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Scope and Purpose--Distinct multiple visits to machine centers are a distinguishing feature of semicon- 
ductor manufacturing systems and some flexible manufacturing systems. Re-entrant lines are queueing 
network models that are congenial for the modeling of such systems. Scheduling policies play an important 
role in deciding the performance of re-entrant lines. In this article, we develop an efficient computation 
methodology for predicting the performance of scheduling policies in re-entrant lines. The methodology is 
based on mean value analysis, a well-known queueing network analysis technique, and we believe this is the 
first analytical methodology for analysis of re-entrant lines. The proposed methodology predicts cycle times 
and throughputs accurately and is overwhehningly efficient compared to simulation. The results will be 
useful in the rapid performance analysis and design of semiconductor fabrication systems and flexible 
manufacturing systems. 

Abstract--Re-entrant lines are a class of non-traditional queueing network models that are congenial for 
the modeling of manufacturing systems with distinct multiple visits to work centers. Analyzing the 
performance of scheduling policies in re-entrant lines is a problem of significant research interest. Re- 
entrant lines are non-product form owing to priority scheduling, and all the existing performance studies 
have used simulation for analysis. In this paper we present an approximate technique for analytical 
performance prediction of re-entrant lines. The technique is based on MVA (Mean Value Analysis). The 
running time of the algorithm is linear in the product of the system population and the number of 
operations, which makes it overwhelmingly efficient compared to simulation. A detailed comparison of 
performance values obtained through simulation and the proposed technique shows that the analytical 
estimates are quite accurate. 

1. I N T R O D U C T I O N  

In  this  p a p e r ,  we c o n s i d e r  a type  o f  n o n - t r a d i t i o n a l  q u e u e i n g  m o d e l s  ca l led  r e - e n t r a n t  l ines 

a n d  p r o v i d e  an  eff icient  a n d  a c c u r a t e  ana ly t i ca l  m e t h o d o l o g y  fo r  e v a l u a t i n g  the i r  p e r f o r m a n c e .  

R e - e n t r a n t  l ines [1] a re  a p p r o p r i a t e  fo r  m o d e l i n g  m a n u f a c t u r i n g  sys tems  wi th  d is t inc t  mu l t i p l e  

j o b  vis i ts  to  w o r k  centers .  E x a m p l e s  o f  such  m a n u f a c t u r i n g  sys tems  inc lude  s e m i c o n d u c t o r  

f a b r i c a t i o n  facil i t ies,  th in  f i lm lines, a n d  sys tems  wi th  r e w o r k  tasks.  T h e  p r o p o s e d  m e t h o d ,  

based  on  m e a n  va lue  analys is  ( M V A )  [2] fac i l i ta tes  expl ic i t  m o d e l i n g  o f  s chedu l ing  pol ic ies  

used  in r e - e n t r a n t  l ines. W e  p r o v i d e  de t a i l ed  n u m e r i c a l  resul t s  w h i c h  s h o w  the  a c c u r a c y  o f  the  

p r o p o s e d  ana ly t i ca l  t e chn ique .  

In  a r e - e n t r a n t  l ine, the  pa r t s  vis i t  the  s a m e  m a c h i n e  severa l  t imes,  at  d i f fe rent  s tages  o f  

p rocess ing ,  b e f o r e  ex i t ing  the  sys tem,  thus  m a k i n g  the  f low non-acyc l i c .  A r e - e n t r a n t  l ine can  be 

desc r ibed  as fo l lows.  T h e r e  is a set o f  serv ice  cen te r s  { 1 , 2 , . . . ,  m}. Serv ice  cen t e r  i E { 1 , 2 , . . . ,  m} 
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has ni logical or physical buffers, hi1, b i2 , . . . ,  bi,i. For j E { 1 ,2 , . . . ,  hi}, the buffer hi~ contains parts 
visiting service center i for the j th  time. A part visits these buffers in a given sequence and any service 
center is typically visited several times in the route of a part. 

Figure 1 shows a typical re-entrant line with 3 service centers and 11 buffers. Parts enter the 
system at buffer b l l  and visit the centers according to a deterministic route as shown. Finished parts 
emerge from center 3 after undergoing processing following a wait in b33. Note that every part in this 
example line visits center 1 three times, center 2 five times, and center 3 three times. 

1.1. Scheduling in re-entrant lines 

There are two important decisions that have significant effect on the performance of a re-entrant 
manufacturing system. These are: 

1. Input release policies, that decide when to release fresh jobs into the system. 
2. Dispatching or scheduling policies, that decide which job to process next when a processing 

equipment becomes available. 

