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Abstract 

In this paper we present an approximate but efficient analytical method to compute the asymptotic loss of buffer 
priority scheduling policies in closed re-entrant lines. For simple two-station closed re-entrant lines, this enables the ver- 
ification of Harrison-Wein conjectures and Jin-Ou-Kumar results. For multi-station re-entrant lines, this provides an 
efficient way of comparing different buffer priority scheduling policies. We also use the method to evaluate the effect of 
high priority jobs in re-entrant lines. © 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In closed multi-class queueing networks, it is of 
much interest to evaluate the performance of 
scheduling policies. This is especially true in view 
of the fact that there exist scheduling policies that 
cannot attain the maximum achievable throughput 
even under infinite population in a closed queueing 
network [1,2]. Since priorities in scheduling poli- 
cies render the queueing network non-product 
form, there are no exact methods available to com- 
pute performance metrics, such as, say, steady- 
state throughput rate and mean steady-state 
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response time. Recently several researchers have 
presented methods to compute bounds on the stea- 
dy-state performance of stationary, non-idling, 
buffer priority-based scheduling policies, by solv- 
ing linear programs [3-5,2]. Simulation has been 
used by some researchers [6-8] to compute the 
mean and variance of performance measures of 
various scheduling policies in closed multi-class 
networks. A mean value analysis-based method 
for computing the performance of closed re-en- 
trant lines under buffer priority policies has also 
been proposed [8,9]. 

The notion of  asymptotic loss of a scheduling 
policy in a closed queueing network was intro- 
duced by Harrison and Wein [10] and more recent- 
ly has been studied in great detail by Jin et al. [2]. 
The asymptotic loss of a scheduling policy cap- 
tures the rate at which the throughput of the 
network attains the maximum possible throughput 
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and therefore can be used to compare different 
scheduling policies. In this paper, we focus on 
closed re-entrant lines [11] and present an approx- 
imate but efficient computational method for com- 
puting the asymptotic loss of any buffer priority- 
based scheduling policy. 

1.1. Re-entrant lines 

Re-entrant lines [11] are a class of non-tradi- 
tional queueing network models that are appropri- 
ate for modeling manufacturing systems with 
distinct multiple job visits to work centers. Exam- 
ples of such manufacturing systems include semi- 
conductor wafer fabrication facilities, thin film 
lines, and systems with rework tasks. 

In a re-entrant line, the parts visit the same ma- 
chine several times, at different stages of process- 
ing, before exiting the system, thus making the 
flow non-acyclic. A re-entrant line can be described 
as follows. There is a set of service centers or sta- 
tions {1,2 , . . . ,m}.  Service center i E {1,2 , . . .  ,m} 
has ni logical or physical buffers, bil,bi2,...  ,bini. 
For j E {1,2 , . . .  ,hi}, the buffer bij contains parts 
visiting service center i for the j th  time. A part vis- 
its these buffers in a given sequence and any service 
center is typically visited several times in the route 
of a part. 

Fig. 1 shows a typical re-entrant line with three 
stations and 11 buffers. Parts enter the system at 
buffer bN and visit the centers according to a deter- 
ministic route as shown. Finished parts emerge 
from center 3 after undergoing processing follow- 
ing a wait in b33. Note that every part in this exam- 
ple line visits center 1 three times, center 2 five 
times, and center 3 three times. 

A scheduling policy in re-entrant line decides 
which job to process next when a machine be- 
comes available. Scheduling at a station is necessi- 
tated because several parts in different stages of 
processing may be in contention with one another 
for service at the same machine. A prominent class 
of scheduling policies discussed in the literature 
[11,2] is the class of buffer scheduling policies. 
When a processing center i finishes processing a 
part, a buffer priority policy selects the next part 
for processing from among the buffers in a fixed 
priority order, which is independent of  the state 

of the system. We shall assume that the priorities 
accorded are preemptive. Two prominent buffer 
priority-based policies are the Last Buffer First 
Serve (LBFS) and the First Buffer First Serve 
(FBFS) policies. For example, in the case of LBFS 
applied to the re-entrant line in Fig. 1, we order 
the buffers at, say, station 2 in the order b25, b24, 
b23, b22, and b21 (decreasing order of priority). A 
part in b24 will be taken up for processing if there 
are no parts waiting in b25; a part in b23 will be ta- 
ken up only if there are no parts in b24 and no 
parts in b25; and so on. 

