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Abstract

Variability reduction and business process synchronization are acknowledged as key to achieving sharp and timely
deliveries in supply chain networks. In this paper, we develop an approach that facilitates variability reduction and
business process synchronization for supply chains in a cost effective way. The approach developed is founded on
an analogy between mechanical design tolerancing and supply chain lead time compression. We first present a motivat-
ing example to describe this analogy. Next, we define, using process capability indices, a new index of delivery perform-
ance called delivery sharpness which, when used with the classical performance index delivery probability, measures the
accuracy as well as the precision with which products are delivered to the customers. Following this, we solve the fol-
lowing specific problem: how do we compute the allowable variability in lead time for individual stages of the supply
chain so that specified levels of delivery sharpness and delivery probability are achieved in a cost-effective way? We call
this the variance pool allocation (VPA) problem. We suggest an efficient heuristic approach for solving the VPA prob-
lem and also show that a variety of important supply chain design problems can be posed as instances of the VPA prob-
lem. One such problem, which is addressed in this paper, is the supply chain partner selection problem. We formulate
and solve the VPA problem for a plastics industry supply chain and demonstrate how the solution can be used to
choose the best mix of supply chain partners.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Supply chain management; Lead time reduction; Variability reduction; Process capability indices; Statistical tolerancing;
Variance pool allocation (VPA)
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2004.08.033

* Corresponding author. Tel.: +91 80 2293 2773; fax: +91 80 2360 2911.
E-mail addresses: dgarg@csa.iisc.ernet.in (D. Garg), hari@csa.iisc.ernet.in (Y. Narahari), mpenv@nus.edu.sg (N. Viswanadham).

mailto:dgarg@csa.iisc.ernet.in 
mailto:hari@csa.iisc.ernet.in 
mailto:mpenv@nus.edu.sg 


228 D. Garg et al. / European Journal of Operational Research 171 (2006) 227–254
1. Introduction

Businesses today operate in a very tough environment that is constantly in flux [1,2]. Customers have
become increasingly demanding looking for better and innovative goods and services that are specifically
customized to meet their unique needs. There is also an implicit requirement on the accuracy, timeliness,
convenience, responsiveness, quality and reliability of the service offered to them. And all of this is desired
at ever-lower prices. Simultaneously, the rapid pace of innovation has resulted in shorter product and tech-
nology cycles, leading to uncertainties in supply and demand. Variability is thus a major issue and varia-
bility reduction and business process synchronization are therefore acknowledged as key to achieving
superior levels of performance in supply chain networks. This paper proposes an approach inspired by sta-
tistical design tolerancing for achieving cycle time compression in supply chains through variability
reduction.
One of the key issues in supply chain design, facing companies today is the strategic selection of

partners for each stage of their outsourced value chain, in the face of uncertainties of various kinds
[3,4]. This selection needs to take into account the synchronization of schedules for suppliers, manufac-
turers, and logistics providers in order to streamline processes throughout the supply chain. The vari-
ability reduction approach presented in this paper focuses on this important problem in supply chain
design.

1.1. Contributions

The main contribution of this paper is in suggesting a way of formulating design optimization problems
in supply chains by exploiting the connections with statistical design tolerancing. This opens up the use of
statistical design tolerancing techniques and tools to be used in supply chain design and optimization. The
specific contributions of this paper can be summarized as follows:

1. We first present a motivating example to develop an analogy between mechanical assemblies and sup-
ply chain networks. The example shows that the variation in end-to-end lead time of a supply chain can be
viewed as the variation in the dimension of the parts produced by a machining process.
2. The above example motivates us to investigate the use of standard design tolerancing techniques

(based on process capability indices), that are popularly used for quantifying and reducing the defective
assemblies produced by a machining process, for the purpose of quantifying the delivery performance of
the supply chain. Using supply chain process capability indices, we describe the delivery performance of
a supply chain in terms of two metrics. The first is a traditional metric, delivery probability (DP), which
is the probability that a typical customer order is delivered during a customer-specified window. The second
metric is a new one that we propose, which we refer to as delivery sharpness (DS), which is a measure of how
close to the target (most desired) delivery date a customer order is actually delivered.
3. The setup above prepares the ground for formulating the following generic design optimization prob-

lem for supply chains:

Given a supply chain and the mean and standard deviation of the end-to-end lead time for a certain
product mix, how do we optimally distribute the pool of variance among individual business processes
so as to minimize the cost and achieve six sigma delivery performance?

We call this problem as the variance pool allocation (VPA) problem. We come up with a five stage ap-
proach for solving the VPA problem. We then look at linear or pipelined supply chains and solve the
VPA problem through the Lagrange multiplier method.
4. Finally, we show that a rich variety of supply chain design problems, in particular, the supply chain

partner selection problem, can be cast as a VPA problem. We show that the optimal variance of each stage
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obtained by solving the VPA problem can be used in selecting the best mix of partners out of a possible
set of alternatives for each stage of the supply chain. To substantiate this, we consider a six stage sup-
ply chain in the plastics industry, for which we formulate and solve the VPA problem. We show how a
manager can use the solution of the VPA problem, in order to select the best combination of supply
chain partners: supplier, manufacturer, inbound logistics provider, assembler and outbound logistics pro-
vider out of a given set of choices, so as to ensure timely delivery of finished products to customer
destinations.