Several factors, such as the availability of  raw material and the current demand of  the product 
influence the choice of input release policy in any manufacturing facility. A very popular policy is 
Fixed WIP (Work in Progress) policy. In this policy a fresh job is released into the system only when 
a finished job emerges from the system, thus the number of  jobs in the system (WIP) is always fixed. 
When such a policy is used the stability of the system is guaranteed, and the system can be modeled 
as a closed queueing network. 

The scheduling or dispatching problem in a re-entrant line becomes interesting because several 
parts at different stages of processing may be in contention with one another for service at the same 
machine. Several researchers have focused on the issue of  scheduling in re-entrant lines [1, 3, 4, 5, 6, 
7, 8]. Glassey and Resende [5] have considered the performance of four input release policies: 
Uniform, Fixed Work in Process, Workload Regulating, and Starvation Avoidance. Wein [6] has 
investigated the effect of both input release policies and dispatching policies, in a detailed simulation 
study. Bai and Gershwin [7] have made an excellent study of all issues to be considered in the 
scheduling of re-entrant lines arising in semiconductor manufacturing systems. For  the same class of 
systems, Srivatsan et al. [8] have recently developed a software testbed for experimenting with 
hierarchical scheduling algorithms. 

Distributed scheduling policies based on buffer priorities and due dates have been formulated and 
investigated by Kumar  [11, Lu and Kumar  [3], and Lu et al. [4]. Lu and Kumar  [3] have investigated, 
among others, the FCFS (First Come First Serve) policy and the following fixed buffer priority 
policies: 

• FBFS (First Buffer First Serve) 
• LBFS (Last Buffer First Serve). 

b l l  

Cen te r  1 Cente r  2 

b24 ~ 

h3 

Center  3 

b~2 
B- I 

I . -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  _1 

Fig. 1. A re-entrant line with 3 stations and 11 buffers. 
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For  example, in the case of  LBFS, we order the ni buffers of processing center i a s  bini, 
bi,(ni_l),... ,bi2, bil in decreasing order of  priority. Note that when a processing center finishes 
processing a part, it selects, from among the parts contending for that processing center, the one 
that has finished most of its processing, and hence has the least remaining processing. Thus 
we may say that each processing center myopically tries to clear parts from the system as fast as 
possible. 

The above papers have also investigated the following due-date based policies: 

• EDD (Earliest Due Date first) 
• LS (Least Slack first). 

More recently, Lu et al. [4] have proposed a class of fluctuation smoothing scheduling policies that 
aim at minimizing the mean or variance of total delay in the system. Extensive simulation results 
have been provided for these scheduling policies. 

Recently, Connors et al. [9] have presented an open queueing network model designed for rapid 
performance analysis of semiconductor manufacturing facilities. In this paper, they assume an 
FCFS scheduling policy at all nodes of the queueing network and use a decomposition approach to 
analyze the queueing network model. Their model captures reworking and scrapping of  jobs, and 
different types of incapacitation of events, but does not model scheduling policies other than FCFS. 

1.2. Contributions of  the paper 

Existing results on the performance of re,entrant lines [1, 3, 4, 5, 6] are mostly based on simulation 
modeling. The main reason for this is the non-product form nature of  re-entrant lines [1]. The non- 
product form features in re-entrant lines include: 

• Priority scheduling among the buffers at a work center 
• The processing times on different visits are different in general. 

Schweitzer and Seidmann [10] have earlier considered the analysis of manufacturing systems with 
distinct multiple job visits to work centers. However they do not consider priority scheduling in their 
analysis. Priority scheduling has been considered by Shalev Oren et al. [11], however not in the 
context of  re-entrant lines. In a recent paper, Kumar  and Kumar  [12] have presented an efficient 
linear programming based approach to obtain bounds on steady state performance measures for 
re-entrant lines and in general multiclass queueing networks. Their approach however does not yield 
mean values. 

In this paper we propose an efficient method for approximate analysis of re-entrant lines 
employing non-preemptive f ixed buffer priorities, and the fixed WIP input release policy. The 
method is based on mean value analysis (MVA) [2,13,14,11]. An important object of the analysis 
method is the ability to model scheduling policies such as LBFS, FBFS, and FCFS. The efficiency 
of the technique arises due to its iterative nature. The time complexity of the algorithm is O(nb), 
where n is the population of  the system, and b is the number of buffers in the system. This 
makes the analytical method overwhelmingly efficient compared to simulation. Also the method 
is quite accurate. A description of the proposed analytical method constitutes the subject of 
Section 2. 