In this paper we only consider closed re-entrant 
lines. Such lines are appropriate for modeling fixed- 
work-process input release policies [12,6]. Also, we 
consider only re-entrant lines with deterministic 
route for parts. The results provided here are ap- 
plicable with straightforward extension to re-en- 
trant lines with probabilistic routing. See for 
example, Narahari and Khan [13] where the com- 
putational methodology for classical re-entrant 
lines is extended to account for probabilistic 
routing. 

1.2. Asymptotic loss 

Except in product form queueing networks, 
very little is known about the throughput of a 
scheduling policy as the population of customers 
in a closed queueing network is increased. An in- 
teresting issue is whether for a given scheduling 
policy, the throughput of a closed network will 
converge to the maximum possible value (which 
is the throughput capacity of the bottleneck sta- 
tion) when the population is increased to infinity. 
In particular, the rate of increase of throughput 
with population is of interest. The notion of as- 
ymptotic loss of a scheduling policy in a closed 
queueing network serves this purpose. This notion 
has been considered by Harrison and Wein [10] 
and further enunciated by Jin et al. [2]. Let u be 
a scheduling policy. Then we define (see [2]) upper 
and lower asymptotic losses respectively, of the pol- 
icy u, by 

J(u) = .-~lim sup n ct* ' (1) 
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Fig. 1. A re-entrant line with three stations and 11 buffers. 

~* _ ~ U ( n )  
~(u) = lim inf n , (2) 

where ~U(n) is the steady-state throughput rate of 
the given network for a population of n under pol- 
icy u and ct* is the maximum steady-state through- 
put rate attainable in the given network, which is 
equal to the bottleneck capacity. If the defining 
limit exists, we also define the asymptotic loss 
J(u) of scheduling policy u by 

J(u) = lim n (3) 

A policy u is said to be asymptotically optimal if 
the asymptotic loss is as small as possible. The no- 
tion of asymptotic loss is a convenient one for de- 
scribing the rate of approach to the maximum 
throughput under a given scheduling policy. For 
this reason, it can be used for comparing the per- 
formance levels of scheduling policies. 

In [10], Harrison and Wein looked at two sta- 
tion networks from a dynamic scheduling view- 
point. They used heavy traffic theory of queueing 
networks to synthesize a buffer priority policy, 
for two station networks, which was conjectured 
to be asymptotically optimal. For two station net- 
works, they also conjectured an expression for the 
asymptotic loss of any buffer priority scheduling 
policy. These two conjectures are essentially based 
on a careful study of the reflected Brownian mo- 
tion arising from a "workload imbalance process" 
defined for the network under heavy traffic condi- 

tions. For more details on these conjectures, see 
Harrison and Wein [10] and Jin et al. [2]. Chevalier 
and Wein [14] conducted a similar study, based on 
heavy traffic theory, on multi-station networks, 
but their study does not address the computation 
of asymptotic loss for any general multi-class 
queueing network. 

More recently, Jin et al. [2] have looked at sever- 
al issues related to the performance of buffer prior- 
ity scheduling policies in closed queueing networks. 
Their first result is in deriving two linear programs 
that yield bounds on asymptotic loss for closed 
queueing networks. For two station networks, they 
have shown that the Harrison-Wein policy is effi- 
cient (i.e. under this policy, the system throughput 
converges to the maximum possible value). They 
have also determined an upper bound on the as- 
ymptotic loss of the Harrison-Wein policy for 
two station re-entrant lines and shown that the as- 
ymptotic loss of any buffer priority scheduling pol- 
icy is no less than that of Harrison-Wein policy. 