1.2. Related work

The subject matter of this paper falls in the intersection of following areas of current interest: (1) vari-
ability reduction and lead time compression techniques for business processes, (2) statistical design toler-
ancing, and in particular, theory of process capability indices, (3) the Motorola six sigma program, and
(4) Taguchi methods.
Lead time compression in business processes is the subject matter of a large number of papers in the last

decade. See for example, the papers by Hopp et al. [5]; Adler et al. [6]; Narahari et al. [7]; and Chao and
Graves [8]. Variability reduction is a key strategy used in the above papers and other related papers. Hopp
and Spearman, in their book [9], have brought out this key role played by variability reduction. Lead time
compression in supply chains is the subject of several recent papers, see for example, Narahari et al. [10];
Garg et al. [11].
Statistical design tolerancing is a mature subject in the design community. The key ideas in statistical

design tolerancing which provide the core inputs to this paper are: (1) theory of process capability indices
[12–15]; (2) tolerance analysis and tolerance synthesis techniques [16–18]; (3) Motorola six sigma program
[19,20]; (4) Taguchi methods [21,22]; and (5) design for tolerancing [7,23,24].
Variability reduction in supply chains, especially in the context of inventory optimization and delivery

performance, is the topic of several papers in the past decade. Important ones of relevance here are [25–
36]. The article by Schwartz and Weng [28] is particularly relevant here. This paper discusses the joint effect
of lead time variability and demand uncertainty, as well as the effect of ‘‘fair-shares’’ allocation, on safety
stocks in a four-link JIT supply chain. Masters [32] developed in 1993 an optimization model to determine
near optimal stock levels for multi-echelon distribution inventories. His formulation also uses variability
reduction principles. Ettl et al. [33] develop an inventory-queue model of a multi-echelon supply chain with
base stock policy followed at each store. Given the bill of materials, the nominal lead times, the demand
data, and the cost data, their model generates the base stock level at each store that minimizes the overall
inventory capital in the network and guarantees the customer service requirements. Chopra et al. [31] study
the effect of lead time uncertainty on safety stocks in a multi-echelon supply chain. The articles by Song and
co-authors [25–27,29] essentially analyze the effect of stochastic lead times on the performance of assemble-
to-order systems. The volume edited by Tayur et al. [34] also contains several inventory optimization mod-
els in the supply chain context, where variability reduction is discussed as a key to improving the supply
chain delivery performance.
The salient feature of our work which distinguishes it from all the above discussed models, is the notion

of six sigma quality for the end-to-end delivery process. Existing models in the literature consider either the
availability of product to the customer as a criterion for customer service level or probability of delivering
the product to the customer within a window as a measure of customer�s service level. Away from these
classical measurements of customer service levels in the inventory optimization problem, we propose an ap-
proach for customer service level, namely accuracy and precision of deliveries, which is the primary objec-
tive of any modern supply chain. Also, the present paper uses key ideas and notions in the area of statistical
design tolerancing in achieving variability reduction and synchronization in the supply chain process, lead-
ing to quicker and sharper deliveries.
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A preliminary version of this paper [11] contains some but not all of the ideas presented in this current
paper. A companion paper [37] explores these ideas in a different direction and applies the ideas to inven-
tory optimization in multi-stage supply chains.
2. An analogy between mechanical assemblies and supply chain networks

A typical value delivery process in a supply chain starts with an order from the customer and ends with
customer satisfaction. This process consists of a series of activities, each performed by various subsystems.
There is an analogy between the structure of a complex mechanical assembly and the structure of the supply
chain process. A supply chain is like a complex mechanical assembly; it is a conglomeration of numerous
business processes just like a complex assembly is an arrangement of numerous subassemblies. Figs. 1 and 2
show a serial and converging–diverging supply chain respectively together with analogous mechanical
assemblies. The analogy arises from the fact that we are interested in analyzing end-to-end delivery per-
formance of the supply chain. Among the performance measures of a business process, end-to-end lead
time is perhaps the most important and is the major theme of this paper. The lead time performance of
Fig. 1. An analogous mechanical assembly for a serial supply chain.
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any business process depends not only on how long it takes to provide a service to the customer but also
how much it varies from one customer to another. Lead time and its variation for individual work processes
are key determinants of end-to-end delivery performance of a supply chain network. When the number of
resources, operations, and organizations in a supply chain increases, variability destroys synchronization
among the individual processes, leading to poor delivery performance. On the other hand, by reducing var-
iability all along the supply chain in an intelligent way, proper synchronization can be achieved among the
constituent processes.
To illustrate the above fact, let us consider a linear supply chain as shown in Fig. 1 where material flows

through n different processes before it is delivered as finished product to the end customer. Assuming that
no inventory is maintained at any intermediate stage of the supply chain, the end-to-end lead time, say Y, of
an end customer order becomes equal to the sum of processing times (lead time) of individual processes, say
Xi�s. That is
Y ¼
Xn
i¼1