In Section 3, we present detailed numerical results obtained, through analytical and simulation 
experiments on some illustrative re-entrant lines. The performance indices considered are: 

• mean steady-state cycle time or the mean steady-state total delay in the system 
• mean steady-state throughput rate for a given fixed WIP in the system. 

The simulation results have been found to validate the analytical method proposed to a fair 
degree of  accuracy. 

2. AN APPROXIMATE ANALYSIS METHODOLOGY 

MVA yields expressions for mean values of  performance measures such as steady-state queue 
lengths, delays, and throughputs. Two versions of MVA exist, namely, the exact MVA for product 
form queueing networks [2] and approximate MVA for non-product from networks [15]. Exact 
CAOR 23-~-D 
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MVA is based on the Arrival Theorem, which states that, in the steady state of  a closed product form 
network with population k, the distribution of the network state seen by a job arriving at any node 
in the network is the same as the distribution of the network state a random observer would see with 
(k - 1) jobs circulating in the network. 

In the literature, several extensions have been proposed to MVA to account for non-product form 
features [15, 11, 16, 17, 18, 19, 20, 21, 22]. Of special interest here are the MVA extensions for 
handling priority scheduling. Most of these approaches consider only preemptive priorities [23, 24, 
16, 20, 19, 18]. 

The MVA extension proposed in this paper is unique in the sense that it takes into account in a 
natural way the following features of a re-entrant line: 

• Deterministic route of parts in a re-entrant line. 
• Multiple job visits to the same work center. 
• Priority scheduling based on buffer priorities. 

2.1. Assumptions and notation 

The proposed analytical technique assumes that when a processing center i finishes servicing a 
part, it selects the next part for processing from among the buffers bi l  , b i 2 , . . .  , bin ~ in a fixed priority 
order, which is independent of  the state of the system. We shall assume that the priorities accorded 
are non-preemptive. Further, parts in any given buffer are assumed to be processed in FCFS 
fashion. 

We shall illustrate the formulation of  MVA equations by assuming the LBFS scheduling policy. 
We assume that each processing center has exactly one machine and that the processing time of  a job 
visiting center i on i tsj th visit is an independent exponentially distributed random variable with rate 
#ij. In the LBFS scheduling policy, parts visiting center i for the j th  time get priority over parts 
visiting this center for the rth time where r = 1 , . . .  , j  - 1. For  example, in center 2 of  Fig: 1, buffer 
b25 would get priority over b24, b23, b22 and b21; buffer b24 would get priority over b23 , b22 , and b21; 
and so on. 

To apply MVA, we have to assume that the re-entrant line is a closed queueing network. 
This assumption is valid if the input release policy is a fixed-work-in-process policy (a fresh job is 
released into the network as soon as a finished job leaves the system) [5, 6]. Let N be the total 
number of jobs in the system. We shall use the following indices: i denotes a processing center; j 
denotes a buffer at a given processing center; k denotes a current job population and has the 
range, 1 , . . . ,  N. Let state (i , j)  correspond to the waiting or the processing of  a job visiting center i 
for the j th  time. 

Let the performance measures of the network be denoted as follows. 

Lu(k): 
Wij(k): 

;~(k): 

If W(k) 
have 

mean steady-state number of jobs in stage (i , j)  when the network has k jobs. 
mean steadY-State delay for jobs in stage (i, j ) (mean waiting time in buffer bt./+ mean 
processing time) 
mean steady-state throughput rate of jobs when the network has k jobs. 

denotes the mean total delay (mean cycle time) in the entire network, we immediately 

W(k)=~Wi.i(k). (1) 
i=l .j=l 

Using MVA, we compute W(N) ,  and A(N) in a recursive way. 
We also distinguish between external and internal buffers. We call a buffer bij external if the buffer 

feeding bij is connected to a center different from center i, and buffer b U is called internal if the buffer 
feeding bij is connected to center i itself. For  example, in the re-entrant line of Fig. 1, consider center 
2. The buffers b21 ,b24 , and b25 are external, since arrivals into these buffers come from center 1, 
center 3, and center 1, respectively. The buffers b22 and b23 are internal because they are directly fed 
by outputs from center 2 itself. 

At the processing center i; let us denote by SE i and SIi, the sets of external and internal buffers 
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respectively. Thus for the center 2 in the Fig. I we have 

SE 2 = (b21 , b24, b25} 

812 - {b22 , b23}. 