The results of Harrison and Wein [10] are appli- 
cable only to two station networks, whereas the re- 
suits of Jin et al. [2] only enable computation of 
bounds on asymptotic loss. Also, a common meth- 
od like simulation simply cannot provide credible 
estimates of asymptotic loss unless we can afford 
to spend huge computing resources. This is be- 
cause of the need to compute the difference of 
two very nearly equal quantities and the need to 
experiment with very large populations. Motivated 
by this, our aim in this paper is to provide an 
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analytical method to compute accurately the as- 
ymptotic loss of a given buffer priority policy in 
closed re-entrant lines. 

1.3. Contributions of the paper 

In this paper, we focus on asymptotic loss of 
buffer priority scheduling policies in closed re-en- 
trant lines. We first show, in Section 2, that the as- 
ymptotic loss of a simple, two station, closed 
product form network is zero if the network is un- 
balanced and unity if it is balanced. In Section 3, 
we present an approximate but efficient computa- 
tional method, based on mean value analysis, for 
computing asymptotic loss. By considering several 
two station re-entrant lines, we verify, in Section 4, 
the validity of  Harrison-Wein expressions for as- 
ymptotic loss. In Section 5, we consider re-entrant 
lines with internal buffers and bring out the differ- 
ence in performance between scheduling policies. 
Finally in Section 6, we consider re-entrant lines 
with high priority jobs and show by computing as- 
ymptotic loss, the degradation in the performance 
of low priority jobs as more and more high priority 
jobs are introduced in the network. In all relevant 
cases, we have also carried out simulations to show 
the accuracy of  the proposed methodology. 

with processing time exponentially distributed with 
rate &. Since there is only one buffer at each sta- 
tion, the above network is product form under 
the FCFS scheduling policy. It can be shown [15] 
that the throughput rate of this network is given by 

// 

1 - p" 
- 1 - p ~ l l q  (lq <~2),  

where p = Pl/~2. 
When & = it2, the network is balanced and we 

get the asymptotic loss as 

- n 

J =  l imn - lim - 1, 

since ~* = #1. 
When & </~2 (unbalanced case), ~* =/~l, and 

we get the asymptotic loss as 

D n __ pn+l 
J = lim n -- 0. 

n-,~c 1 -- pn+l 

Thus the throughput of the network converges 
rapidly to the maximum possible in the unbal- 
anced case, whereas in the balanced case, the con- 
vergence is slower. 

2. A closed product form re-entrant line 

Fig. 2 shows a simple two-station, two-buffer 
re-entrant line. Each station has only one machine 

P 

3. A computational method 

Computation of asymptotic loss by directly 
computing the limits is feasible only for a very lira- 

• " - ~  Center i '--~ Center 2 

Fig. 2. A re-ent rant  line wi th  two s ta t ions  and  two buffers. 
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ited class of  product form closed re-entrant lines. 
Since priorities in scheduling and multiple visits 
render the network non-product form, such direct 
computation is not feasible for re-entrant lines of 
interest. We now present a computational method 
for this purpose, based on mean value analysis. 

Mean value analysis (MVA) [16,17] is a well 
known computational technique for predicting 
the performance of  product form queueing net- 
works. In [8], Narahari and Khan have presented 
an MVA-based technique for predicting the per- 
formance of  buffer priority policies in closed re-en- 
trant lines. We propose a similar method here. The 
proposed method does not give exact values since 
the underlying network is not product form. 