X i:
Note that depending upon requirement one can decompose each business process into a hierarchy of low
level processes. In that situation, the supply chain will look like a complex network of business processes
and the end-to-end lead time Y will depend on individual process lead time in a more complex way. An
instance of such complex supply chain network is shown in Fig. 2 where we are considering a simple con-
verging–diverging supply chain network. For this network, the end-to-end lead time Y of a customer order
is given by following expression (assuming no inventory is maintained at any of the stages):
Y ¼ maxðX 1; . . . ;X iÞ þ
Xj
p¼iþ1

Xp þminðX jþ1; . . . ;XnÞ:
Note that if other factors such as inventory replenishment policy, demand uncertainty, etc. are also taken
into account then Y will become an even more complex function of the system parameters.
To understand the analogy between structure of mechanical assembly and structure of supply chain net-

work, let us consider a mechanical assembly shown in Fig. 1 where the objective is to control the gap (target
dimension) Y. This dimension is dependent on the dimension of the other parts as well as the configuration
of the assembly in the same way as the end-to-end lead time Y was dependent on the lead time of individual
business processes and other system parameters. It is easy to see that the gap Y can be expressed in terms of
dimensions of its subassemblies in the following manner:
Y ¼ X 4 �
X3
i¼1

X i:
The objective for the mechanical assembly presented in Fig. 2 is also to control the gap, denoted by Y, be-
tween the circular casing and the blades of the fan. Like in the previous case, this dimension is dependent on
the dimension of the other parts as well as the configuration of the assembly. The configuration of this
assembly is more complex than previous one and the target dimension Y is dependent on the parts dimen-
sions in the following way:
Y ¼ X 6 � X 5 þmaxðX 1; . . . ;X 4Þ:

It is a well known fact that during the machining process, the dimensions of individual parts keep varying
from parts to parts which ultimately results in variation in target dimension Y of the assembly. The same is
the case with supply chain lead time. In the context of supply chain networks, the lead times of individual
business processes are variable in nature and so is Y. The control on variability in Y is the key to achieving
outstanding delivery performance.
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In this paper, we use the above analogy between mechanical assemblies and supply chain processes for
measuring and controlling the lead time variations in the supply chain. For this we use the techniques of
statistical design tolerancing. In particular, we use the notion of process capability indices Cp, Cpk and
Cpm, the notion of Motorola six sigma quality, Taguchi methods, and other best practices in design toler-
ancing. In the next section, we set up this framework in the supply chain context.
3. A process capability perspective for supply chain performance

The process capability indices Cp, Cpk, and Cpm [12] are popular in the areas of design tolerancing and
statistical process control. Let us consider the situation depicted by Fig. 3 in order to describe the idea of
how capability of a process, where variability is an inherent effect, can be measured. Below is the list of
symbols used in this figure.

X lead time or any general quality characteristic X
l mean of X
r standard deviation of X
L lower specification limit of customer delivery window
U upper specification limit of customer delivery window
-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ  U  L 

T T 
µ=0 
σ=1 

f(x) 

Quality Characterstic (X) 

Fig. 3. Process variability and customer delivery window.
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s target value for X, specified by customer
T tolerance for X, specified by customer
b bias = js � lj
d min(jU � lj, jl � Lj)

In this figure, variability of the process is characterized by the probability density of the quality character-
istic X produced by the process, and customer specifications are characterized by a delivery window which
consists of tolerance T and target value s. Normal distribution is a popular and common choice for X be-
cause of its fundamental role in the theory of process capability indices. The target value s can be any value
between L and U but we have assumed it as the mid point of two limits for the sake of convenience, that is
s ¼ UþL

2
.

In what follows, we present relevant definitions and present a quick summary of relevant results for the
process capability indices Cp, Cpk, and Cpm. See [38,14,37,15,39] for more details.
3.1. Supply chain process capability indices

The three indices Cp, Cpk, and Cpm are defined in following way:
Cp ¼
U � L
6r

¼ T
3r

; ð1Þ

Cpk ¼
minðU � l; l � LÞ

3r
¼ d

3r

� �
; ð2Þ

Cpm ¼ U � L
6n

¼ T

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p : ð3Þ
The following relations can easily be derived [39] among all the three indices: Cp, Cpk, and Cpm. See Appen-
dix A for proof of (5) and (6).
Cp P Cpk P 0; Cp P Cpm P 0; ð4Þ

Cpk ¼ Cpð1� kÞ; where k ¼ b
T
; ð5Þ

1

9C2pm
¼ 1

9C2p
þ 1� Cpk

Cp

� �2
: ð6Þ
Two important quantities: potential and actual yield of a process will play a critical role in the develop-
ment of optimization problems. We, define these quantities below.

Actual yield: The probability of delivering a product within a specified interval.
Potential: The probability of delivering a product within a specified interval, if the process distribution is

centered at the target value, i.e. l = s.