Using the notion of internal buffers, we introduce another  notion, that of  a chain of  buffers. An 
ordered set of  consecutive internal buffers at a center, each feeding the next one, together with the 
external buffer, which feeds all these internal buffers, is known as a chain of  buffers. For example, at 
processing center 2, the ordered set (b21. b22 , b23 ) forms a chain of  buffers. We shall call the next first 
buffer of  a chain (the external one) as the headofthe chain. Each isolated external buffer may also be 
considered as a chain consisting of the head buffer alone, e.g. b25 may be thought of  as a chain of  
buffers, even though jobs from this buffer immediately leave center 2. 

This way we can partition the ordered set of  all buffers at any center into chains. For  example the 
ordered set of  buffers at center 2 can be partitioned into chains as follows 

[(b21, b22, b23), (b24), (b25)]. 

In general let Ci denote the ordered set of  chains at center i. Then 

c,  = (G1, c ; 2 , . . ,  c;k,) 

where k i is the number  of  chains at center i and Cil, Ci2,. . . ,  Cik, are the individual chains. 
It  will also be useful to define Hi, the ordered set of  head of  chain buffers for each center i. For  

example, 

H 2 -- (b21 , b24, b25). 

2.2. Computation of  performance measures 

We consider the calculation of W(N) and A(N). It  would be helpful to consider the scenario a job 
would see upon its arrival at a certain buffer of  a machine, and the sequence of  events that occur 
while it is waiting there. 

When a job (we shall call it a distinguished job) arrives at a buffer, say bij, it sees a certain number 
of  jobs in various buffers in the system, the ordered set of  these integers forms the state of  the system 
at the arrival instant of  the job. Let S be the set of  jobs, currently at center i and having higher 
priority than the distinguished job. Note that  S will include all jobs that are ahead of the 
distinguished job in bij and all jobs in all buffers having higher priority than bij. The distinguished 
job must first wait until all jobs in S are serviced and leave the center i. Also, it must wait for the 
service completion of  these jobs which arrive in higher priority buffers, during its wait in buffer bij. 
And finally it has to get processed before it enters the next buffer. 

Hence, the mean total waiting time of  a job at any buffer bij is seen as the sum of  three 
components,  let us call them Term 1, Term 2, and Term 3, defined as follows: 

• Term l: Mean total time until all jobs in the set S are serviced and leave center i. 
• Term 2: Mean total time required to process all higher priority jobs which arrive during the 

stay of  the distinguished job in the queue at b U. 
• Term 3: Mean processing time of  the distinguished part  itself. 

We now describe how Terms 1, 2, and 3 may be computed, by presuming that the arrival theorem 
is valid in the given network. In fact, the arrival theorem is not valid for this network since the 
network is not product form. However, since we are only seeking an approximate analysis, we 
assume the arrival theorem to be valid for this network and verify the accuracy of the approximation 
using detailed simulation results. 

As the expressions for external buffers are quite different f rom those of internal buffers, we first 
describe the method for re-entrant lines which have no internal buffers, and later describe the 
modifications to be made in the case where internal buffers are present. 

2.2.1. Analysis o f  lines without internal buffers 

Computation of  Term 1. Consider the buffer btj. In this case, an arriving job, according to arrival 
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theorem, would see Lit(k - 1) jobs in the buffers bit where t = 1 ,2 , . . . ,  n i. Since LBFS scheduling 
policy is being used, the arriving job needs only to wait for the processing of  jobs ahead of it in 
buffers bit where t = j , j ,  + 1 , . . . ,  n i. Thus 

n; Lit( k _  1) 
Term 1 =  ~ (2) 

t=j #u 

Computation of  Term 2. The mean waiting time (excluding processing time) of  a job in buffer bi I is 

1 
w;;(z:) - - -  

#ij. 

During this waiting, parts may arrive into higher priority buffers at center i. Term 2 is the mean total 
time required to process all such parts. Since all the buffers in the model are external, then during the 
waiting, parts may arrive into any of the higher priority buffers (from other machines). By assuming 
the arrival theorem, A(k - 1) can be taken as the rate at which the jobs are flowing in the network 
and therefore 

( T e r m 2 =  W0.(k)_ 1 A ( k - 1 )  . (3) 
\t=/+l U/ 

Computation of  Term 3. The mean processing time required for the service of distinguished part 
itself is of course ! .  Thus Term 3 = ~ .  