Since asymptotic loss of  a policy u is the limit- 
ing value (see Eq. (3)), we seek to compute the val- 
ues of 

n 

for very large values of  n. 
MVA yields expressions for mean values of  per- 

formance measures such as steady-state queue 
lengths, delays, and throughputs. Two versions 
of  MVA exist, namely, the exact MVA for product 
form queueing networks [16] and approximate 
MVA for non-product form networks [18]. Exact 
MVA is based on the Arrival Theorem, which 
states that, in the steady state of  a closed product 
form network with population k, the distribution 
of the network state seen by a job arriving at any 
node in the network is the same as the distribution 
of the network state a random observer would see 
with (k - 1) jobs circulating in the network. In the 
literature, several extensions have been proposed 
to MVA to account for non-product form features 
and more specifically priorities. See [17,19] for a 
review. For  closed re-entrant lines with buffer pri- 
ority policies, none of  the existing methods is ap- 
plicable and therefore we present our own MVA- 
based approximate method here. This method 
has earlier been used by the authors in several con- 
texts [8,9]. 

We shall illustrate the formulation of  MVA 
equations by assuming the LBFS scheduling poli- 
cy. We assume that each processing center has ex- 
actly one machine and that the processing time of 

a job visiting center i on its j th  visit is an indepen- 
dent exponentially distributed random variable 
with rate ~tij. Let us denote the j th  visit o f  a job 
to the center i by stage (i,j) of processing. 

Let the performance measures of  the network 
be denoted as follows: Lij(k) is the mean steady- 
state number of  jobs in stage (i,j) when the net- 
work has k jobs, W/j(k) the mean steady-state delay 
for jobs in stage (i,j) (mean waiting time in buffer 
bij + mean processing time), and :~(k) is the mean 
steady-state throughput rate of  jobs when the net- 
work has k jobs. 

If W(k) denotes the mean total delay (mean cy- 
cle time) in the entire network, we immediately 
have 

w(k)  = (4/ 
i-1 j=l 

Using MVA, we compute W(N), and e(N) in a re- 
cursive way. 

We also distinguish between external and inter- 
nal buffers. We call a buffer bij external if the buffer 
feeding b~j is connected to a center different from 
center i, and buffer bij is called internal if the buffer 
feeding bij is connected to center i itself. For  exam- 
ple, in the re-entrant line in Fig. 1, consider cen- 
te r2 .  The buffers b21,b24, and b25 are external, 
since arrivals into these buffers come from cen- 
ter 1, center 3, and center 1, respectively. The buf- 
fers b22 and b23 a re  internal because they are 
directly fed by outputs from center 2 itself. 

3.1. Computation of performance measures 

We consider the calculation of W(N) and ~(N). 
It would be helpful to consider the scenario a job 
would see upon its arrival at a certain buffer of  a 
machine, and the sequence of events that occur 
while it is waiting there. 

When a job (we shall call it a distinguished job) 
arrives at a buffer, say bij, it sees a certain number 
of jobs in various buffers in the system, the ordered 
set of  these integers forms the state of the system at 
the arrival instant of the job. Let S be the set of 
jobs, currently at center i and having higher prior- 
ity than the distinguished job. Note that S will in- 
clude all jobs that are ahead of the distinguished 
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job in b u and all jobs in all buffers having higher 
priority than bij. The distinguished job must first 
wait until all jobs in S are serviced and leave the 
center i. Also, it must wait for the service comple- 
tion of those jobs which arrive in higher priority 
buffers, during its wait in buffer bij. And finally it 
has to get processed before it enters the next buffer. 

Hence, the mean total waiting time of a job at 
any buffer bq is seen as the sum of three compo- 
nents, let us call them Term 1, Term 2, and 
Term 3, defined as follows. 
• Term 1: Mean total time until all jobs in the set 

S are serviced and leave center i. 
• Term 2: Mean total time required to process all 

higher priority jobs which arrive during the stay 
of the distinguished job in the queue at bij. 

• Term 3: Mean processing time of the distin- 
guished part itself. 
We now describe how Terms 1-3 may be com- 

puted. We shall describe the case of lines without 
any internal buffers. Lines with internal buffers re- 
quire a somewhat different treatment, the details of 
which can be seen in [8]. 

