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Abstract—In this paper, we focus on mechanism design for
single leader Stackelberg problems, which are a special case of
hierarchical decision making problems in which a distinguished
agent, known as the leader, makes the first move and this action
is followed by the actions of the remaining agents, which are
known as the followers. These problems are also known as single
leader rest follower (SLRF) problems. There are many examples of
such problems in the areas of electronic commerce, supply chain
management, manufacturing systems, distributed computing,
transportation networks, and multiagent systems. The game
induced among the agents for these problems is a Bayesian Stack-
elberg game, which is more general than a Bayesian game. For this
reason, classical mechanism design, which is based on Bayesian
games, cannot be applied as is for solving SLRF mechanism design
problems. In this paper, we extend classical mechanism design
theory to the specific setting of SLRF problems. As a significant
application of the theory developed, we explore two examples from
the domain of electronic commerce—first-price and second-price
electronic procurement auctions with reserve prices. Using an SLRF
model for these auctions, we derive certain key results using the
SLRF mechanism design framework developed in this paper. The
theory developed has many promising applications in modeling
and solving emerging game theoretic problems in engineering.

Note to Practitioners—Hierarchical decision making problems
arise naturally in many fields including electronic commerce,
supply chain management, distributed computing, transporta-
tion networks, manufacturing systems, and multiagent systems.
These problems involve interacting decision-making agents with
a predefined sequence according to which decisions are taken. If
the agents are rational and intelligent, these problems induce a
Stackelberg game and for this reason, these problems could be
called Stackelberg problems. In this paper, we look at a prominent
special class of these problems called SLRF problems. There
are many emerging examples of SLRF problems: auctions with
reserve prices, Internet routing, supply chain formation, resource
allocation in computational grids, routing in transportation
networks, scheduling in manufacturing systems, etc. The main
contribution of this paper is to extend classical mechanism design
to the class of SLRF problems. Classical mechanism design uses
the framework of Bayesian games whereas mechanism design
applied to SLRF problems has to deal with the more general
Bayesian Stackelberg games. This motivates the theoretical con-
tribution of this paper, which is to extend mechanism design to
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the setting of SLRF problems. This paper also offers a significant
application: designing incentive compatible procurement auctions
with reserve prices. Mechanism design or protocol design in the
context of all the emerging applications mentioned above will be a
rich avenue for applying this theory.

Index Terms—Bayesian games, Bayesian Stackelberg games,
incentive compatibility, mechanism design, procurement auctions
with reserve prices, single leader rest follower (SLRF) games,
Stackelberg equilibrium.

ACRONYMS
SCF Social choice function.
SLRF  Single leader rest followers.
BaSIC  Bayesian Stackelberg incentive compatible.
PAR Procurement auction with reserve price.
F-PAR  First-price procurement auction with reserve
price.
S-PAR  Second-price procurement auction with reserve

price.

I. INTRODUCTION

IERARCHICAL decision making problems arise nat-
Hurally in many fields including Economics, Sociology,
Engineering, Operations Research, Control Theory, Computer
Science, Electronic Commerce, Supply Chain Management,
Transportation Networks, and Manufacturing Systems. These
problems involve rational and intelligent decision-making
individuals or agents who interact, following a hierarchical
structure. In these problems, there is a predefined sequence
based on the hierarchy and the decision makers need to take
their decision (or action) according to that particular sequence.
The decision makers have their independent and perhaps con-
flicting objectives which they try to maximize independently
of the rival decision makers, but their objectives are affected
by the actions of the rivals as an externality. The game induced
among the decision makers for such a problem was first studied
by Stackelberg [1] and from then onward these games are
popularly known as Stackelberg games.

A prominent category of hierarchical decision-making prob-
lems is the set of problems where the first move is made by a
subset of decision makers by taking their action in a simulta-
neous manner and the next move is made by the rest of the de-
cision makers by taking their action in a simultaneous manner.
The players who make the first move are called the leaders and
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the players who make the second move are called the followers.
In such problems, the actions of the leaders can influence the
actions of the followers. A further subclass of these problems is
the set of problems where there is only one leader and rest of
the decision makers are followers. These problems are known
as single leader Stackelberg problems or single leader rest fol-
lower (SLRF) problems.

A. Examples of SLRF Problems

We first succinctly describe several emerging examples of
SLRF problems in the real-world.

Task Allocation in Distributed Systems: Consider a dis-
tributed system with a centralized scheduler which allocates
jobs to individual processors in a distributed/parallel/grid
computing environment. The scheduling policy adopted by the
centralized scheduler affects the scheduling strategies to be
adopted by the local schedulers of individual machines.

Internet Routing: The access networks situated at the edge
of the Internet are connected to the rest of the Internet through
a tiered hierarchy of Internet Service Providers (ISPs). At the
top of this hierarchy is a relatively small number of so called
Tier-1 ISPs or Internet Backbone such as UUNet, Sprint, AT&T,
Genuity, and Cable and Wireless. A Tier-2 ISP typically has re-
gional or national coverage and, thus, in order to reach a large
portion of the global Internet, it needs to route traffic through
one of the Tier-1 ISPs to which it is connected. Access ISPs
(for example, residential ISPs such as AOL, and company ISPs)
are at the bottom of the hierarchy and access the entire Internet
by routing the traffic through a Tier-2 ISP [2]. In such a hier-
archical scheme, the routing policy and tariff plan of a Tier-1
ISP affects the routing decisions and bandwidth selling price of
corresponding Tier-2 ISPs.

Admission, Routing, and Scheduling in Networks: In any
wide area network, there is a well-defined hierarchy of decision
layers in terms of admission control (highest layer), routing
policies (second layer), and scheduling policies (lowest layer).
In a large-scale factory network, we have a similar hierarchy in
terms of input control or part release policies (highest layer),
routing to individual factory cells (second layer), and sched-
uling of jobs within individual cells.

Routing in Transportation Networks: The policies of a State
transportation authority for streamlining traffic flows in a metro
affect the routing decisions of end users. Mechanism design is
required to control congestion in such networks; here, the trans-
portation authority is the leader and end users are the followers.

Resource Allocation in Governance: The energy policies,
water resource policies, and budget planning of a Central/Fed-
eral Government affect the objectives and options, and hence the
strategies, of individual state governments. This process con-
tinues through a hierarchy of decision-makers, including local
governments, planning agencies, and basic economic units such
as firms and households.

Electricity Distribution by a National Power Grid: The
policy set forth by the Central Electricity Regulatory Commis-
sion regarding tariff and distribution of the electricity among
various states, affects the tariff and subsidy plans of the state
governments. This eventually affects the consumption patterns
of basic economic units such as industries and households.

Electronic Commerce: In electronic commerce, SLRF prob-
lems arise in both forward auctions (for selling items) and re-
verse auctions (for procuring items). In a forward auction, the
reservation prices announced by the seller will affect the bid-
ding patterns of the buying agents. In procurement auctions, an-
nouncement by the buyer of a maximum willingness to pay will
affect the bidding patterns of the sellers. In fact, procurement
auctions with reserve prices constitute a primary motivation for
this paper. We discuss this example next.

B. Motivating Example: Procurement Auction With Reserve
Price (PAR)

Consider an electronic procurement marketplace where a
buyer b registers herself and wishes to procure a single indi-
visible object. Let us assume that there are n potential sellers,
indexed by « = 1,2, ...,n, who also register themselves with
the marketplace. The marketplace first invites the buyer to
report her type. Here by type of an individual, we mean the
worth he or she attaches to the object. Based on her actual type
6y, the buyer reports her type to be, say Oy, to the marketplace.
The declared type of the buyer, that is 0y, is treated as the
price above which the buyer is not willing to buy the object.
This price is known as reserve price. The marketplace publicly
announces this reserve price among all the sellers. Now, the
sellers are invited to report their types confidentially to the
marketplace. Based on actual type 6;, each seller ¢ reports his
type, say H:i, to the marketplace. The reported type of the seller
i, that is 6; is treated as the price below which the seller 7 is
not willing to sell the object. After receiving the types from all
the sellers, the marketplace determines the winning seller, the
amount that will be paid to him, and the amount that will be
paid by the buyer. These are called as winner determination
and payment rules. In practice, such a trading institution is
known as procurement auction with reserve prices (PAR).
Depending on which winner determination and payment rules
are employed by the marketplace, it may take different forms.
Following are two interesting instances.

1) First-Price Procurement Auction With Reserve Prices
(F-PAR): In this setting, the marketplace first discards all
those sellers whose reported types fall above the reserve price
announced by the buyer. Next, the seller whose reported type
is the lowest among the remaining sellers is declared as the
winner. The winner transfers the object to the buyer and the
buyer pays to the winning seller an amount equal to his reported
type, that is ;. If there is no type reported below the reserve
price, then no deal is struck. On the other hand, if there is a tie
among the winning sellers then the winner is chosen randomly,
where each of the lowest valued types has an equal chance of
winning.

2) Second-Price Procurement Auction With Reserve Prices
(S-PAR): In this setting, the marketplace first discards all those
sellers whose reported types fall above the reserve price. Next,
the seller whose type is the lowest among the remaining sellers
is declared the winner. The winning seller transfers the object
to the buyer and the buyer pays to him an amount equal to the
second lowest type, if such a type exists, otherwise an amount
equal to the reserve price. Further, if there is no type reported
below the reserve price then no deal is struck. If there is a tie
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among winning sellers, the winner is chosen randomly, where
each of the lowest type has an equal chance of winning.!