~ i j  . l l i j  
1S n o w  The total waiting time Wi](k) given by 

Wii(k) = Term 1 + Term 2 + Term 3. (4) 

Now using (1), W(k) can be computed. 
Applying Little's Law [25] for the job population in the network, we obtain 

k 
? , (k ) -  W(k)" (5) 

We can again use Little's Law to obtain 

Lij(k) = A(k) W;i(k). (6) 

Consider the following initial conditions 

Li.] = (0); i = 1 , . . , m  

j = 1~ .  . , H  i. 

(v) 

= 0. (8) 

Using the initial conditions above and the recurrence relations defined by (4) to (6), and the initial 
values (7) and (8), we can compute W;j(k), L;j(k), and A(k) for k = 1 ,2 , . . . ,  N. Thus W(N) and 
),(N) can be computed. 

2.2.2. Analysis of  lines with internal buffers 

Computation of  Term 1 for an external buffer. For the computation of Term 1, notice that, if there 
are any jobs in the high priority head of chain buffers when the distinguished job arrived at bij, then 
all of  them must leave center i before a job from b;/can be taken up for service. The same is true for 
all high priority internal buffers. So 

Term 1 = ~ ,  L i , ( k -  1) (9) 
\b,k~C;, U / 

bitEHi 

+ Z l)  
bitESI i hik ~Cit 

Where Cit is the chain of buffers to which bit belongs. 
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For example, consider buffer b21 in Fig. 1. Term 1 in this case can be seen to be 

Term l=L21(k-1)(--~21-~ 1 1 )  ( ) ( 1 2 5 )  - - -  + + L24 (k - 1) 1 
#22 #23 ~24 + L25(k - 1) 

+ L 2 2 ( k - 1 )  (~-~2) + L 2 3 ( k - 1 )  (~23)"  

Computation of Term 2 for an external buffer. While the distinguished job waits in bi.j for 
processing, some new jobs will arrive into external buffers of center i. Of these, the jobs which go to 
higher priority buffers must be processed before the diStinguished job could be taken up. Hence 

T e r m 2 =  [ W i j ( k ) - ~ i J A ( k - 1 ) ~  Z 1 - .  (11) 
bitEHi bikECit [Zik 

Again f i t  is the chain of buffers to which bit belongs. 
For example, again consider buffer b21 in Fig. 1. The Term 2 in this case is 

T e r m 2 =  IW21(k )~21 ]A(k - I ) (~24+~25)  • 

Computation of Term 1 for an internal buffer. If bij is an internal buffer, then the distinguished job 
which arrives in bij must have come from b id_  1- And the machine would have taken up the service at 
bi d-l, only when all the buffers have priority higher than bij were empty (LBFS policy requires this). 
Therefore any jobs which the distinguished job sees resident in higher priority (external) buffers 
upon its arrival at bij, must have come there while the distinguished job was undergoing processing 
at buffer b i j _  1. Since the mean processing time at buffer bi , j_  1 is 1-!-- we have 

' ~ i , j -  I ' 

Term 1 -  1 A ( k -  1) ~ ~ ~ik" (12) 
['Ai, j - 1 bi t' >~i bik Ecl, 

For example, consider buffer b22 in Fig. 1. Here, 

Term 1=  1 A ( k - 1 ) ( ~ l  + ~ 1  ] .  
/~21 \/A24 /~25/ 

Computation of Term 2 for an internal buffer. It can be easily seen that Term 2 for an internal 
buffer is the same as given by (11). 

Computation of Term 3. Clearly, Term 3 for any buffer bi j  (whether external or internal) is ~ .  
The recursion relations given by (9), (10) and (11) can be unfolded using initial values given by 

(7), and (8). Thus W(N) and A(N) can be computed as before. 

2.2.3. Complexity of the methodology 
For a re-entrant line with a total of b buffers and having population N, the algorithm does N 

iterations. Each iterative step involves computations for each of b buffers. Hence time complexity of 
the algorithm is O(Nb). 

As each iteration needs only the values of mean queue lengths and mean throughput rate 
computed in the previous iteration, the space complexity of the algorithm is O(b). 

If we want to calculate the performance parameters for a set of populations, a simulation has to 
be run for each value of the population, whereas the proposed algorithm need only be executed 
once, for the maximum value of population. The performance values for all lower populations are 
produced in the intermediate iterations automatically. 

3. VALIDATION OF THE PROPOSED T E C H N I Q U E  

To see how far the performance predictions afforded by this technique tally with the actual 
performance of re-entrant lines, a large number of re-entrant lines were simulated using CACI 
SIMSCRIPT II.5 and performance measures obtained. The same lines were then analysed for 
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performance measures by the analytical technique described in this paper. The final results obtained 
through these two methods were found to be very close to each other. 