3.1.1. Computation of  term 1 
Consider the buffer bij. In this case, an arriving 

job, according to the Arrival theorem, would see 
L i t ( k -  1) jobs in the buffers bit, where 
t = 1 ,2 , . . . ,  ni. Since LBFS scheduling policy is be- 
ing used, the arriving job needs only to wait for the 
processing of jobs waiting ahead of it in buffers bit, 
where t = j , j  + 1 , . . . ,  ni. Thus 

/I i 

Term 1 =  ~-" Li'(~-S 1) 
7:7 #i, 

(5) 

3.1.2. Computation of term 2 
The mean waiting time of a job in buffer bq is 

W0(k ). During this waiting, parts may arrive into 
higher priority buffers at center i. Term 2 is the 
mean total time required to process all such parts. 
Since all the buffers in the model are external, then 
during the waiting, parts may arrive into any of 
the higher priority buffers (from other machines). 
In fact, the mean number of parts that arrive into 
any of the higher priority buffers is the same since 
every part flows through all the buffers according 

to a deterministic route. Consequently, the mean 
throughput rate into all the buffers in the network 
is the same. By assuming the arrival theorem, 
~(k - 1) can be taken as the rate at which the jobs 
are flowing in the network. The mean number of 
parts arriving into each higher priority buffer dur- 
ing the waiting of a job in buffer bij is therefore giv- 
en by Wq(k)~(k - 1). Since l/lair is the mean service 
time in a higher priority buffer bit, where 
t -: j + 1 . . . .  , hi, we have 

Term 2 = Wij(k)~(k- 1 . (6) 
t 1 

3.1.3. Computation of term 3 
The mean processing time required for the ser- 

vice of distinguished part itself is of course, 1//a;j. 
Thus Term3 = 1//~ij. The total waiting time 
W/j(k) is now given by 

Wij(k) = Term 1 + Term 2 + Term 3. (7) 

Now using (4), W(k) can be computed. Applying 
Little's Law [15] for the job population in the net- 
work, we obtain 

k 
~,(k) = W(k----)" (8) 

We can again use Little's Law to obtain 

Lij(k) = ~(k) Wij(k). ( 9 )  

Consider the following initial conditions 

Lij(O)---O, i--: 1 , . . . , m ,  j =  1 , . . . , n i ,  ( 1 0 )  

= 0. (11) 

Using the initial conditions above and the recur- 
rence relations defined by (7)-(9), and the initial 
values (10) and (11), we can compute Wq(k), 
La(k ), and ~(k) for k = 1 ,2 , . . . ,N .  Thus W(N) 
and ~(N) can be computed. 

3.2. A fixed point method 

The method just described is recursive, and 
builds up a solution for a given network popula- 
tion by starting from the empty system, when the 
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various performance measures are trivially known, 
and then increasing the population in steps of 1 
and computing performance measures at each step 
until the desired population is reached. However, 
for the computation of asymptotic loss we have 
to compute the performance metrics of the re-en- 
trant lines at very high populations (ideally infi- 
nite), and this would mean that we have to start 
from a population equal to zero and approach a 
desired high population in steps of 1, which can 
be very time consuming, 

To overcome this difficulty, an approximate 
version of MVA, due to Schweitzer [17] and Bard 
[18] can be used. This method breaks the recursion 
relations of the MVA-based technique just de- 
scribed and replaces them with a set of non-linear 
fixed point equations. 

The recursive nature of the MVA-based method 
above arises due to dependence of Wij(k) upon 
Lij(k - 1), which in turn, depends upon Wq(k- 1) 
and so on. Schweitzer [17] and Bard [18] observed 
that the fraction of the total population of jobs at 
each buffer does not change much if there is one less 
job in the network. In other words they argued that 

k - 1  
Lij(k - 1) = - - - - ~  Lij(k). 