It is easy to prove [39] the following relations (see Appendix A for their proof):
Potential ¼ 2Uð3CpÞ � 1; ð7Þ

Actual yield ¼ Uð3CpkÞ þ Uð6Cp � 3CpkÞ � 1; ð8Þ

where U(Æ) is the cumulative distribution function of standard normal distribution.
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3.2. Delivery probability and delivery sharpness

It can be verified that a unique (Cp,Cpk) pair results in a unique actual yield, therefore, the 3-tuple
(Cp,Cpk,Cpm) can be substituted by the pair (Actual yield, Cpm) to measure the delivery quality. Being
an indicator for precision and accuracy of the deliveries, we prefer to call actual yield of the process as deliv-
ery probability (DP) and Cpm as delivery sharpness (DS). In the present paper, we use these two indices to
measure the quality of any delivery process in a given supply chain.
Motivated by the Motorola six sigma (MSS) program, we prefer to express DP in terms of hr levels,

where h 2 Rþ, rather than expressing it in terms of numerical values. In the MSS program, each hr level
corresponds to a unique number in the interval [0, 1] and these numbers actually corresponds to upper
bounds on the yield of the process. However, here we are assuming that these numbers correspond to
the actual yield of the process. For example, according to the MSS program, in the presence of process
mean shifts and drifts, if upper bound on yield of the process is equal to 1–3.4 · 10�6 then its quality is
6r quality. In the framework of DP and DS, the DP of a process is 6r iff its actual yield is 1–3.4 · 10�6.
Moreover, in the framework of DP and DS no shifts and drifts are allowed in process mean, only bias
is allowed between process mean and target value. It is easy to see that the upper bound in the MSS pro-
gram for hr level is U(h�1.5). Equating this to the actual yield of the process we get the following equation
for hr quality curve on the Cp–Cpk plane. Some of these curves are plotted in Fig. 4.
Uðh � 1:5Þ ¼ Uð3CpkÞ þ Uð6Cp � 3CpkÞ � 1:

We can investigate the connection between delivery probability and delivery sharpness in the following way.
Consider the plots of r quality levels on Cpk–Cp plane and then see how Cpm behaves on the same plot. For
this purpose we use the identity relation (6) among Cp, Cpk, and Cpm and plot this relation for a constant
value of Cpm (say C

�
pm). The plot comes out to be a section of a hyperbola. From a process design point of

view, it can be said that for a desired minimum level of DS (i.e. Cpm) and DP (i.e. Cp, Cpk), this curve pro-
vides a set of 3-tuples (Cp,Cpk,Cpm) which all satisfy these two requirements. The designer has to decide
which one of the triples to choose depending upon the requirements. Fig. 4 shows some Cpm curves on
the Cp–Cpk plane.
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4. Variance pool allocation problem

Using the paraphernalia developed in the previous section, we can formulate mathematical program-
ming problems to describe design optimization and tactical decision making in supply chain networks.
We now set out to define a particular design optimization problem, which we refer to as the variance pool
allocation problem. For the sake of simplicity, we consider make-to-order supply chains where the flow of
materials is linear. The methodology can be easily extended (with extra computational requirements) to
more general supply chains.
4.1. Description of the problem

Consider a linear, make-to-order (MTO) supply chain with n stages as shown in Fig. 5. This supply chain
is a single product supply chain. The product is delivered to the end customer from stage n. In the present
model we are not concerned about how the orders are consolidated, how the production planning is done,
and at which intermediate stages finished goods or semi-finished goods inventory will be maintained. Let us
assume that as soon as any customer places an order for a unit of the product, the flow of material against
the order starts from stage 1, undergoes processing at successive stages, and is finally delivered to the cus-
tomer after processing at stage n. Let the lead time at each stage be considered as a continuous random
variable (i.e. Xi, i = 1,2, . . . ,n). As a consequence of this assumption, the end-to-end lead time is also a con-
tinuous random variable. Note that, in Fig. 5, we have shown the probability density function of random
variable Xi just above the corresponding process i (i = 1,2, . . . ,n).
The first objective of the study here is to find out how the lead time variance of individual stages should

be chosen, assuming that the mean lead time is given for each stage, such that the specified levels of DP and
DS are attained for a given end-to-end lead time delivery window in a cost effective way. This is referred to
as the variance pool allocation (VPA) problem.
Depending on the nature of the objective function chosen, the solution of the VPA problem can be

used in a wide variety of tactical decision making in supply chains. Typical such problems include: due
date setting, choice of customers, inventory allocation, vendor selection, choice of logistics modes,
choice of logistics providers, and choice of manufacturing control policies. The second objective of our
study here is to explain one such compelling application of the VPA problem. As an example, we show
how the solution of the VPA can be used in choosing the best possible mix of alternatives for supply chain
operation. This is referred to as the supply chain partner selection problem. In what follows is a crisp idea
behind how one can use the solution of the VPA problem for solving the supply chain partner selection
problem.
Let us assume that each stage of the supply chain is a work process, e.g. transportation, machining, pro-

curement, etc., then it is realistic to assume that in general there are number of service providers available
σ1 σ2
µ2µ1 µ3 µ
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Fig. 5. A linear supply chain model.