The game theoretic model that is appropriate for situations
of the above kind are the single leader rest follower (SLRF)
games. SLRF games are, in turn, a special case of the so called
Stackelberg games [1].

C. Relevant Work

Classical mechanism design theory [3] uses the framework
of Bayesian games, which are noncooperative games with in-
complete information [4]. Mechanism design applied to SLRF
problems has to deal with Bayesian Stackelberg games, which
are more general than Stackelberg games. To the best of our
knowledge, there is as yet no comprehensive treatment of mech-
anism design as applied to Stackelberg problems in general and
SLRF problems, in particular, this provides the primary motiva-
tion for this paper. We first briefly review the work in the liter-
ature which comes closest to the topic we are addressing here.

The paper by Cremer and Riordan [5] considers the clas-
sical public goods problem where there is a finite set of agents
{1,2,...,n} and a mechanism is required for allocating re-
sources among the agents based on the preferences announced
by the agents. For this problem, the paper considers a class of
sequential mechanisms where (i) the first agent (agent 1) plays
before the others, with only incomplete information about the
types of the rest of the players; and (ii) all other agents (agents 2
through n) play subsequently, in any arbitrary order, and have a
dominant strategy. The authors further restrict their attention to
the class of such sequential mechanisms in which (i) truth telling
is a dominant strategy for all the agents except the first agent (i),
the truth telling is an equilibrium strategy for all the agents. The
authors call such a mechanism as a Stackelberg mechanism. The
authors derive a sufficiency condition under which a Stackelberg
mechanism is both allocatively efficient (that is, the allocation
maximizes the total value of allocated agents) and budget bal-
anced (that is, the total receipts is equal to the total payments).
The class of mechanisms considered by Cremer and Riordan is
a very special class of mechanisms treated by us in the current
paper. This will be explained soon in the next section.

In [6], Chang and Luh consider two person, single-stage, de-
terministic Stackelberg games with incomplete information, and
come up with a necessary and sufficient condition for the ex-
istence of an optimal strategy for the leader. In the event that
an optimal strategy does not exist, they show that an e-optimal
strategy always exists provided that the leader’s cost is bounded.
These results are extended to three-level Stackelberg decision
problems by Luh et al. [7] and to multistage Stackelberg games
by Luh er al.[8]. These contributions are from a control theo-
retic perspective and not from a mechanism design perspective.
For example, these papers implicitly assume incentive compat-
ibility on the part of all the players of the game.

Konrad and Leininger [9] consider a set of n players who
are arbitrarily partitioned into a group of players who choose
their efforts early and a group of players who choose late. Only
the player with the lowest cost of effort has a positive payoff

ITf there are exactly two reported types below the reserve price and they are
equal then any one of them is declared as the winner at random and the amount
that the buyer pays to the winner is equal to this lowest type.

in any equilibrium. It is shown that the strongest player typi-
cally chooses late, whereas all other players are indifferent with
respect to their choice of timing. In the most prominent equilib-
rium, the player with the lowest cost of effort wins the auction at
zero aggregate cost. This paper discusses design of a very spe-
cific type of auction in a Stackelberg setting and does not con-
sider the general setting of single leader Stackelberg problems.

D. Contributions of This Paper

The existing literature on mechanism design in the context
of Stackelberg problems addresses only special classes of prob-
lems in specific problem settings. Also, classical mechanism de-
sign cannot be directly applied as is for Stackelberg mechanism
design problems. Thus, there is an important need to develop a
general mechanism design framework for Stackelberg mecha-
nism design problems. As a significant first step in this direc-
tion, we consider in this paper a major special class of Stackel-
berg problems, namely, single leader rest follower (SLRF) prob-
lems, and extend classical mechanism design theory to the class
of SLRF problems. The following are our specific contributions.
1) First, we formally define the mechanism design problem as
it applies to the context of SLRF mechanism design problems.
We develop a theory of mechanism design for SLRF problems
on the lines of classical mechanism design theory by focusing
on the following aspects.

* SLREF social choice functions (SCFs).

* SLRF indirect mechanisms.

» SLREF direct revelation mechanisms.

* Implementing an SLRF SCF in Bayesian Stackelberg equi-

librium.

» Bayesian Stackelberg incentive compatibility (BaSIC) of
an SLRF SCF.

* The revelation principle for Bayesian Stackelberg equilib-
rium.

We state and prove the following two results which are key to
SLRF mechanism design.

* Proposition 3.1 and Corollary 3.1 show that if a mechanism
implements a social choice function in dominant strategy
equilibrium, then it also implements the social choice func-
tion in Bayesian Stackelberg equilibrium.

* Proposition 3.2 asserts that a social choice function that is
dominant strategy incentive compatible is also BaSIC.

Note that we address SLRF mechanism design problems in
all their generality, while Cremer and Riordan [5] address a
very special class of SLRF problems, where the mechanism is
BaSIC for the leader as well as the followers and, moreover,
the mechanism is dominant strategy incentive compatible for
the followers. 2) We explore two examples as a significant
application and validation of the theory developed. These are:
first-price procurement auction with reserve prices (F-PAR)
and second-price procurement auction with reserve prices
(S-PAR). We model these as SLRF problems and using the
mechanism design framework for SLRF problems, we investi-
gate the Bayesian Stackelberg incentive compatibility of these
two SLRF mechanisms and derive two important results. In
particular, we show that under some mild conditions, F-PAR is
BaSIC neither for the buyer nor for the sellers, whereas S-PAR
is BaSIC for the sellers but not for the buyer. The above results
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for F-PAR and S-PAR can be deduced from similar results
available for forward auctions in the literature, however, the
approach that we have used to derive the results (based on the
theory developed in this paper) is quite novel and different.

To set the stage for the main contributions of this paper, we
first present, in Section II, a succinct overview of the Stackelberg
games and SLRF games. The material in Section II is adapted
from Basar [10] to the specific needs of this paper. Section III is
devoted to extending mechanism design to the specific setting
of SLRF problems. Section IV describes the application of the
theory to F-PAR and S-PAR mechanisms. In Section V, we con-
clude this paper by suggesting several promising directions for
future work.

II. STACKELBERG GAMES AND SLRF GAMES

Noncooperative games with an additional structure of hier-
archical decision making were first studied by Stackelberg [1].
Games with a hierarchical decision making structure are known
as Stackelberg games and the solution concept used for these
games is the Stackelberg equilibrium. A comprehensive treat-
ment of the Stackelberg games can be found in [10].

To begin with, we consider the following noncooperative fi-
nite game with complete information in strategic form:

I'=(N,(S)ien, (ui)ien)

where N is a nonempty set of the n players (or agents), and, for
eachzin N, S; is anonempty set of strategies (or pure strategies)
available to player ¢, and wu; is a function from S into the set of
real numbers R, where S = S; x --- x .S;, = XenS;. [f welet
s = (s1,-..,8,) denote the set of strategies chosen by all the n
players, then we call s as a strategy profile of the agents. Thus,
we can see that set S denotes the set of all possible strategy
profiles and for any strategy profile s € S, the number u;(s)
represents the expected utility payoff that player ¢ would get.
In the above description of the game I, it is an implicit as-
sumption that all the players choose their strategies simulta-
neously. It is possible to impose an additional structure of hi-
erarchical decision making on this game where agents choose
their strategies in a sequential manner as suggested by the hi-
erarchy. The hierarchy is defined as a sequence of subsets of
players, Hq, Ho, ..., Hj, which satisfies the following feasi-

bility conditions:

h < |N| ey
HjCN ¥j=1.....h )
Hi#0 Vj=1,..., h 3)
HinH;=0 Yi#j @)

where h represents the total number of levels in the hierarchy.
Given a hierarchy H, the players now choose their strategies in
the following manner. First, all the players at hierarchy level 1,
i.e., Hy, choose their strategies simultaneously. The strategies
chosen by these players are announced publicly to the rest of the
players. Next, all the players at hierarchy level 2, i.e., Ha, choose
their strategies simultaneously and again the chosen strategies
by all these players are announced publicly to the rest of the
players. This process continues until all the players choose their
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strategies. At the end of the process, the utility of each player ¢
is computed by using the function u;(s), where s = (s;);en is
profile of strategies chosen by all the players in a hierarchical
manner. Note that under such a hierarchical scheme, when the
players at a given level of hierarchy H; are about to choose
their strategies, the strategies chosen by the players in hierarchy
levels j through h — 1 is a common knowledge among them.

A strategic form game I' superimposed with a hierarchy of
decision making is called as Stackelberg game and can be rep-
resented in the following fashion?2

Ts = ((Hj)j=1,...n, (Si)ien, (Ui)ien)-

Following are two special cases of the Stackelberg games that
are of interest to us.

Simultaneous Move Games (h = 1): In this case, there is
only one level of hierarchy and the Stackelberg game I just
boils down to the noncooperative game I". For such games, one
can use the standard solution concepts available in the literature
of noncooperative game theory, for example, dominant strategy
equilibrium and Nash equilibrium.

Leader-Follower Games (h = 2): Inthis case, the players are
divided into two levels of hierarchy—H; and H>. The players
in H; are called leaders because they are the ones who choose
their strategies first. The players in Hy are called followers and
all of them, after observing the strategies chosen by the leaders,
choose their strategies in a simultaneous manner. Within the
class of leader-follower games, there is an interesting subclass
of games where H; is a singleton. Such games are called as
SLRF games. In the remainder of this paper, we will be just
focusing on SLRF games.