When this expression for Lig(k - 1) is substitut- 
ed in earlier expressions, the recursion relations 
turn into a set of non-linear fixed point equations, 
which can be solved iteratively by successive sub- 
stitution. This method eliminates the need for 
computing performance measures for all popula- 
tions ranging from 1 , . . . ,k  by directly solving the 
network for any population equal to k. This was 
the method which we implemented to obtain the 
numerical results presented in the sequel. 

4. A two station re-entrant line with eight buffers 

Consider the re-entrant line shown in Fig. 3. 
For this system, we computed the asymptotic loss 
of various scheduling policies under two cases: 
Balanced case and the unbalanced case. In the bal- 
anced case, we assumed 

l ~ i j = l  V i =  1,2, j =  1, . . . ,4 .  

Since there are 4! ways of choosing a priority 
order among the buffers at each station, there are 
a total of 576 possible buffer scheduling policies 
here. We considered four representative ones: 

A 

b13[ 

lllli 
!>141 

Center  I 
b22 

.-Tin 

,1111 

Center  

J 

Fig. 3. A re-entrant line with two stations and eight buffers. 
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l. LBFS at station 1, LBFS at station 2. 
2. LBFS at station 1, FBFS at station 2. 
3. FBFS at station 1, LBFS at station 2. 
4. FBFS at station 1, FBFS at station 2. 

It was found in each case that the asymptotic 
loss is eaual to 1. This is confirmed by the Harri- 
son-Wein expressions [10] and also the bounds ob- 
tained by Jin et al. [2]. There is good reason to 
believe that all the 576 policies will have the same 
asymptotic loss, equal to 1, because of  identical 
processing requirement in all the buffers and sym- 
metric routing. 

In the unbalanced case, we assumed 

/All = Ill2 = /[/13 = ,//14 = 2 ,  

P21 = P22 = ,/123 = P24 = I. 

In this case, station 2 is the bottleneck and the 
maximum throughput achievable is decided by its 
capacity. We computed the asymptotic loss for 
the four policies above and found it to be zero in 
all the cases. Here again, all the 576 policies are ex- 
pected to yield zero or very small values of asymp- 
totic loss. In the unbalanced case, the system 
throughput rapidly tries to reach the maximum 
possible value since station 1 keeps pushing out 
jobs for processing by station 2, whatever the 
scheduling policy. Consequently station 2 is kept 
busy almost all the time, leading to a throughput 
very close to the maximum achievable one. 

5. Re-entrant fines with internal buffers 

Here, we first consider the re-entrant line shown 
in Fig. 4. This line has been studied in various con- 

texts in the literature [11,10,2]. Assuming 
Pll = P12 = P21 = P22 = 1, we shall compute the 
asymptotic loss under all the four possible policies, 
namely: Policy I (LBFS at station 1, LBFS at sta- 
tion 2); Policy 2 (LBFS at station 1, FBFS at sta- 
tion 2); Policy 3 (FBFS at station 1, LBFS at 
station 2); Policy 4 (FBFS at station 1, FBFS at 
station 2). Table 1 shows the asymptotic loss val- 
ues computed by the method proposed in Sec- 
tion 3. The table also shows the values obtained 
from detailed simulations. Each such value is ob- 
tained as the average of the values obtained by 
running several independent simulations at a level 
of significance of 0.05, for a very large population 
of 200. The values obtained were found to saturate 
for populations higher than 200. There is a close 
agreement between the computed values and those 
obtained using simulation, thus validating the ac- 
curacy of the proposed computational methodolo- 
gy for such re-entrant lines. 

For this re-entrant line, using the expressions 
given in [2], the Harrison-Wein policy can be 
shown to be the same as Policy 3 whereas the 
anti-Harrison-Wein policy (buffer priorities exact- 
ly opposite to those in the Harrison-Wein policy) 
can be computed to be the same as Policy 2. From 
Table 1, Policy 3 has the least asymptotic loss 
whereas Policy 2 has the highest. This is consistent 
with the Harrison-Wein conjecture that their pol- 
icy is asymptotically optimal and with the result of 
Jin et al. [2] about the bounds provided by the 
Harrison-Wein and the anti-Harrison-Wein 
policies. 