236 D. Garg et al. / European Journal of Operational Research 171 (2006) 227–254
for each individual stage. For example, there might be several logistics providers in the fray and each one
of them can ship goods from one place to another. Typically, mean and variance of the shipment time
vary from one candidate service provider to another and so is the freight charges. As a special case, assume
that all candidate service providers promise for the same mean shipment time but quote the different
variabilities. These variances may be available through past history also. If we thus know the pairs of
cost and variance for each candidate service provider, the pairs can be used to fit a polynomial cost func-
tion in terms of the variance of shipping time. Such functions can be obtained for each stage of the sup-
ply chain. Knowing all these cost functions, the minimization of total cost of the supply chain will
result in optimal values of variance for each stage. These optimal values can be used to pick up at
most two service providers for each stage whose variance is closest to the corresponding optimal value.
Thus the size of the problem of selecting optimal mix of service providers along the supply chain can be
reduced to a case where we need to consider at most two candidates per stage. The best mix can now be
easily obtained (for example by exhaustive enumeration). The best mix obtained will be optimal in the sense
that it results in desired levels of DP and DS on the end-to-end delivery process with minimum possible
total coat.
4.2. Assumptions

The model for VPA, proposed in this paper, is based upon the following assumptions about the nature of
the business process and the customer delivery window:

1. Lead time Xi at stage i (i = 1, . . . ,n) is normally distributed, say, with mean li and standard deviation ri.
This assumption is quite standard and has received widespread justification in the literature through
practical experimentation (see for example [20]). This assumption also has a theoretical basis through
the central limit theorem.

2. Lead times Xi are mutually independent. This assumption can be justified on two grounds: (a) The indi-
vidual lead times correspond to essentially entire subsystems or subprocesses in the supply chain net-
work. Our view of the supply chain network is at a high level of abstraction and the lead time of a
typical subsystem is determined completely by the dynamics internal to that subsystem once the inputs
arriving from the previous stage are given. (b) The supply chain network can be aptly modeled as a tan-
dem queueing network. From the theory of product form queueing networks (in particular Jackson net-
works) [40], it is known that, under stable conditions, the lead times of individual stages of a product
form network behave as if they are independent.

3. There is no time elapsed between end of process i to commencement of process i + 1 (i = 1, . . . ,n � 1).
This is a reasonable assumption since any interface time can be absorbed into the lead time of stage i or
lead time of stage i + 1. As an immediate consequence of this assumption, the end-to-end lead time, Y, is
equal to the sum of lead times of the individual processes:
Y ¼
Xn
i¼1

X i: ð9Þ
Y can be easily seen to be normally distributed with l ¼
Pn

i¼1li and r2 ¼
Pn

i¼1r
2
i since it is the sum of n

independent normally distributed random variables.
4. Each customer specifies a customer delivery window (s,T) where s is the desirable amount of the time a
customer is willing to wait after placing the order. The customer is prepared to wait for a maximum per-
iod of s + T. Also, the customer does not want the delivery to occur before s � T. Therefore, s is the
target value for end-to-end delivery process and T is the tolerance.
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4.3. Formulation of the VPA problem

Essentially the VPA problem is a mathematical programming problem, hence it can be defined very well
in the form of known parameters, decision variables, objective function, and constraints.
4.3.1. Known parameters

The following parameters are known in a typical VPA problem.

1. End customer delivery window (s,T).
2. Mean li of random variable Xi, i = 1,2, . . . ,n.
3. Delivery probability and delivery sharpness for end-to-end lead time, Y.
4. Processing cost per unit product at each stage i, denoted by Ki, of the supply chain. This cost is the
part of the total processing cost that is associated with lead time. For example, in the case of a
manufacturing process, it could be the opportunity cost of capital tied up with machinery. Similarly if
it is the logistics process, it may represent the cost of transportation itself. As we showed earlier
that for a given stage i, the mean processing time li is almost same for all the potential service provid-
ers but their variance may differ and hence per unit processing cost may also vary. Assume that for
each stage i, the processing time variances riA,riB, . . . and per unit processing costs CiA,CiB, . . . are
known for all the service providers A,B, . . . of that stage. The pairs (riA,CiA), (riB,CiB), . . . can be used
to get a polynomial function for per unit processing cost in terms of ri. For the sake of conceptual and
computational simplicity we are motivated to choose a second order polynomial in the following
manner:
Ki ¼ Ai0 þ Ai1ri þ Ai2r
2
i : ð10Þ
Here Ai0,Ai1,Ai2 are constants and not all are positive. These constants will be obtained by polynomial
curve fitting for the pairs (riA,CiA), (riB,CiB), . . .. Thus, at an abstract level we can safely assume that
these constants are given to us for each stage of the supply chain.

Here we would like to make an important remark. In most of the practical cases, getting the values for the
constants Ai0, Ai1, Ai2 is not an easy task. First of all, the shipment time of a given service provider may not
be normally distributed and moreover, neither the shipper nor the carrier may be keeping a record of past
data of shipment times.
4.3.2. Decision variables

The decision variables of the VPA problem are optimal standard deviations r�
i of each individual stage i

(i = 1, . . . ,n). As we mentioned the scheme earlier, these optimal standard deviations r�
i can be used to com-

pute the optimal partners (or service provider) P �
1; P

�
2; . . . ; P

�
n for each stage of the supply chain.
4.3.3. Objective function and constraints

As stated already, the objective in the VPA problem is to minimize the cost and the constraints are spec-
ified in terms of minimum expected levels of DP and DS on end-to-end lead time.
In the present model, we have confined our discussion only to lead time variability of the supply chain

without considering other issues like demand variability, inventory levels, etc. Therefore, it seems to be rea-
sonable to consider the total processing cost of a single unit of product, denoted by K, as the objective
function. This cost is simply the sum of processing costs of all the stages. Thus the problem formulation
becomes:
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Minimize

K ¼
Xn
i¼1

Ki ¼
Xn
i¼1

ðAi0 þ Ai1ri þ Ai2r
2
i Þ ð11Þ

subject to

DS for end-to-end lead timeP C�
pm; ð12Þ

DP for end-to-end lead timeP 6r; ð13Þ
ri > 0 8i: ð14Þ
4.4. A 5-step solution approach

In this section, we present a 5-step procedure for solving any specific design optimization problem. the
first four steps constitute the solution of the VPA problem and the fifth step explains how this solution can
be used to solve the specific problem at hand. In this case, the specific problem we discuss is the supply
chain partner selection problem.