In particular we present results obtained for two re-entrant lines shown in Fig. 1 and Fig. 2. Note 
that while re-entrant line of  Fig. 1 has many internal buffers and chains, there are no internal buffers 
in the line of  Fig. 2. These two cases have been carefully chosen to facilitate experimenting with all 
the MVA equations developed for  all the specific cases. 

3.1. Re-entrant line 1 

Consider the system in Fig. 1. The mean processing time at each buffer are assumed as given 
below. 

1 1 1 1 

Pll  #12 #~3 3 

Mean steady-state cycle time 

The mean cycle time for the re-entrant line 1 obtained through analytical technique as well as 
simulation are plotted in Fig. 3 as a function of the system population. It  can be seen from the graph 
that there is a close agreement in the results obtained by the two methods. The maximum 
discrepancy is about  - 5 . 1 %  at a population of 4. 

Throughput rate 

The throughput  rate of  the re-entrant line 1 obtained through analytical technique as well as 
simulation are plotted in Fig. 4 as a function of  the system population. Again there is a close 
agreement between the results. The maximum discrepancy is about  +5.4% at a population of  4. 

3.2. Re-entrant line 2 

This line is shown in Fig. 2 and does not have any internal buffers. The mean processing times at 
each buffer are assumed as given below. 

1 

#11 

1 1 l 1 

~12 //'13 ~14 3 

1 1 1 1 

]Z21 #22 #23 2 

1 1 
- -  - -  1 .  

#31 #32 

Various performance measures for this re-entrant line obtained through both the methods are 
summarized in Table 1, along with percentage discrepancies between the results. The close 
agreement between the results is apparent from the last two columns of the table. 

hi 

r 
Center 1 

F 

b12 

ha 

h4 

% 

Center 2 

T = 

b22 

Fig. 2. A re-entrant line with no internal buffers. 

Center 3 
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Fig .  3. M e a n  cycle t ime  o f  r e - e n t r a n t  line 1 for  d i f ferent  p o p u l a t i o n s .  
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Fig .  4. T h r o u g h p u t  r a t e  o f  r e - e n t r a n t  line 1 fo r  different  p o p u l a t i o n s .  

3.3. Re-entrant line 3 

Consider again the line of  Fig. 2, with the following mean processing times at various stages of  
manufacturing. 

1 1 1 i 
= 4  - - = 3  - - = 2  - 1  

~11 # 1 2  #13  ~14  

1 1 1 
= 1 0  - - = 5  - 2  

//'21 ~22  #23  

1 1 
- - 5  - - - - 1 0 .  

#31 #32 

Note that the mean processing times are different for different visits to the same processing center, 
which is a well known non-product  form feature, even under a naive FCFS scheduling policy 
without any priorities. Figures 5 and 6 show the mean total cycle time and the throughput rate for 
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Table 1. Simulation and analytical results for the re-entrant line of Fig. 2 

Popln of Cycle time Cycle time Throughput Throughput Pct Pct 
system (SIM) (MVA) (S1M) (MVA) Error (%) Error (%) 

1 4.844 4.833 0.206 0.207 -0.23 +0.49 
2 6.499 6.193 0.308 0.323 -4.71 +4.87 
3 8.197 7.839 0.366 0.383 4.56 +4.64 
4 9.944 9.562 0.402 0,418 3.84 +3.98 
5 I 1.689 11.357 0,428 0A40 -2.84 +2.80 
6 13.504 13.195 0.444 0.455 -2.29 +2.48 
7 15.312 15.067 0.457 0.465 - 1.60 +1.75 
8 17.135 16.966 0.467 0.472 -0.99 +1.07 
9 18.979 18.888 0.474 0.477 -0.48 +0.63 