Also note that in Policy 3, a part from bl2 is ta- 
ken up for processing only when bll is empty 

Iq 

Center 1 Center 2 

h2 
Fig .  4. A t w o  s t a t i o n  r e - e n t r a n t  l ine  w i t h  i n t e r n a l  buffers .  
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Table 1 
Asymptotic losses for the re-entrant line in Fig. 4 

Scheduling Asymptotic loss Asymptotic loss J(u) 
policy u J(u) using MVA using simulation 

Policy 1 0.750 0.7562 
Policy 2 1.000 1,0147 
Policy 3 0.500 0,4977 
Policy 4 0.750 0,7521 

whereas a part from b21 is taken up for processing 
only when b22 is empty. Also as soon as a part 
from b12 finishes processing, another part enters 
bl] and is immediately taken up for processing. 
Similarly at station 2, a part from b21 after pro- 
cessing will again be processed immediately in 
be2. As a consequence, the processing time of  each 
job at station 1 and station 2 can be considered to 
be a 2-stage Erlangian distribution, which has the 
least variance among all two stage distributions. 
This leads to the minimum cycle time (a direct con- 
sequence of  Pollaczek-Khintchine formula for 
M/G/I queues [15]). 

Fig. 5 shows the throughput rate attained by 
the four policies at different populations. Note that 
Policy l and Policy 4 exhibit identical behavior. 

I O  

6 

o . . . .  _A_A_A~_ptotlc Throughput 

d 

IZ ~.- 

ct.o: 

t:r~o: 

" I /  , ~ s  FBFS 
d i  ii ;~*~* FBFS LBFS 

O l i , , I 

o O  4 8 12 16 20 24 28 
Populction 

Fig. 5. Throughput  rates for different scheduling policies. 

Policy 3 shows the best performance while Policy 
2 exhibits the worst performance. This graph again 
exemplifies the foregoing conclusions. 

Now we consider the 3-station, 11-buffer re-en- 
trant line of  Fig. 1. For  this re-entrant line, the 
Harrison-Wein conjectures can no longer be ap- 
plied (since the number of stations is more than 
2). Table 2 shows the asymptotic losses for eight 
different policies, assuming a balanced line with 

//11 = //12 = /t13 = 3, 

/J21 = //22 = /123 = //24 = //25 = 5. 

]231 = t132 = 1133 = 3. 

The first entry in Table 2 corresponds to the 
LBFS policy followed at stations 1, 2, and 3: the 
second entry to LBFS at station 1 and 2 and FBFS 
at station 3; and so on. The table also shows the 
values obtained as the averages of the values ob- 
tained by running several simulations at a level 
of significance of 0.05, for a very large population 
of 750. The values obtained were found to saturate 
for populations higher than 750. The close agree- 
ment between the asymptotic loss values in the sec- 
ond and third columns provides a kind of 
validation for our computational method. 

Note that among the eight policies considered, 
LBFS at all stations shows the best behavior while 
FBFS at all stations has the worst behavior. Thus 
we are able to rank-order the scheduling policies in 
terms of  their ability to attain the maximum 
throughput. 

Table 2 
Asymptotic losses for the re-entrant line in Fig. 1 

Scheduling policy u Asymptotic 
loss J(u) using 
MVA 

Asymptotic 
loss J(u) using 
simulation 

LBFS-LBFS-LBFS 0.802 
LBFS-LBFS-FBFS 1.192 
LBFS-FBFS-LBFS 1.338 
LBFS-FBFS-FBFS 1.778 
FBFS-LBFS-LBFS 1.022 
FBFS-LBFS-LBFS 1.414 
FBFS-FBFS-LBFS 1.611 
FBFS-FBFS-FBFS 2.000 

0.8156 
1.1935 
1.34162 
1.7':)62 
1.0635 
1.40056 
1.62012 
1.98741 
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6. Re-entrant lines with high-priority jobs 