4.4.1. Step 1: Problem formulation

The first step in solving the VPA problem is to collect all the known parameters specified in the problem
and then formulate the problem in terms of a non-linear optimization problem as presented in Section
4.3.3. This includes:

• Extracting the value of li, s, and T.
• Extracting the desired level of DP and DS for end to end lead time.
• Obtaining the pairs (riA,CiA), (riB,CiB), . . . for each stage i of the chain and then fitting it to get second
order polynomial Ki.

4.4.2. Step 2: Expressing the constraints in terms of decision variables

Note that the first two constraints in the optimization problem, formulated in Step 1, are not being ex-
pressed in terms of decision variables. This step does the job of expressing the constraints in terms of deci-
sion variables.
Recall the following expression from Section 4.2:
r2 ¼ r21 þ r22 þ 
 
 
 þ r2n; ð15Þ

where r is the standard deviation for end-to-end lead time. This can be expressed in terms of C�

p and C
�
pk of

end-to-end lead time Y in following manner:
r2 ¼ T 2

9C�2
p

¼ d2

9C�2
pk

; ð16Þ
where T, the tolerance of end customer delivery window, is a known parameter, and d, given by
min(s + T � l,l � s + T), is also a known parameter. The only unknown quantities in Eq. (16) are C�

p

and C�
pk . Substituting Eq. (16) in Eq. (15), we get the following important relation:
r21 þ r22 þ 
 
 
 þ r2n ¼
T 2

9C�2
p

¼ d2

9C�2
pk

: ð17Þ
The following is an important observation derived out of the Eq. (17).
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Once the pair ðC�
p;C

�
pkÞ is fixed for the end-to-end lead time Y, the feasible solution set gets automatically

fixed as the set of all those n-tuples (r1,r2, . . . ,rn) which satisfy this equation for the chosen value of C
�
p and

C�
pk .

The idea behind obtaining the pair ðC�
p;C

�
pkÞ is to choose such a pair which satisfies both Constraint (12)

as well as Constraint (13). By using such a pair in Eq. (17), we can get a single constraint, in terms of the
decision variables, which captures both the constraints. In this way we express the constraints in terms of
decision variables.
It is quite possible that multiple pairs satisfy the above requirement. In such a situation, selection of the

best pair is an interesting exercise which we discuss in the next step. Moreover, there are situations when no
pair satisfies the requirement. In such a situation, the VPA problem does not have any solution. Identifying
such types of situations is also considered in the next section.
4.4.3. Step 3: Determining values of C�
p and C�

pk

Note that the relation (17) forces the desired ðC�
p;C

�
pkÞ pair to lie on the line Cpk ¼ d

T Cp in the Cp–Cpk
plane. Also, it is easy to see that the Constraint (12) forces the desired pair to lie on or above the curve
Cpm ¼ C�

pm in the Cp–Cpk plane. Similarly, the Constraint (13) forces it to lie on or above the 6r curve in
the same plane. All these result in a feasible region in the Cp–Cpk plane. Depending on relative position
of Cpm ¼ C�

pm curve (call this Cpm curve for short) and 6r curve (call this r curve for short), the feasible
region may take different shapes. Fig. 6 shows the geometric shapes of such a feasible region. For the
purpose of analysis, we classify these geometric shapes into five different cases where we discriminate
them based on the number of points at which the two curves (r curve and Cpm curve) intersect each
other. It is clear from Fig. 6 that the feasible region in each case is the part of the line Cpk ¼ d

T Cp, de-
noted by OP, which intersects the shaded region. For the sake of clarity, we have shown the line OP only
in Case 1. In all other cases it is understood. Each point of the feasible region satisfies both Constraints
(12) and (13) and therefore can be used as a design point in Eq. (17). The concern here is which point
should be selected as the design point. Before we investigate further in this direction, let us consider a few
interesting facts about such a ðC�

p;C
�
pkÞ pair. In what follows is two lemmas that describes a few facts

about the pair ðC�
p;C

�
pkÞ.
σ CURVE σ CURVE
σ CURVE

σ CURVE
σ CURVE

Cpk>Cp Cpk>Cp Cpk>Cp

Cpk>Cp Cpk>Cp

O

P

E

CASE 2CASE 1 CASE 2

CASE 4CASE 3
Cp Cp Cp
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Cpk Cpk Cpk