A. Pure Strategy Stackelberg Equilibrium for SLRF Games

The pure strategy Stackelberg equilibrium of the SLRF games
is based on following two quantities.

1) The set of followers’ optimal response strategy profiles.

2) The set of leader’s secure strategies.
Now, we define each of these two quantities one by one.

1) The Set of Followers’ Optimal Response Strategy Pro-
files: Let us assume that the leader has chosen her strategy to
be s, € S,. The following set of pure strategy profiles of the
followers, denoted by R(s,), is called as the set of followers’
optimal response (or rational reaction) strategy profiles

R(Sl) = {54 € S—l|uj(3175j754,j)
< ’U,j(Snsil)VSj € 5;Vj € NA\A{l}}

where

* So = XjenmySi-

* (s,,s_,) is a strategy profile of the players in which the
leader plays with strategy s, and the followers play with
strategy profile s_, .

* (s,,55,5_,,) is astrategy profile in which the leader plays
with strategy s, , the follower j plays with strategy s;, and
rest of the followers play with the same strategy as sug-
gested by s_,.

2The games with a hierarchy of decision making have also been studied in

extensive form but this is not required for our discussion here. For more details
on extensive form Stackelberg games, see [10].
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The above definition essentially says that for any fixed pure
strategy s, of the leader, the rational reaction set R(s,) consists
of all the pure strategy Nash equilibria of the following (N — 1)
players game I'_,:

L, =N}, (Si)ien\py- (@i)ien\q13)

where w;(s_,) = ui(s,,s_,) Vs_, €S_, Vie(N\{l}).It
is easy to see that nothing prevents R(s,) from being an empty
set.

2) The Set of Leader’s Secure Strategies: Assuming that
R(s,) is a nonempty set for each 5, € S, a strategy s} € S,
of the leader [ is said to be a secure strategy if it satisfies the
following security constraint:

* .
sy €argmax min w(s,,s_,).

s, €S, s_,€R(s))

Note that under the assumption that the set R(s,) is nonempty
for each s, € S, a secure strategy s, always exists if the set S,
and the set R(s,) are both finite. A secure strategy for the leader
maximizes the leader’s utility against the worst possible play by
the followers. For this reason, the leader will always like to play
a secure strategy.

3) Stackelberg Equilibrium: A strategy profile s* =
(s7,s*,) is said to be a Stackelberg equilibrium if s is a secure
strategy for the leader and s*, is an optimal response strategy
of the followers against s*, that is s* € R(s).

B. Bayesian SLRF Games

Here, we impose a hierarchical decision making structure
on Bayesian games, which are basically finite noncooperative
games with incomplete information, and study the solution con-
cept for the resulting games. A comprehensive treatment of the
Bayesian games can be found in [4].

To begin with, we consider the following noncooperative fi-
nite game with incomplete information (also known as Bayesian
game):

I’ = (N, (Ciien, (©i)ien, (¢:)ien (ui)ien)

where N is a nonempty set of n players, and, for each ¢ €
N, C; is anonempty set of actions3 available to player i, O; is a
nonempty set of possible types of player i, ¢; : ©; — AO_; is
a belief function which gives the subjective probability of player
1 about the types of the other players for a given type of his own,
and u; : C x ©® — R is the utility function of player ¢, where
C=C; x--xCp,and ® = 0 X ...x O,. A pure strategy
s; for player i in the Bayesian game I'’ is defined as a function
from ©; to C;. Also, it is easy to see that s; € xg,C;. The set
C; represents the set of pure strategies for player . We denote
the set of pure strategies of player 7 as .S;, that is S; = Xg,C;.
We say that the game I'? is finite iff the sets N, C;, and ©; (for

3Note that we call these elements actions instead of pure strategies. The pure
strategies will be defined shortly.

every ¢) are all finite. Throughout this paper, we confine our dis-
cussion to finite Bayesian games unless otherwise stated.

In the above description of the Bayesian game I'®, it is
an implicit assumption that after learning their types, all the
players choose their actions simultaneously. However, in a
way similar to the complete information case, it is possible to
impose an additional structure of hierarchical decision-making,
where players after learning their types, choose their ac-
tions in a sequential manner as suggested by the hierarchy
H = H;,H,,...,H,, where H satisfies the properties (1)—(4).
A Bayesian game I’ together with hierarchical decision making
can be called Bayesian Stackelberg game and will have the
following components:

Y = ((Hj)j=1..

S

ks (Ci)ien, (©i)ien, (Pi)ien, (ui)ien)-

It is now apparent that a SLRF Bayesian Stackelberg game is
the one in which one player is declared as the leader and after
learning her type, she first takes her action. The action taken by
the leader becomes common knowledge among the followers
but her type remains unknown to the followers. Following the
action of the leader, all the followers, who have already learned
their types, take their actions simultaneously. In what follows,
we characterize the Bayesian Stackelberg equilibrium solution
concept for such games.*

C. Pure Strategy Bayesian Stackelberg Equilibrium for
Bayesian SLRF Games

1) The Set of Followers’ Optimal Response Strategy Profiles:
Let us assume that after learning her type 6, € ©,, the leader
takes an action ¢, € C,. For any such action ¢,, the set R(c,)
below, which is a set of pure strategy profiles of the followers,
is called as the set of followers’ optimal response (or rational
reaction) strategy profiles:

R(c,) ={s_, € S_i|ve, (¢, cjy5 ;)
<wg,(c,8_,), Ve €,
V8 €0;, V jeN\{l}} 5)

where

* S = XjemySi-

* (c¢,,s_,)isan action-strategy profile of the players in which
the leader takes an action c, and the followers take actions
as suggested by the corresponding pure strategy for them
in the profile s_, .

* (¢,,¢,5_,,) is an action-strategy profile in which the
leader takes an action c,, the follower j € N takes an ac-
tion ¢; and rest of the followers take actions as suggested
by the corresponding pure strategy for them in the profile
5_,.

* The quantities vp, (c,, 5_,) and ve, (¢, cj, s_, ;) are the ex-
pected payofts, réspectively, to the player j when his type

“In the rest of the discussion, by SLRF game we mean SLRF Bayesian Stack-
elberg game unless otherwise stated.
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is 0;, and the players follow the action-strategy profile
(¢,,s_,)and (¢, cj,5_, ), respectively. The following are
the precise formulae for vy, ( - ):

v9_7(cl7371) =
> bilb-il0)ui((e s, (6.)),65.6-))  (©)
6_c0_;
Vo, (Cl7cj7s—l.j> =

D bi(0-510)ui(ecirs,,(0-,,)), (65,0-5))
0_,€0_;
)
where § = (9[,071) = (0]',9_]') = (0l70j79—l,j)"

The above definition of R(c,) essentially says that for any
action ¢, of the leader, the optimal response set R(c,) consists
of all the pure strategy profiles of the followers that are pure
strategy Bayesian Nash equilibria of the following (N — 1)
player Bayesian game I'* .

= (N\ {1}, (Cien\(13 (©i)ien\ (13
(Vi)ien\y> (@i)ien\13)

where
qp- .0 — A6
1/}1 ¥ Z 451 ) 1 |9)
0,€0,
Hi(c—ne—t) = Z ¢i(61|(9—1,i79i))ui
6,€9,

X ((e,e2)5(0,,0_))-

Itis easy to see that R(c, ) may be an empty set as well. However,
R(c,) is otherwise always a finite set under the assumption that
the game I' is a finite game, which means the sets N, (C;);en,
and (0©;);cn are finite sets for each ¢ € N. If we allow the
sets ©; to be infinite, then the relation (5) remains the same
(except requiring the finiteness of the quantities vy, (c,,s_,) and
ve, (c,,cj,5_, ;) but the relations (6) and (7) get modlﬁed in the
followmg manner

ve, (¢ 8_,) = Fo_,[u;((c,,s_,(6_,)), (6;,0-5))[6;] (8)
ve, (¢, cj,5_,,) = Fy_,
X [u]((CHC]? L (00,)), (85,0-5))165]. ©)

Now, it is also quite possible that the set R(c,) is empty.

2) Secure Strategy Set of Leader: Assuming that R(c,) is
nonempty for each ¢, € C,, we call a strategy s; € S, of
the leader [ to be a secure strategy if it satisfies the following
security constraint for each 6, € ©,

“(9 i 6)
s°(0,) € g s |, wh 262) ¢,(0_,16,)
—1
X(CHSfl(g—I)?(gl?Hfl)) (10)

A leader will always play a secure strategy. An implicit assump-
tion behind the above relation is that the game I'’ is a finite

game. However, if we allow the sets ©; to be infinite, then the
relation (10) gets modified in the following manner:

s*(0) € arg max| min FE
I( ) gc €C, [s LER(¢)) b

X[ul(cnsfz(efl)? (91 671))|61]]' (11)

Further, if we allow the sets (C;);en to be infinite, then the
above relation will reduce to the following form:

s¥(0,) € arg su inf FE
1( ) gchIC)'I [SfleR(Cl) o_,
x[u(e,,s_,(0_,),(0,,0_))10,]]. (12)

3) Pure Strategy Bayesian Stackelberg Equilibrium: A
strategy profile s*(-) = (s7(-),t",(-)) is said to be
a Bayesian Stackelberg equlhbrlum 1f s*(-) is a secure
strategy for the leader and t*, : C, — Ucec, R(c,) is a
rational reaction strategy of followers against s*(-), that is
f:(s;k(gl)) S R(ST(H[)) Vo, € ©,.