This example is motivated by semiconductor 
manufacturing systems in which high priority jobs, 
called hot lots, are often introduced into the sys- 
tem, out of marketing and business considerations. 
Hot lots are exactly like the regular jobs with iden- 
tical route and processing requirements but they 
get priority over regular jobs at all processing stag- 
es. Ehteshami et al. [20] have carried out a simula- 
tion study to understand the effects of hot lots on 
the cycle time and throughput of regular lots. 
More recently, Narahari and Khan [9] have pre- 
sented an analytical method for explicitly evaluat- 
ing the effects of hot lots. In both these works, the 
findings show that as the proportion of hot lots in 
the work-in-process increases, both the mean cycle 
time and mean throughput rate of regular lots are 
drastically affected. 

Here, we will study the effect of hot lots by 
computing the asymptotic loss of the regular lots 
as we increase the number of hot lots in the net- 
work. Consider the 2-station, 4-buffer re-entrant 
line in Fig. 6. Assuming the LBFS policy we have 
computed the asymptotic loss for regular lots at 
various hot lot populations ranging from 0 to 
10. For this, we use an extended computational 
methodology, as outlined in [9]. Given that the 
regular lot population is N and that the hot lot 
population is H, the methodology above computes 
performance measures for regular lots in exactly N 
iterations. The performance measures for hot lots 
are obtained in exactly H iterations. Table 3 

shows these asymptotic losses for LBFS policy, as- 
suming 

]All = /~12 = /'/21 = ~22 = 1. 

The table also shows the values obtained as the av- 
erages of the values obtained by running several 
simulations at a level of significance of 0.05, for 
a very large regular lot population of 400. The val- 
ues obtained were found to saturate for popula- 
tions of regular lots higher than 400. The values 
obtained using simulation agree closely with the 
computed values, thus validating our computa- 
tional methodology for this case. 

The loss of throughput experienced by regular 
lots with increased hot lot population is clearly 
captured by the asymptotic loss values in Table 3. 
The implication is that, in the presence of hot lots, 
we need much more Work-In-Process (WIP) of 
regular lots to attain a desired throughput of reg- 
ular lots. 

7. Conclusions and future work 

The main aim of this paper was to provide an 
efficient computational method to compute the as- 
ymptotic loss of scheduling policies in closed re-en- 
trant lines. The proposed method is approximate 
but is validated by simulation results. Also, the re- 
sults obtained using the proposed method are con- 
sistent with the findings of Harrison and Wein [10] 
for two station re-entrant lines. Through several 
experiments, we have shown how asymptotic loss 

Center  1 Center 2 

Fig.  6. A re -en t ran t  l ine wi th  two s ta t ions  and  four  buffers. 

I 
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Table 3 
Asymptotic losses of regular lots for the re-entrant line in Fig. 6 

Hot lot Asymptotic loss of Asymptotic loss of 
population regular lots using regular lots using 

MVA simulation 

0 1.49000 1.5231 
1 3.45380 3.63125 
2 5.39210 5.46225 
3 7.30520 8.05621 
4 9.19360 9.26632 
5 11.0577 11.15738 
6 12.8981 12.57761 
7 14.7153 14.41236 
8 16.5096 15.9665 
9 18.2816 18.9522 

10 20.0315 21.13421 

can be used to compare different buffer priority 
scheduling policies and evaluate the effect of high 
priority jobs. 

The limitation of this work is the lack of an ad- 
equate proof for the correctness of the asymptotic 
loss values computed here. This is because not 
much is known about asymptotic loss in re-entrant 
lines with more than two stations, except for 
bounds [2]. Also simulation is not a feasible way 
of validating our results because of the nature of 
computation involved and the resulting intracta- 
bility. In fact, even for the simple re-entrant lines 
studied here, several hours of CPU time were re- 
quired to obtain credible results using simulation. 
This is the most important topic for future work. 
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