Cpk Cpk
Q3

Q
Q

Q2
Q1 Q1 Q2

Fig. 6. Possible geometric shapes of feasible region for Cp and Cpk of Y.
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Lemma 4.4.1. For the given values of T and d, there is an upper bound on delivery sharpness (DS) which can

be achieved for Y. This is given by
Cpm ¼ T
3ðT � dÞ :
Proof. Observe from Eq. (17) that, for given values of T and d, Cp and Cpk of the process Y must satisfy the
following relation which is a straight line when plotted on the Cp–Cpk plane:
Cpk ¼
d
T

� �
Cp: ð18Þ
If we take any point on this line, it represents a unique combination of Cp, Cpk, and Cpm. Hence if we choose
this point as design point then the DS for Y gets fixed. Now consider the following equation for a typical
Cpm curve on the Cp–Cpk plane:
1

C2pm
¼ 1

C2p
þ 9 1� Cpk

Cp

� �2
: ð19Þ
It can be verified that this equation represents a hyperbola. It is quite possible that the line given by Eq. (18)
becomes an asymptote of such a hyperbola. Such a hyperbola is the plot of Cpm because it is clear from the
geometry of the figure that this line cannot intersect any other Cpm curve which is more than Cpm. Hence it is
not possible to achieve the Cpm value (or DS) higher than Cpm for process Y.
It is easy to show that the slope of asymptotes of Cpm curve is 1� 1

ð3CpmÞ

� �
. Equating these to the slope of

the line (18) we get
Cpm ¼ T
3ðT � dÞ : �
Lemma 4.4.2. For fixed values of T and d, DP and DS have one-to-one correspondence with each other.

Moreover, DP and DS have positive correlation.

Proof. Earlier we stated that ðC�
p;C

�
pkÞ pair is chosen for Y in such a way that apart from satisfying both the

Constraints (12) and (13), the pair must lie on the line (18). It is easy to verify that for a given point on the
line (18), a unique Cpm curve and a unique r curve pass through the point. This r value and Cpm value are
the final DP and DS respectively which are achieved for Y if this particular point is chosen as design point.
Hence, it can be concluded that once a value is chosen for DP of Y, it will automatically decide the corre-
sponding value of DS and also vice versa. To prove the other statement of the lemma, observe that as we
move from point Cp = 0 to point Cp =1 on the line (18), the values of both Cpm curve and r curve which
pass through that point increase. Therefore, DP increases (or decreases) as DS increases (or decreases) for
given values of T and d. h

The implication of Lemma 4.4.1 is the following. If the desired C�
pm is greater than Cpm for the given val-

ues of T and d then the problem is infeasible. In such a situation we need not proceed any further.
Lemma 4.4.2 also has a key implication on the problem of fixing the values of C�

p and C
�
pk for Y. Accord-

ing to Lemma 4.4.2, DP and DS of Y get fixed immediately as soon as a feasible point from the line, given
by Eq. (18), is chosen as design point. It is easy to see that each point on the Cp–Cpk plane is unique in its
own because it has a unique combination of DP and DS. Therefore, it is quite possible that the point which
we have chosen results in either higher DP or higher DS than required for the end-to-end delivery process.
Thus it is not always true that the DP and DS for Y obtained from the design will exactly be the same as
specified in the Constraints (12) and (13).
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In view of the above findings, the problem of fixing the values of C�
p and C

�
pk can be addressed in following

way. First step is to test the feasibility of the problem by means of Lemma 4.4.1. If the problem turns out to
be feasible then each point in the feasible region is eligible to be selected as a design point. However, depend-
ing upon the point which is chosen as design point, the final costK� (which we get out of solving the opti-
mization problem) may vary. At this point, we cannot say which feasible point will result in minimum cost.
Hence, the problem is handled in an indirect manner. The proposed scheme is like this. First solve the opti-
mization problem without any constraint and get the optimal variance rg for Y. It will result in global min-
imum cost. Now use this variance rg to get Cg

p and Cg
pk for Y which result in minimum cost. If the point

(Cg
p;C

g
pk) falls in the feasible region then this point is used as a design point (C

�
p;C

�
pk), otherwise the point

E where the line OP enters into the shaded region is taken as the desired (C�
p;C

�
pk) pair. The reason behind

choosing the point E as design point is following. The values DP and DS which result from point E are min-
imum possible values satisfying both the Constraints (12) and (13). If we choose any other feasible point then
even though the resulting DP and DS forYwill satisfy the Constraints (12) and (13), yet their values will be a
bit high and this will lead to higher cost. The point E can be determined by solving the corresponding equa-
tion of the plots. A detailed algorithm for determining the point E is discussed in [39]. In this way we obtain
the constraints in terms of decision variables.

4.4.4. Step 4: Solving the optimization problem

The optimization problem which we presented in Step 1 can now be written as:
Minimize

K ¼
Xn
i¼1

Ki ¼
Xn
i¼1

ðAi0 þ Ai1ri þ Ai2r
2
i Þ ð20Þ

subject toXn
i¼1

r2i ¼
T 2

9C�2
p

¼ d2

9C�2
pk

; ð21Þ

ri > 0 8i: ð22Þ

This is a nonlinear optimization problem with an equality constraint. Therefore, we can use the Lagrange
multiplier method to compute the stationary points. After getting the stationary points, we can apply the
sufficiency condition to determine the points of minima. Here we just present the formulation for finding
the stationary points and leave the remaining part to be covered in a detailed example.