III. MECHANISM DESIGN FOR SLRF PROBLEMS

A. SLRF Mechanism Design Problem

The crucial difference between classical mechanism design
and mechanism design for SLRF problems is the condition on
the sequence in which the agents take their decisions. We as-
sume that the mechanism is implemented by a social planner
or policy maker or mediator. We use the phrase social planner
henceforth. Recall that in an SLRF mechanism design problem,
there is a special agent! € IV, the leader. The social planner first
invites the leader to take an action after the leader has learned
her type. The action taken by the leader is announced by the so-
cial planner among the rest of the agents, called the followers.
However, the leader’s type is still unknown to the followers as
well as social planner. Next, the social planner invites all the
followers, who have already learned their types, to choose their
actions simultaneously.

Similar to the classical mechanism design problem, here also,
the social planner faces the same problems of information elic-
itation and preference aggregation and, hence, the planner uses
social choice function to aggregate the preferences of the leader
and the followers into a single outcome z € X. An outcome
x represents a particular way in which the given social choice
problem can be resolved. For example, under the usual auction
setting, an outcome would represent how the winners are chosen
in the auction and the vector of payments to be made by the dif-
ferent agents. We first define an SLRF social choice function.

B. SLRF Social Choice Function

Definition 3.1: An SLRF social choice function (SCF) is a
function f : ©® — X, which a social planner uses to assign a
collective choice f(f,,0_,) to each possible profile (6,6 _,) €
O of the leader and the followers’ types.

A social choice function aggregates and maps the preferences
of the leader and the followers to an outcome. It associates an
outcome to each profile of preferences of the leader and the
followers.
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C. SLRF Indirect Mechanism

Definition 3.2: An SLRF mechanism Msgrrp =
(C,, (Ci)ien\giy>9(-)) is a collection of the action set of
the leader C;, action sets of followers (C;);en\ i3, and an
outcome function g : C — X, where C = C; x ... x C,,.

An SLRF mechanism Mgy rp combined with possible types
of the agents (©1,...,0,,), probability density ¢(-), utility
functions (u1(-),...,un(-)), and description of leader agent
[ defines a Bayesian Stackelberg game I'® which gets induced
among the agents when the social planner invokes this mech-
anism as a means to solve the SLRF problem. The induced
Bayesian Stackelberg game I'Y is given by

L% = ({1} N\ {1}, (Ci)ien, (©)ien, ¢(-), (W)ien)

where @; : C' x © — R is the utility function of agent ¢ and is
defined in the following manner:

wi(c,0) = ui(g(c), ;)

where © = O X --- x O,,. In view of the above definition, the
trivial scheme of asking the agents to reveal their types, namely,
direct revelation mechanism becomes a special case. We define
SLREF direct revelation mechanism next.

D. SLRF Direct Revelation Mechanism

Definition 3.3: An SLRF direct revelation mechanism Dsp rp
corresponding to a SLRF social choice function f( -) is the one
in which C; = ©,;V7 € N and g(0) = f(0) V0 € ©.

In the case of direct revelation mechanisms, the action set for
each agent is the corresponding type set itself. In the case of
an indirect mechanism, each agent is made to announce an ac-
tion rather than a type. By design, the action announced by the
agent is indirectly dependent on the private type of the agent. On
the other hand, in a direct mechanism, each agent is asked to re-
veal his type itself. The first-price and second-price procurement
auctions with reserve prices are examples of a direct revelation
mechanism for SLRF problem. We now formally describe the
various elements of these two direct revelation mechanisms.

E. F-PAR and S-PAR: Examples of SLRF Direct Revelation
Mechanisms

Notice that the agents in both F-PAR and S-PAR have been
divided into two levels of hierarchy, H = {H;, H2}. The first
level of hierarchy consists of a single agent, that is buyer, and the
second level of hierarchy consists of the rest of the agents, that
is sellers. In both of these examples, the marketplace acts as a
social planner. Itis easy to see that in both of these examples, the
mechanism employed by the social planner is a direct revelation
SLRF mechanism. The components of these two SLRF direct
revelation mechanisms are listed below.

1) Outcome Set X: An outcome in both these cases
may be represented by a vector x = (yp,Y1,---,
Ynstbyt1,.-.,tn), where y, = 1 if the buyer receives
the object, y, = O otherwise, and ?; is the monetary

transfer received by the buyer. Similarly, y; = —1 if the
seller # is the winner, y; = 0 otherwise, and #; is the mon-
etary transfer received by the seller 7. The set of feasible
alternatives is then

X = {(yb7y17 .

U € {071}7:‘/1' € {07—1}7% + ZUL =0,

i=1

'7yn7tb7t17"~7tn)|

ti Rty Rty + Y £ <0}
1=1

2) Utility Function of Buyer u;( - ): The utility function of the
buyer is given by

up(z, O0y) = Boyp + to.

3) Utility Function of Sellers u;(-): The utility function of
seller ¢ is given by

ui(z,0;) = Osyi +t;

4) Social Choice Function f( -): The general structure of the
social choice function used by the direct mechanism in
both F-PAR and S-PAR is

(13)

where 0 = (f4,...,6,).Notethaty,( - ),and y;( - ) depend
on the winner determination rule, whereas ¢;( - ) and ;( - )
depend on the payment rule. Let 6 ;) be the kth smallest
element in the set {f1,...,0,} and (0_;)(x) is the kth
smallest element in the set {61,...,60;-1,0;11,...6,}.In
view of these definitions, we can define each component
of the social choice function. Note that the allocation rule
is the same for both F-PAR and S-PAR and, therefore, the

definitions of y;( - ) and y;( - ) are the same for both5:

07 91, < 9(1)
1, otherwise

y(6s,0) = {

0, 0, < 9(1)
Yi(0p,0) = { =1, fa)y <0y, 0; =0 . (14)
0, otherwise

It is easy to see that the above definition satisfies the fol-
lowing condition:

Yo (6, 0) + > yi(0h,60) = 0. (15)
=1

The payment rules can be defined as follows. Payment Rule
for F-PAR

tb(elH 0) = - th(eln 0>,
1=1

ti(6s,6) = 0,y:(0p,6).

SNote that two sellers reporting the same type is a zero probability event.

(16)
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Payment Rule for S-PAR

— zn:ti(ab, 6)

0 'UL(H 70)7
£i(6r,0) = {é)$%@ﬁx

It is easy to see that transfer functions for both F-PAR and
S-PAR satisfy the following budget balance property:

0y < (H—i)(l)

otherwise a7

to(0s,60) + > ti(0y,6) =0 (18)
=1

In view of the above discussion about direct and indirect SLRF
mechanisms, we can say that the social planner can use either
an indirect mechanism Mg g, or a direct mechanism Dgp g to
elicit the information about the leader and the followers’ prefer-
ences in an indirect or a direct manner, respectively. However,
each scheme would induce a game among the leader and the
followers, and the social planner is concerned with whether or
not the outcome of the game matches with the outcome of the
social choice function f(#) (if the leader and all the followers
had revealed their true types when asked directly). This notion
is captured in the following definition.

F. Implementing an SLRF SCF in Bayesian Stackelberg
Equilibrium

Definition 3.4: We say that the mechanism Mg rr =
((Ci)ien,g(-)) implements an SLRF social choice func-
tion f(-) in Bayesian Stackelberg equilibrium if there
is a pure strategy Bayesian Stackelberg equilibrium

s*(+) = (s7(+),t*,(+)) of the game I'} induced by MsprF
such that
g (s7(01), (82, (s (60)))(0—1)) = f(B1,6-1) ¥(01,0-1) € ©.

Using the definition of Bayesian Stackelberg equilibrium, we
can say that s* = (s},t*,) is a pure strategy Bayesian Stack-
elberg equilibrium of the game I'Y induced by the mechanism
Mg rr iff it satisfies the following conditions.

Condition 1: Leader Plays a Secure Strategy

Z Qb l|€ ( ( 1*(91)754(94)790

min

s_ ER(C (9)
= 1161}%1%0 Z Qb l|€ ( ( 17371(971)701)7
o_,
Ve, € C,, \191 X! (19)
where
R(CI) = {54 € S—I |’U6j (CHCJHS*[,J') < Vg ; (61754)7
vcjec- Vo, € ©;,¥j € N\ {I}} (20)
U9 ) Z ¢ —J|0 uj
9_;€0_;
X (g(c S 1(0 I) HJ) 21
Vo, (CHC]? Z ¢ —J|0
9_;€0_;
X (g(cncj7571,]'(071,]')79j)' (22)

Condition 2: Followers Play an Optimal Response

t*,(s7(0) € R(s7(01)) Vo0, €Oy (23)
What follows is an important proposition which establishes
the relationship between dominant strategy equilibrium and
Bayesian Stackelberg equilibrium. The corollary to this propo-
sition is extremely important in the sense that it connects the
classical mechanism design theory in the absence of hierar-
chical decision making with the theory of mechanism design
for hierarchical decision making.
Proposition 3.1: Let s4(-) = (s{(-),...,s2(-)) be a
weakly dominant strategy equilibrium of the Bayesian game I'®
induced by the mechanism M = ((C;);en, g(-)). Consider the
same set of players and a Bayesian Stackelberg game I', which
gets induced among them when we designate one of the agents
as leader and the rest of the agents as followers. That is, we con-
vert the mechanism M into Msprr = (C,, (Ci)ien\ 113, 9(-))-
Then, s*(-) = (s(-),t*,(-)) is a pure strategy Bayesian
Stackelberg equilibrium of the game I'%, where s%(-) =

(s9(+)s--vsn()) = (s7(+),s%,(+)) and

s¥(0,) = s(9,), V6, €0, (24)
t* (s5(6,))(0_,) = s*,(6_),
V9, € 0,0 , €0, (25)

Corollary 3.1: Let the mechanism M = ((C;)ien,g(-))
implement the social choice function f(-) in dominant
strategy equilibrium. Then, the mechanism Mg rp =
(C,, (Ci)ien\qiy,9(+)) will also implement the f(-) in
Bayesian Stackelberg equilibrium.