10 20.830 20.827 0.480 0A80 0.01 +0.00 
11 22.690 22.779 0.485 0.483 +0.39 -0.41 
12 24.575 24.742 0.488 0.485 +0.68 0.61 
13 26.479 26.712 0.491 0.487 +0.88 0.8 l 
14 28.390 28.689 0.493 0.488 +0.05 - 1.01 
15 30.300 30.670 0.495 0.489 + 1.22 - 1.01 
16 32.239 32.654 0.496 0.490 + 1.29 1.21 
17 34.177 34.641 0.497 0.491 +l.36 1.21 
18 36.119 36.630 0.498 0.491 + 1.41 1.41 
19 38.072 38.621 0.499 0.492 +1.44 1.41 
20 40.057 40.613 0.499 0.492 +1.39 -1.40 
21 42.018 42.606 0.500 0.493 + 1.40 - 1.40 
22 43.990 44.600 0.500 0.493 +1,39 1.40 
23 45.950 46.594 0.500 0.494 +1.40 1.20 
24 47.933 48.589 0.500 0.494 +1.37 - 1.20 
25 49.908 50.585 0.500 0.494 +1.36 1.40 
26 51.893 52.581 0.500 0.494 + 1,33 1.40 
27 53.885 54.577 0.500 0.495 + 1.28 - 1.20 
28 55.877 56.574 0.500 0.495 + 1.25 - 1.20 
29 57.867 58.571 0.500 0,495 +1.22 1.20 
30 59.855 60.568 0.500 0.495 +1.19 - 1.20 
31 61.851 62.566 0.500 0.495 +1.16 -1.20 
32 63.840 64.563 0. 500 0.496 + 1.13 - 1.00 
33 65.835 66.561 0.500 0.496 +1.10 -1.00 
34 67.828 68.559 0.500 0.496 +1.08 1.00 
35 69.820 70.557 0.500 0.496 +1.06 1.00 
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Fig .  5. M e a n  cycle t ime  o f  re -en t ran t  line 3 for  different  popula t ions .  

various populat ions .  Both  analytical  and s imulat ion results are s h o w n  and there is again a c lose  
agreement  between these. 

3.3.1. Waiting times at individual buffers 

The objective o f  fixed buffer priority policies,  such as F B F S  or L B F S  is to speed up the processing 
o f  s o m e  critical process ing stages (with respect to some  performance  measures)  by cutting d o w n  
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Fig. 6. Throughput rate of re-entrant line 3 for different populations, 

Table 2. Mean waiting times at individual buffers in Re-entrant line 3 

Wll WZi W3~ 

Population SIM MVA SIM MVA SIM MVA 

1 4.04 4.00 10.16 10.00 9.98 10.00 
2 4.28 4.83 12.48 13.68 13.66 12.38 
4 5.29 6.29 21.01 23.80 16.66 16.35 
6 6.44 7.17 34.87 35.70 19.13 18.86 
8 7.37 7.73 51.86 49.19 21.43 20.49 

10 8.03 8.10 71.58 64.92 23.10 21.71 
12 8.67 8.37 93.03 81.51 24.20 22.80 
14 8.83 8.56 116.55 100.55 24.59 22.98 
16 9.03 8.70 141.08 121.98 25.40 23.39 
18 9.06 8.80 168.73 144.60 25.72 23.70 
20 9.24 8.87 198.01 169.49 26.00 23.99 

queueing times at those stages. This is done  at the cost o f  some other, less critical stages of  
processing. In our  model ,  each stage o f  processing corresponds to a distinct (physical or  logical) 
buffer. Any  analytical technique for the analysis o f  re-entrant lines should not  only be capable of  
predicting total cycle time, but  it should also be able to predict waiting times at various stages of  
processing faithfully. A compar i son  of  mean steady-state waiting times at individual buffers, 
obtained th rough  simulation and those predic ted  by this a lgori thm is given in Table 2, for three 
buffers o f  re-entrant  line 3. These buffers are (1, 1), (2, 1), and (3, 1), which are the lowest priority 
buffers at the respective processing centers under  the  LBFS policy. As can be seen, the agreement  
between the two is very good.  

4. CASE STUDY OF A FULL SCALE R E - E N T R A N T  LINE 

The re-entrant  lines we have considered so far were academic in nature as they do not  reflect the 
magni tude  o f  a realistic re-entrant  manufac tur ing  system, say a semiconductor  fab. In this section 
we apply our  analysis technique to a more  realistic re-entrant  line. This line was considered by Lu 
et al. [4] as a model  o f  a full scale semiconductor  fab. The model,  shown in Fig. 7, consists o f  12 
processing stations and a total o f  60 buffers. It  must  be pointed out  that, in the model  considered in 
[4], some o f  the stations consisted o f  more  than one identical machines, we have replaced such 
stations by a single, n times faster machine,  where n is the number  o f  identical machines in the 

1 be the mean processing time at center corresponding stat ion o f  the original model.  Let .i 
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Fig. 7. A re-entrant line with 12 centers and 60 buffers 
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Fig, 8. T h r o u g h p u t  ra te  under  the LBFS policy. 
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Fig. 9. Mean cycle time under the FBFS policy. 

