offers the least
overall discounted cost among threshold policies considered.

Example 2. (Non-bursty arrivals). This scenario comes up when the streams of jobs have
comparable intensities with a correlation as captured by the 2-state Markov chain. We
have here, ] = ay = 1/60, A1 = 0.20, A5 = 0.10. The service is deterministic at value
0.50. The setup cost is 200 while the setup times are deterministic at values 5 and 5. The
discount factor 8 = 0.001. The notation in tables 3 and 4 is as in the previous example.
Table 3 demonstrates that exhaustive policies are better when thresholds are taken as (4,5);
(4,4); (54); and (5,5). Then, fixing the policy as exhaustive, i.e., with n; = ny = 1, we
search for the thresholds which offer the least overall discounted cost; Table 4 shows that
 the thresholds N1 = 4, N = 5 offer the best performance among the policies considered.

5. Conclusions

For a single-server multiclass queue fed by the streams of an MMPP, with non-preemptive
switchovers involving a switchover cost and/or a switchover time, we argued that ex-
haustive policies are optimal as long as the arrival process satisfies a technical condition
regarding its law and the service times of the various classes are the same. The verification
of this technical requirement on the part of the arrival process appears to be difficult. Hofri
& Ross (1987) showed that, when the queue is fed by independent Poisson streams, these
policies are optimal; here, this technical condition is true. To test our claim, we carried out
quite an extensive simulation of two examples in the case of a two-class queue. Exhaus-
tive policies were found to outperform non-exhaustive policies in all cases, Further, these
simulations showed that threshold policies are the best performing among all exhaustive,
threshold policies. Apart from having a direct argument about the optimality of exhaustive
policies, the question of effectiveness of the threshold policies needs to be looked into in
future.
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