Proof: Consider the following definition of dominant
strategy equilibrium:

ui(g (s{(0:),5-:(0-:)),0:)
> ui(g(s;(6:), 5-i(6-5)), 0:)
Vi e N,V0; € 9,

VO_; € ©_;,Vs;(-) € Si,Vs_i(-) €S,  (26)

We need to show that condition (26) together with conditions
(24) and (25) imply the conditions (19) and (23). This will es-
sentially prove the proposition.

Part I: First, we prove the condition (23). For this, we start
with the condition (26). Note that for any follower ;7 € N, the
condition (26) implies that

ui(g (s§(05) ,5-5(0-4)), ;)
> u;(g(s;(6;), s-5(0-5),0;)
VHJ' S @j,v 0_]' S @_j,
Vs; €85,V s_; €5
= u(g(s5(85),5-5(0-;)) . 65)
> uj(g(cjs5-i(0-5),05)
ng € @1»7\1 07]' S 671'.,
VC]' S Cj,V S—_j € S_j
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= Z ¢(9—j |0j)u]

_je0_;
x (g (s5(87),5-5(6-5)) - 0;)
> D (0 ,10)ui(g(es,5-5(0-5),6;)

6_,€0_;
VHJ' S @j,V cj € Cj,V S—j € S_j
S 0
0_,€0_;

X (9(s3(0;) ,57(0,)s 5-15(0-15)),0;)

> Z ¢(6_j|6j)uj

971697]'
x (g(cj,s7(0,),5-1(0-15),0),
Vﬂj S ®j,V cj € Cj,
V@ E@ V S_ leS_lyj
= Z P(0_,105)u;
G_Jee__?

x (g (s7(87),51(8,),521;(0-1,5)) . 05)
>0
0_,€0_;
X (971' |9J)U’J(Q(CJ/ ST(HI )7 Sil,j(a—l7j)7 0]),
Vﬁj S ®j,V cj € Cj,
VHI S @l,v S—15 € S,lyj.

Using relation (25), the above can be written as

Yo 185y

0_;€0_,
x (g(s7(6,), 7, (57(6,))(0-1)), 6;)

> Y B0 ,10,)ui(g(s7(6,),cit",
0_,€0_;
X (s7(6,))(0-15)),05),
Vﬁj € GJV cj € Cj,V 9, € 61
= 17, (s1(0,)) € R(s(6,)), Vb, €6,

This is precisely the condition (23).

Part II: Now, we take up proving the condition (19). For this,
we start with condition (26). Note that for the leader [ € N, the
condition (26) implies that

wi(g (si(61),5-1(0-1)) . 61)
> ui(g(s1(01),5-1(0-1),061)
V8, € ©,,V0_, € ©_;,Vs, € S;,Vs_; € 5_,

= Z (6 (9(si'(61), s-1(6-1)), )

_1€EO_,

> Y ¢

0_1€60_,
v, € ©,,Vs, € 8,,Vs_; € S_,.

10w (

(9(s1(61). 5

|61 ul

1(0-1),61)

Substituting the values from (24), we get the following relation:

Z ‘;b 1|Hl ul (ST(91)7S—1(9—1))791)
0_,€0_,
> > 0 100ulg(s,(60), 5-1(6-1), 601)
0_,€0_,
Y, € O,V 5, € Si,Vs_) € S_
= Z P(0_,100)w(g(s](61), 5-1(0-1)),61)
_1€EO_,
> > ¢0_160)wlg(cr, si(0-1),01)

0_,€0_,
Vo, e @hv (RS CI,V s €8

It is easy to see that R(¢;) is the same for all ¢; € C) and it
contains only those pure strategy profiles of the followers which
are part of a weakly dominant strategy equilibrium in the game
I'®. Therefore, the above inequality can be written as

s _

L €R(s: (0) > GO 100 w(g(si (0r), s-1(8-1)). 1)

0,€0;
Z¢>

VH, € @l,Vcl S Ol

l|€l ul (Clv 8_1(9_1), 01)

which is precisely the condition (19). (Q.E.D.).

G. Bayesian Stackelberg Incentive Compatibility (Basic)

Unlike the dominant strategy and Bayesian incentive compat-
ibility, the incentive compatibility of a social choice function for
an SLRF problem needs to be defined separately for the leader
and the followers.

1) BaSIC for the Leader:

Definition 3.5: An SCF f(-) is said to be Bayesian
Stackelberg incentive compatible (BaSIC) for the leader
(or truthfully implementable in Bayesian Stackelberg equi-
librium for the leader) if the direct revelation mechanism
Dsirr = ((©:)ien, f(+)) has a Bayesian Stackelberg equi-
librium s* = (s*,t* ;) in which

s*(01) = 6,,Y6, €O, 27)

That is, truth revelation is a Bayesian Stackelberg equilibrium
strategy for the leader in the game induced by Dsy rr. Following
is a necessary and sufficient condition for an SCF f(-) to be
BaSIC for the leader

s,fél}ﬁm Z 6.(0_,16,)u,(F(6,,5_,(6_,)).6)
6 /. ’ 6 6 ,
HGI;EI%O)G eZ@ ¢l 1| ( ( 1/871( *1))' l)

—1

V6, €0, V0 €0, (28)
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where

) < U9j(017571)7

=1,

R(ez) = {871 €S, |’l)9_7(0”éj7s

véje@j,vajeej,v,jeN\{l}} (29)
9175—1) = Z ¢j
0_,€0_;
X (0—;10;)u;(f(0,,5_,(6_,),6;) (30)
vo,(0,,05,5_ )= > ¢;i(0_;10;)u,
6 ;€0
X (f(eméjvs—l,,f(aq,]LHj)' (3D

Recall that the implicit assumption here is that all the type sets
0;,7 € N are finite. If the sets ©;,7 € N are infinite, then the
above condition will transform to the following condition:

inf Eefl[U,(f(gn571(971))»91”91]

silGR(Gl)
> inf  Ep [u,(f(6,,s_(6_,)),0)19,], V6,6 €O
SLIGR(Q;) -

(32)

assuming that the infimum is attained for some s_, .

2) Basic for the Followers:

Definition 3.6: An SCF f( -) is said to be Bayesian Stackel-
berg incentive compatible (BaSIC) for the followers (or truth-
fully implementable in Bayesian Stackelberg equilibrium for
the followers) if the direct revelation mechanism Dgyrrp =
((©;)ien, f(-)) has a Bayesian Stackelberg equilibrium s* =
(s7,t*;) in which

til(gl) = ((s;’f)jeN\{l}),Vﬁ, S 61 (33)

where

sj(ﬂj):@VGJ E@]VJEN\{Z} (34)
That is, truth revelation is a Bayesian Stackelberg equilibrium
strategy for the followers in the game induced by Dgy,gr. Fol-

lowing is a necessary and sufficient condition for an SCF f( -)
to be BaSIC for the followers:

Y bi(0-516,)u,(f(6,,65,6_,,),6))

0_,€0_;

Z b;(6—516;)u

e,Jee,]
V6;,0;€0;,¥0, €0,¥je (N\{}).

( (9170;’7944)7 Hj)

(35)

Recall that the implicit assumption here is that all the type sets
0©;,1 € N are finite sets. If the sets ©;,7 € N are infinite, then
the above condition will reduce to the following condition:

Eo_ [u;(f(0,,05,0_,,),07)0;]
> By [u, (f(6,.67.0_,,),6;)10;]

Ve, € 0,,Y6, €0,,Vj e (N\{I}). (36)

3) Bayesian Stackelberg Incentive Compatibility of a Social
Choice Function:

Definition 3.7: We call an SCF f(-) to be Bayesian Stack-
elberg incentive compatible (BaSIC) if it is BaSIC for both the
leader and the followers.

The following proposition provides a sufficient condition for
BaSIC of a social choice function in the presence of hierarchical
decision making.

Proposition 3.2: If an SCF f( - ) is dominant strategy incen-
tive compatible then it will be BaSIC.

Proof: Let f(-) be a dominant strategy incentive compat-
ible SCF. By the definition of dominant strategy incentive com-
patibility, we can say that the direct revelation mechanism D =
((©:)ien, f(+)) has a dominant strategy equilibrium s%(-) =
(s¢(-),...,s2(-)) in which

’ n

s3(0;) = 6;,¥0; € ©;,Vi e N. (37)

Invoking Proposition 3.1, we can say that the direct revelation
mechanism Dsprr = ((0;)ien, f(-)) has a Bayesian Stackel-
berg equilibrium s* = (s7,t* ;) in which

s1(6,),V6, € ©,
1(0.,),Y6,€0,Y0 €0,

—~
>
~—

||

Q.“‘&.