Table 3. Waiting times at individual buffers for the FBFS policy 

WI,14 W88 ~V37 

Population SIM MVA SIM MVA SIM MVA 

l 0.13 0.13 0.20 0.20 0.25 0.25 
10 0.28 0.29 0.38 0.41 0.53 0.57 
20 0.55 0.63 0.67 0.74 1.00 1.17 
30 0.89 1.11 0.95 1.09 1.53 1.90 
40 1.28 1.68 1.28 1.41 2.22 2.83 
50 1.65 2.30 1.59 1.71 3.08 3.75 
60 2.03 2.46 1.84 1.96 3.74 4.60 
70 2.46 3.03 1.97 2.18 4.92 5.61 
80 2.85 4.20 2.28 2.38 5.51 6.50 
90 3.32 4.30 2.63 2.55 6,34 7.30 

100 3.63 4.50 2.64 2.70 7.13 8.19 
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Table 4. Waiting times at individual buffers for the LBFS policy 

W I I W81 W31 

Population SIM MVA SIM MVA SIM MVA 

1 0.13 0.13 0.19 0.20 0.25 0.25 
lO 0.29 0.29 0.43 0.41 0.58 0.57 
20 0.63 0.64 0.82 0.74 1.24 1.18 
30 1.10 1.12 1.22 1.09 2.08 1.96 
40 1.66 1.68 1.64 1.4l 3.26 2.84 
50 2.34 2.31 1.96 1.71 4.10 3.76 
60 3.08 2.97 2.20 1.96 5.20 4.69 
70 3.85 3.63 2.70 2.18 6.26 5.61 
80 4.57 4.30 2.9l 2.38 7.59 6.50 
90 5.39 4.95 3.10 2.55 8.45 7.37 

100 6.31 5.60 3.21 2.70 9.57 8.19 

i(i = 1 , . . . ,  12) for  each visit to tha t  center.  The  pa rame te r s  we assume are 

1 0.125 1 0.125 1 0.250 
~1 ~2 ~3 

1 1.800 1 0.900 1 0.600 
#4 ~5 ~6 

1 1.800 1 0.200 1 0.600 
~7 ]~8 ~9 

1 1 1 
--  0.333 - -  = 0.600 --  1.250. 

~10 #11 #12 

The  above  pa rame te r s  are the same as in [4]. 

4.1. Cycle time and throughput rate 

Figure  8 gives es t imates  of  t h r o u g h p u t  rates  ob ta ined  using s imula t ion  as well as by our  analy t ica l  
technique  for  different popu la t ions ,  assuming L B F S  policy.  F igure  9 gives the s imula t ion  and 
analy t ica l  es t imates  o f  mean  cycle t ime, assuming F B F S  policy.  A close agreement  between the two 
es t imates  is a p p a r e n t  f rom the figures. 

4.2. Cycle times at individual buffers 

Table  3 compares  the wai t ing t imes at  some buffers c o m p u t e d  by the analy t ica l  and  the s imula t ion  
methods ,  for  different  system popu la t ions .  The  schedul ing pol icy  used is F B F S .  

Table  4 is s imilar  to Table  3 except  that ,  here, L B F S  schedul ing pol icy  is used. 

5. C O N C L U S I O N S  

The analy t ica l  me thod ,  based  on  M V A  a p p r o x i m a t i o n ,  presented  in this p a p e r  has  been found  to 
be efficient and  qui te  accura te  in pred ic t ing  the pe r fo rmance  o f  re -en t ran t  lines. The advan tages  o f  
the ana ly t ica l  m e t h o d  can be summar ized  as follows. 

1. The m e t h o d  is much  faster  (by a lmos t  three to four  orders  o f  magn i tude  in observed 
exper iments)  than  de ta i led  s imula t ion .  

2. The m e t h o d  yields, as an  a t t rac t ive  by -p roduc t ,  the pe r fo rmance  measures  for  all inter-  
media te  popu la t ions .  

3. M a n y  schedul ing policies,  such as F B F S ,  LBFS ,  F C F S ,  and  any fixed pr io r i ty  pol icy  can be 
easily ana lyzed  using the me thod .  

4. Given  the route  o f  the jobs  and the s t ructure  o f  the re -en t ran t  line, the recursive equa t ions  
can be au toma t i ca l ly  fo rmu la t ed  and  solved. 

Topics  for fu ture  work  include: mode l ing  o f  due da te  based  policies and  f luctuat ion smooth ing  
policies [1,4] using the M V A  a p p r o x i m a t i o n  and  c ompa r i son  o f  pe r fo rmance  o f  different schedul ing 
policies using the ana ly t ica l  m e t h o d o l o g y  presented  in this paper .  
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