Substituting the values of (37) in (38) and (38), we get the fol-
lowing Bayesian Stackelberg equilibrium of the direct revela-
tion mechanism Dgprr, which suffices to prove that f(-) is
BaSIC

51*(91) = euvez € 61
t*,(s7(0,))(0_,)=10_,,v0,€0,Y0_, €0O_,

(Q.E.D.).

H. Revelation Principle for Followers

Analogous to the revelation principles for dominant strategy
equilibrium and Bayesian Nash equilibrium, we also have the
revelation principle for Bayesian Stackelberg equilibrium.

Proposition 3.3: (Revelation Principle for Followers):
Suppose that there exists a mechanism Mgrrr =
(C1,...,Cn,g(+)) that implements the SCF f(-) in Bayesian
Stackelberg equilibrium. Then, f( - ) is BaSIC for the followers.

Proof: If MgLrr = (Ci,...,Cp,g(-)) implements
SCF f(-) in Bayesian Stackelberg equilibrium, then there
exists a pure strategy Bayesian Stackelberg equilibrium
s* = (sj,t*,) of the game '’ induced by Msprr such that
g(s7(00). (2, (s5(00)) (0_0)) = [(61,0-0).¥(61,0_) € .
Such an equilibrium must satisfy conditions (19)—(23). Also,
we have seen that a SCF f(-) is BaSIC for the followers iff
it satisfies the condition (35). Therefore, in order to prove the
above revelation principle, we must show that the conditions
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(19)—(23) implies the conditions (35). For this, we start with
condition (23) and rewrite it in following form:

£ (s*(61)) € R(s*(61)).V 6y € O,
= Z (,bj X (0_j|0j)u]'

9_,€0_;
X (g(s7(01), 51", (s7(00))(6_, ), 0;)
< D 405105

971697]'
x (9(s7(60), 2%, (s7(61))(6 ), 0;),
Vej € C;,V0; €©;,V0, € ©,,Vje N\ {l}
= > 60510y

6_,c0_;
X (9(87(91)7t:(sf(el))(gfl,ﬁéj)vgj)
< Y (05105

0*.7€®fj
x (g(s7(0n), 87, (57 (60))(0_,), ;).
Vi, € ©;,¥0; € ©;,V0, € ©,Vje N\ {l}.

Using the fact that g(s7(6;),(t*,(s;(0))))(0-1)) =
f(61,0-1)Y(61,60-;) € O, we can write the above inequality in
the following form:

Z ¢j(9_j|9j)uj (f(glvg;vg—l,j)vgj)

0_,€0_;

< Z ¢j(6—j|9j)uj(f(6176jv971,])76”

0_,€0_;
V; € 0,0, €0,¥0, € ©,¥j€ (N\{I}).

This is essentially the condition (35). (Q.E.D.).

IV. APPLICATION TO DESIGN OF PROCUREMENT AUCTIONS
WITH RESERVE PRICES

We now show that the theory of mechanism design for SLRF
problems, developed in the previous section, can be effectively
used for designing incentive compatible SLRF mechanisms. For
this, we investigate the Bayesian Stackelberg incentive compat-
ibility of the social choice functions used in the first-price and
second-price procurement auctions with reserve prices (F-PAR
and S-PAR, respectively) by modeling both these auctions as
SLRF mechanisms. The results obtained in this section are avail-
able in the literature for the case of reserve price auctions for
selling. See Krishna [11], Myerson [12], and Maskin and Riley
[13]. Our results are for procurement auctions and are indepen-
dently derived using an elegant and natural SLRF approach to the
problem. Also, the derivation of results in this section crucially
uses Proposition 3.2 which, in turn, uses Proposition 3.1.

We first make certain standard assumptions regarding F-PAR
and S-PAR mechanisms. A comprehensive discussion about
these assumptions can be found in [14]-[16].

(Al) Risk Neutral Bidders: The buyer and all the n sellers are
risk neutral. This essentially implies that the utility functions are
linear.

(A2) Independent Private Value (IPV) Model: Each indi-
vidual, that is buyer as well as sellers, precisely knows the value

of the object to himself, but does not know the value of the
object to other individuals. Each individual perceives any other
individual’s valuation as a draw from some probability distri-
bution. Similarly, he or she knows that the other individuals
regard his or her own valuation as a draw from some probability
distribution. More precisely, for seller 4,72 = 1,2,...,n, there
is some probability distribution ®;( - ) from which he draws his
valuation 6;. Similarly, the buyer draws her own valuation 6,
from some probability distribution @ ( - ). Any individual’s val-
uation is statistically independent from any other individual’s
valuation. That is, ®;(-),s = 1,2,...,n and ®,( - ) are mutu-
ally independent. The private values of the object to the sellers
and the buyer, that is 6; and 6, can be viewed as their types.
Let ©;,7 = 1,2,...,n and ©; denote the set of all possible
types of the sellers and buyer, respectively. This implies that
®,(-),s = 1,2,...,n and Py(-) are probability distribution
functions on ©;,7 = 1,2,...,n and Oy, respectively.

(A3) Symmetry Among Sellers: The sellers are symmetric in
the following sense:

b @1 = @2 = ... = ®n = ®PAR~

* Oi() =Po(r)=...=Pul-) = 2().

We also assume that ©, = Opag and ®p(-) = D( ).

(A4) Properties of ®(-) and Opar: We assume that F( -)
and Opap satisfy the following properties.

* Opar = [0,9].

e f>0.

* ®(-) is twice continuously differentiable.

P(8) = ®'(F) > 0;V0 < 6 < 0.

Using the above assumptions, we derive the following The-
orem 4.1 and Theorem 4.2, the main results of this paper, which
summarize the incentive compatibility property of the social
choice functions used in F-PAR and S-PAR, respectively. As
already stated, these results are available in the literature for
the case of a forward auction for selling a single indivisible
item—see Krishna [11], Myerson [12], and Maskin and Riley
[13]. The results we derive are for the case of procurement and
use a natural approach based on SLRF mechanisms.

Theorem 4.1: Under the assumptions A1-A4:

1) The SCF used in first-price procurement auction with re-
serve prices, which is given by (13), (14), and (16) is nei-
ther BaSIC for the buyer nor BaSIC for the sellers. The
Bayesian Stackelberg equilibrium of the Bayesian Stackel-
berg game induced by this function among the sellers and
the buyer is given by s* = (s}, ¢*,) where

1.1) s;(-) is the solution of the following equation

. O(s5(0,
=50+ 20D,
1.2) t*,(05) = (s*(-),...,s*(-)) Vb € O, = [0,8],
where
0i, 0; € [6,,0]
?[1-@(::)]”*1(1];
0i + “rg@yp— 0i € [0,6)]

s™(0;) =

2) For an announced reserve price of Oy by the buyer, the ex-
pected payoff (utility) U;(6,|6;) and the expected payment
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R,-(ébwi) received by any seller ¢, when his actual type is
6;, turns out to be the following:

0 0 € [6,.7)
Ui (6,160;) = f[l —®(a)" e, 6 €8, éb]
~ 07 01 € [0},?]
Ri(0610:) = $ {8;[1 — ®(8;)]"*

+U1(19Ab|92)} t; € [Q, éb] |

3) When the actual type of the buyer is 6, and she announces
areserve price of 6y, his expected payoff (utility) Uy, (65]05)
and the expected payment Ry, (6|6 ) made by him turn out
to be the following:

(23

Uy(6,16) = (0 — )6, (6) + / [Bo, (4))ds
=0
Ry (04100) = 04®o,, (6) — Up(64]6).

Corollary 4.1:

1) The optimal reserve price strategy of the buyer in F-PAR
when all the sellers draw their types independently from
the uniform distribution over the set [0,1] is given by
sp(0b) = 05/2.

2) If Hb = 0, then F-PAR will reduce to the traditional first-
price procurement auction with no reserve price. Further,
if the sellers draw their types independently from the uni-
form distribution over the set [0, 1], then the above results
simplify to the following ones:

gy (=6)"
Ui(1]6:) = =
Ra) = 00— gt L0
n
2

(1|9b) —Hb— ?
Ry(116y) = —

T T

Proof of Part 1: Seller’s Optimal Response Strategy: Let
us assume that after learning her type 6, the buyer takes an ac-
tion 6, which is essentially the maximum amount she is willing
to pay. For any such reserve price announced by the buyer, we
wish to compute the set R(H},)—the optimal response (or ra-
tional reaczion) set of the sellers. Recall from Section II-C, that
the set R(6}) essentially consists of all the pure strategy profiles
of the sellers that are pure strategy Bayesian Nash equilibria of
the induced Bayesian game among the sellers due to the action
of the buyer. Let us assume that

R(6y) = {(s7(+),---,sn(-))lsi - [6,0] = [0, 0],
(s1(+),...,sn(+)) is a Bayesian Nash equilibriumn}.
A considerable amount of investigation has been made for the

past two decades in order to understand the structure of the set
R(6,)—see [14], [15], [17], [18], [13], and [19]-[21]. Recently,

T
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Fig. 1.
prices.

The payoff of a seller in first-price procurement auction with reserve

Maskin and Riley [17] have shown that under the assumptions
A1-A4, the following holds true.
« The set R(f,) is a singleton set.
 The optimal strategies of the sellers, that is s} ( - ), are the
same for all the sellers. With slight abuse of notation, we
denote the equilibrium strategy of each agent i by s*( - ) in
which case we have R(0) = {(s*(-),...,s*(-))}V, €
[0.6].
* The optimal strategy s*( -) of each seller is a strictly in-
creasing and differentiable function.
Maskin and Riley [17] have shown these results for the first price
selling auction with reserve prices, the same results can trivially
be extended to the case of first price procurement auction with
reserve prices. Using these results, we now proceed towards de-
riving the exact formula for s*( - ).

Fig. 1 shows the plot of how the payoff of a seller 7, (denoted
by u;(6;6;)) varies if he reports his type to be 6;, whereas his
actual type (actual valuation for the object) is ¢;. Notice that the
payoff of seller ¢ depends on reserve price 8, announced by the
buyer and the lowest reported type among the rest of the sellers.
Since s*( - ) is a strictly increasing function, the ordering of the
reported types s*(61),...,s*(6,) will be the same as the or-
dering of the true types of the sellers. Therefore, the lowest re-
ported type among the rest of the sellers would be s*((6_;)(1)).
The left-hand side curves in Fig. 1 depict the scenario when
éb < #;, whereas the right-hand side curves depict the scenario
when 6; < 0},. The three curves on either side discriminate the
cases based on the value of the lowest reported type among rest
of the sellers. The observations below follow trivially from these
curves.

Observation 4.1: If 0; € [9},7 f], then for any seller i

[wi(6:10:) < ui(8:16:),¥; € [9.9] V(0_:) 1y € [0, 7).
Observation 4.2: 1f 6; € [0, 6], then for any seller i
U7(9AL|91) < u;(6:]6;),

V; € [0,6;],6; € (6,,0]%(6_;) (1) € [0, 0].
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Note that Observation 4.1 immediately implies the first part of
the function s*(6;). For the second part, note that Observation
4.2 implies that

1) s*(¢;) must lie in the interval [6;, AR

2) 8*(01,) = 9(,.
In order to compute s*(8;) for this scenario, we would first com-
pute the expected gain of the seller i, denoted by U; (6;]6;), if he
reports his type to be 6;, while his actual type is #; under the case
when 6; € [0, 6,]. Remember that at the same time all the other
sellers are also reporting their types according to the strategy
s*(-). The following expression is a direct consequence of the
right-hand side curves in the Fig. 16:

Us(60:16:) = [P(s*((6-:) 1) > )
+ P(6y > s*((9-i)

) > ;)
= [1—®(s* (6,))]"1(d; — b;

" (6)) )
+ / ¢(9—z)(1)(x)(0i - Hz)diC

5771 (6;)

=[1—®(s* (6:)]" 1(6; — 6,). (38)

In order to compute an optimal strategy for seller 7, we must
apply the first-order necessary condition, which would imply
that
dU;(6;]6;)
df;
= [1—@(5*_1(éi))]n_1 + {(§L —6;)(n—1)

[L—®(s* (6:))]""2(~ (s <éi>>><s*“<el>>}=o.

=0

—1

We know that the function s*( - ) which results from the above
relation is an optimal strategy for the seller . Therefore, it
HERSN

must also satisfy that s* ~ (6;) = 6;. This fact would transform
the above relation into the following first-order differential
equation:

s (0:) = (s7(6:) — 0:)(n — 1)g(6:)/[1 — 2(8:)].  (39)
It is straightforward to show that the solution of the above o.d.e.
would be

1 Z L
7[1 o /0. [1— ®(z)] Y.

i

S*(gl) =40, +

Buyer’s Secure Strategy: We have shown that for any action
f) taken by the buyer, there is only one strategy profile with
which the sellers will respond. Thus, in order to find out the
secure strategy for the buyer, we must compute the expected
payoff of the buyer when she announces a reserve price of 6,
while her actual type is ;. Notice that due to the monotonicity
of the function s*( - ), the minimum reported type is given by
5*(6(1))- Itis easy to see that if by < 5*(6(1)) then Us(6505) =

%In this expression, we have made use of the fact that s*( - ) is a strictly in-
creasing, hence invertible, and differentiable function. We have also made use
of some results about the CDF of order statistics of independent random vari-
ables [23].

0 otherwise U (6,]65) = (6, —s* (6(1)))- Thus, we can conclude
that

by
Uu(6ul6n) = [ o ()0 = " (@)ds. (40)
0

Substituting the value of s*(x), the above relation becomes
65

Ub(éb|9b) = Hbq)g(l)(éb) — /x¢9(1)(x)dx
[

- 7n¢<x>< / (L — ®(y)]" " dy)de.

0 x

By change of variables in double integration, we get

6
Ub(lgAbwb) = 0bfbg(1)(§b) - /QZQSQ(I) (x)dw
[
Z y
- [u-a@r | [astds | ay
4 [4
6
= 01,@9(1)(0},) 13459(1) (x)dw
/

[Po,) (@)ldz.  (41)

(2)

In order to compute an optimal reserve pricing strategy for the
buyer, we must apply the first order necessary condition, which
would imply that
AU, (64163)
df, =0
= (01, — 01,)¢>@(1>(0b) - (I)G)(l)(gb) + (1)9(2)(011) = 0.

Substituting the values of ¢o ,, (6y), Do, (6y), and Do, (65)
from the appendix, we will get

- o(h
Op = 6y + (Ab)-
$(0h)
Replacing 6, with s7(6y), we get the following expression:
D(s5(6))

Op = s55(0p) + 77—
¢(s5 (b))

Proof of Part 2: We have already shown in Part 1 that for
any announced reserve price 6y, a seller will report s*(6;) as his
type if his actual type is ¢;. It was also shown that s*(6;) =
0;V; € [0y, 6] which essentially implies that this seller cannot
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be the winner and hence his expected payoff U (6,]6;), as well as
the expected revenue received R(6,|6; ) will be zero. This s proves
the first part of the function definition U (6,|6;) and R(9b|0 ).

In order to get the second part, we just need to replace 6; in
(38) by s*(6;) because in equilibrium each seller will report a
type according to the strategy s*(6;). This implies that

Ui(0s16:) = Ui(s™(6:)10:)

=[1— (s (s"(0:))]" (57 (6:) — 6:)
= [1—@(0)]" 7 (s™(0:) — 6:)

6
_ / [1 = &(a)]" \d.
0

s Uq

In order to get R(6;|6;), we observe that the probability of seller
1 being the winner is equal to the probability that s*(6;) is the
smallest reported type among all the reported types which, in
turn, is the same as the probability that ; is the minimum among
all the types of all the sellers. This turns out to be (1—®(6;))" L.
Thus, the expected value loss to the seller is §;(1 — ®(6;))" !
and it is easy to see that expected revenue received by the seller
is equal to the expected values loss incurred to him plus expected
payoff. .

Proof of Part 3: The expression for Uy, (6,|6y) directly fol-
lows from (41) and the expression for Ry (6]6;) can be derived
in a similar fashion as we derived the expression for R;(6|6;)
in Part 2. (Q.E.D.).

Summary of Theorem 4.1: In this theorem, we have shown
that F-PAR is neither BaSIC for the buyer nor for the seller.
This is because, for each agent, his or her true type is not
an optimal announcement. We have derived the equilibrium
bidding strategies for both the buyer and the sellers. We have
also derived formulae for the expected utility and the expected
payment received by both the buyer and the sellers. The equi-
librium bidding strategies were developed by first computing
the seller’s optimal response strategy against any strategy
followed by the buyer, and then computing the buyer’s secure
strategy which translates into her equilibrium strategy. The
corresponding optimal response strategy of a seller becomes his
equilibrium strategy. The computation of utility and payment
for the buyer and the sellers are fairly straightforward because
of the way we derive the equilibrium strategies.

Theorem 4.2: Under the assumptions A1-A4,

1) The SCF used in the second-price procurement auction
with reserve prices, which is given by (13), (14), and (17) is
BaSIC for the followers but is not BaSIC for the leader. The
Bayesian Stackelberg equilibrium of the Bayesian Stackel-
berg game induced by this function among the sellers and
the buyer is given by s* = (s}, t*,), where

1.1) s;(-) is the solution of the following equation:

g 2s0)
O =i+ S50
1245, (60) = (5°(+ ), 5*(-))Vh, € ©, = [6,5],

A . (B:9)
u (8,1, 6, o, O, Y
o B 0, B, (0 9
(@;9)
u (8,00, ©, (O 6) 7
B 1) 5
(5-6) _Zéi P o
u(6,19,) (e_l)mi ©,,
/J } 8, /J ‘ b,
[{CH )(1) 6) ' ((e-i)“T 6) '

Fig. 2. The payoff of a seller in second-price procurement auction with reserve
prices.

That is, buyer always announces s; () as the reserve price
if her true valuation is #,. For any reserve price 6, an-
nounced by the buyer, the sellers always report their true
valuation (type).

2) For an announced reserve price of by by the buyer, the ex-
pected payoff (utility) U;(6,|6;) and the expected revenue
R;(6,]6;) received by any seller i, when his actual type is
6;, is given by the following expressions:

07 HL € [élng]
UL(éb|0L) = by

J(1 = @) tdw, 6; € [8,6,]
0;
) 0, 0; € [0,,0]
Ri(6p]0:) = q {0:(1 — @(6:))" "+, e
Ui(65]6:)}, 0; € [0, 6]

3) When actual type of the buyer is #, and she announces a
reserve price 6y, her expected payoff (utility) Uy, (6,]6,) and
the expected payment Ry, (;6,) made by her turn out to be
the following:

6y
Uy (6510s) =

(ab - éb)ée(l) (éb) +

x

Uy (6,0).

[(1)9(2) (m)]dm

|lL\

Ry(6]0,) = 0,

Corollary 4.2:

1) The optimal reserve price strategy of the buyer in S-PAR
when all the sellers draw their types independently from
uniform distribution over the set [0, 1] is given by s} (65) =
0/2.

Proofof Part 1: Seller’s Optimal Response Strategy: As be-
fore, we start with computing the optimal response (or rational
reaction) set of the sellers R(Hb) against any reserve price 6, an-
nounced by the buyer. Fig. 2 is the analog of Fig. 1 for S-PAR.
The following two observations are a direct consequence of this
figure.

Observation 4.3: 1f 6; € [6y, 8], then for seller i

(1) (éb> -

i (0:10;) < ui(6:10:)¥0; € [0,0)Y(6-) 1y € [0,
Observation 4.4: 1 6; € [0, 6], then for seller i

u;(6:10;) < ui(6:6;),Y; € [8,0]%(0_;) (1) € [6.8].
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b

Fig. 3. The payoff of buyer in second-price procurement auction with reserve
prices.

These two observations immediately imply that truth revelation
is a weakly dominant strategy for each seller. Therefore, we
have

L5 (2)|s*(8;) = 0:98; € ©; = [6,8]}.

This proves the first part of the theorem that the SCF is BaSIC
for the followers. To prove the next part, we need to compute
the buyer’s secure strategy.

Buyer’s Secure Strategy: We have shown that irrespective
of what reserve price is announced by the buyer, it is always
a weakly dominant strategy for the sellers to report their true
valuation about the object. Therefore, the lowest reported type
f(1) and the second lowest reported type 62y are independent of
the value of reserve price 9},. Based on this argument, we have
drawn Fig. 3, which depicts the payoff to the buyer when she
reports her type to be 6,, while her actual type is 6. We denote
this payoff by Uy (65]6;). The figure consists of three curves each
for a different possible combination of the values of /(1) and 6 5).
The following observation is a direct consequence of this figure.

Observation 4.5: Ub(ébwb) < Ub(gb|0b)7Véb € [9[,/5]

This observation implies that s} (6) € [6,0,]V8, € [¢,0].
Thus, we have a boundary condition s; (#) = §. The expression
for expected payoff Uy, (éb |6) of the buyer when she announces
areserve price of 6, € [6, 0], while her actual type is 6, follows
immediately from Fig. 3:

Uy (65]65)
= P(0 < 01y < by, 0, < b2y < 0)(6, — )
+P(0 < 02y < 6,)(8 — 02))
= ((P(@(l)y@(z))(ébvg) - (I)(9<1>19<2))(Q7 9)
~P (0.0, (Ob: éb) + D(o,),00,) (8 06)) (6 — 1)
O

+ » bo, () (0 — x)dx

T

(42)

where ®o,) o,))(--) is a joint CDF of the first-order and
second-order statistics © (1) and ©(z). Pg,, () and P, ()
are the marginal CDF of the © ;) and © s, respectively. Sim-
ilarly, o ,,(+) is the marginal PDF of ©3). The formulae for
these quantities are summarized in the appendix. Making use of
the relations given in the appendix, (42) can be written as

Uy(60]6) = n®(6)[1 — (6,)]" (6 — )
gy
+ » b6, (%) (0 — x)dz.

x

Integrating by parts, we will obtain the following relation:

Uy (6s]65)
= n®(Gy)[1 — (6,)]""1(8, — 6y)

. o
(0 = 2) b0, @iy + [ de (o)
- =0

= (0 —Aéb)[l — (1= 2(6,))"]

6, N A
+ / Do, (v)dr = (0 — 0,)Po,, (0b)

Do, (z)dz. (43)

Note that for a given type 6, of the buyer, the expected utility
function Uy (63|6) is a mapping from [¢, 4] into R. It is easy to
verify that U, (6|65 is a continuous mapping over a compact
interval and, therefore, due to the Weierstrass theorem, it must
attain a maximum and a minimum at some points in the interval
[0, 6]. The point of maximum will be the optimal reserve price
that the buyer should announce if her type is ;. In order to com-
pute an optimal reserve pricing strategy for the buyer, we must
apply the first-order necessary condition, which would imply
that

AUy (6y10,)

o,
= (0 — ) do, (0) — Do, () + Doy, (65) = 0.

Substituting the values of ¢o ,, (9},)7 Do, (éb), and P, (9},)
from the appendix, we will get
()

Oy = Oy +
b b ¢(9b)

Replacing 6, with s7(6y), we get the following expression:

D(s5(0))
$(53(6))

This proves Part 1 of the theorem.

Proof of Part 2: 'We have already shown in Part 1 that for
any announced reserve price 6y, a seller will always report his
true type ;. Therefore, this seller cannot be the winner if §; €
[0, 0] in which case his expected payoff U; (6,|6;), as well as the
expected revenue received R;(6,]0;) will be zero. This proves

0y = sy (0) +



392 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 5, NO. 3, JULY 2008

the first part of the function definition U;(6;6;) and R;(6,]6;).
For the second part, we can make use of Fig. 2 and write that
(-

Ui(6,16:) = = 0)[P(0: < (0-) 1) < 60)]
+ (6, — 6:)[P (6, <

(0-i)))]
6y
= | do_,, (@)(x—bi)de

0
+ (0 — 0)[1 — Do_, ()]

(1)

:A (1-®o, (@)ds

1

-Gy
:/ (1= &(x))" Lda.
(4

7

The expression for R;(6y]6;) can be obtained in a similar
manner as we did it in the proof of Part 2 of Theorem 4.1.
Proof of Part 3: The expression for Uy, (8,6, directly fol-

lows from (43) and the expression for Ry (6,]65) can be derived
in a similar fashion as we derived the expression for R;(6;|6;)
in Theorem 4.1. (Q.E.D.).

Following are a few important observations concerning The-
orem 4.1 and Theorem 4.2.

1) For an announced reserve price 9},, the expected utility
U;(6,]0;) and expected payment R;(f,]0;) received by a
seller turn out to be the same for both F-PAR and S-PAR.

2) The optimal reserve price strategy of the buyer s;( - ) is the
same for both F-PAR and S-PAR.

3) For an announced reserve price 6y, the expected utility
Uy (65]65) of the buyer and the expected payment Ry, (6, |6;)
made by the buyer to the winning seller turn out to be the
same for both F-PAR and S-PAR. This confirms the clas-
sical Revenue Equivalence theorem [12], [24]-[28].

Summary of Theorem 4.2: In this theorem, we have shown

that S-PAR is BaSIC for the sellers but not for the buyer. We
have computed the equilibrium bidding strategies for the buyer
as well as for the sellers. We have also derived formulae for
the expected utility and the expected payment received by both
the buyer and the sellers. The approach followed in this proof
closely parallels that of Theorem 4.1.

V. SUMMARY AND FUTURE WORK

In this paper, we have extended the classical mechanism de-
sign theory to the specific setting of single leader rest follower
problems, which are a special class of hierarchical decision
making problems. We have also explored the application of the
theory developed to investigate incentive compatibility prop-
erties of the first-price and second-price procurement auctions
with reserve prices. The framework developed in this paper can
be immediately applied for modeling and solving mechanism
design problems arising in many emerging applications with
a two-level hierarchical structure. We have already provided a
listing of these applications in Section L.

In this paper, our focus was on the problems which have
only two levels within the hierarchy, with only one agent
at the higher level. However, in practice, problems such as
organizational decision making, decision making within the

Government sector, scheduling decisions in computational
grids, and routing decisions within communication networks
involve multiple levels within the hierarchy of decision makers.
In order to address these problems, we need to advance the
theory from SLRF mechanism design problems to general
Stackelberg mechanism design problems. This is another
promising direction for future work.

This paper has only addressed theoretical issues in the con-
text of SLRF mechanism design. The actual design of SLRF
auctions and examining the data of real-world auctions to de-
sign such auctions in a better way also need to be looked at.

APPENDIX
ORDER STATISTICS

Let ©1,0,,...,0, be n i.i.d. random variables of the con-
tinuous type with CDF ®(z:) and PDF ¢(x). For any realization
(61,...,0n) of these random variables, we define (1) as kth
smallest element in (61, ...,60,), which is also known as kth
order statistic. Thus, we can define a kth order statistic random
variable © (1), k = 1,...,n whose realization is given by 6 ;.
The marginal as well as joint CDF and PDF of the first- and
the second-order statistics © 1) and © ) turn out to be the fol-
lowing [29], [23]:

Do, (z) =1 [1 - &(x)]"

Do, () = Boy, (z) — nd(x)[1 — B(x)]""
Qo) 6(2))( 2Y), y<uw

Do o0 (5) = 4 1 [ By
nd(@)[1— By, =<y

qs@( )<w> nll = ()" ()
() = n(n — D[1 — &(x)]"2[(x)] (=)

y<zx

D©0),002) (T ) {{nn—l )L = 2(y)]"?
T <y

The marginal CDF and PDF of the highest order statistic, i.e.,
f(ny is given by the following equations:

Do, () = [®(x)]"
$o., (#) = n[®(@)]" " p(x).
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