Method of Lagrange multipliers applied to the VPA problem.

1. Lagrange function

The Lagrange function L(r1,r2, . . . ,rn,k) is given by:
Lðr1; r2; . . . ; rn; kÞ ¼ Kþ k
Xn
i¼1

r2i � r�2

 !
; where r�2 ¼ T 2

9C�2
p

¼ d2

9C�2
pk

: ð23Þ
2. Necessary condition for stationary points

If the point P� ¼ ðr�
1; r

�
2; . . . ; r

�
n; k

�Þ happens to be the optimal point, then this point must satisfy the fol-
lowing necessary conditions:
oL
or1

����
P�

¼ oL
or2

����
P�

¼ 
 
 
 ¼ oL
orn

����
P�

¼ oL
ok

����
P�

¼ 0:
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Substituting the value of Lagrange function L from Eq. (23), we get the following necessary conditions:
oL
or1

����
P�

¼ A11 þ 2A12r�
1 þ 2k

�r�
1 ¼ 0;

oL
or2

����
P�

¼ A21 þ 2A22r�
2 þ 2k

�r�
2 ¼ 0;


 
 

oL
orn

����
P�

¼ An1 þ 2An2r
�
n þ 2k

�r�
n ¼ 0;

oL
k

����
P�

¼
Xn
i¼1

ðr�2
i Þ � r�2 ¼ 0:
Solving the above system of equations will give us all the stationary points. After discarding those station-
ary points that do not satisfy Constraint (22), we will be left with the stationary points that satisfy both the
constraints. It is required now to apply the sufficiency condition in order to find out the points of minima.
We omit this for the sake of brevity.
4.4.5. Step 5: Solving the specific decision problem

We present the discussion for the case of the optimal partner selection problem. Without loss of gener-
ality, let there be n stages in the supply chain and at each individual stage, let there be several alternatives
available (for example, if it is a logistics stage, we have several logistics providers). Each of these alterna-
tives has a standard deviation associated with the promised lead time. Now the problem is to choose one
service provider for each stage out of the given alternatives. It is not difficult to see that each combination of
the partners will result in a unique DP, DS, and delivery cost for the end-to-end delivery process. We wish
to choose the combination which meets the given standards for DP and DS in a minimum possible cost.
Thus the problem is highly combinatorial in nature. The brute force technique of finding the solution in-
volves computing the DP, DS, and end-to-end delivery cost for each combination and then picking up
the optimal one. Note that the complexity of such a technique would be of the order of
O(N1 · N2 · 
 
 
 · Nn · n), where Ni; i = 1,2, . . . ,n, is the number of alternative service providers for the
stage i and n is the complexity involved in computing the DP, DS, and end-to-end delivery cost for one
combination of the partners which can shown to be the constant. The exponential complexity of the
exhaustive enumeration technique motivates us to seek a better algorithm. Here, we present an efficient
algorithm whose complexity turns out to be O(2nn + w), where w is the computation time involved in solv-
ing one instance of the VPA problem. w can be easily shown to be linear in terms of number of stages. The
idea behind this algorithm is following.
First execute Steps 1–4 on the underlying VPA problem and get r�

1; r
�
2; . . . ; r

�
n. Now consider stage i. Out

of all the available service providers for stage i, choose two service providers Li and Ri such that the var-
iance of processing time when the work is done by these two are rl

i , and rr
i respectively and these values are

immediately below and immediately above r�
i . Note that it may happen that r�

i is less than all candidate
standard deviations, in which case, we choose the one that is closest to r�

i (this will reduce the computa-
tional complexity even further).
After fixing two alternatives Li and Ri for each stage i, we will be left with 2

n ways in which we can
choose a mix of alternatives for the supply chain. For each possible mix, we can compute the total cost
K by using relation (11). The r for Y can be computed by using relation (15) where ri will now be replaced
by either rl

i or rr
i depending upon which service provider we have chosen. This r can be used to compute Cp

and Cpk for end-to-end lead time Y through the relation (16). After computing these values it is easy to
decide the optimal combinations of service providers all along the supply chain. Note that the worst case
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number of combinations that need to be considered is 2n, independent of the number of alternatives avail-
able at each individual stage.
Two remarks regarding the above algorithm are in order.

• Note that O(2nn + w) is a significant improvement over O(N1 · N2 · 
 
 
 · Nn · n). It ensures that the
complexity of the partner selection algorithm is dependent only on the number of stages and is independ-
ent of the number of service providers at each stage of the supply chain.

• It is easy to see that in the event a supply chain partner drops out or a new supply chain partner enters
the fray, the proposed algorithm handles the changes with ease. In the case of a new entry, all that we
have to do is just compute DP, DS, and delivery cost for all the 2(n�1) new combinations of the supply
chain partners that will emerge due to this new entry. Now check if any one of this new mix does better
than the current optimal mix. Similarly, if any partner drops out then we need to do nothing if the leav-
ing partner is not a member of the current set of optimal partners. Otherwise, we can just delete all those
combinations which include this member as one of the partners and determine the optimal one out of the
remaining 2n–2(n�1) combinations.

• If in one stage, say stage i, the only available alternatives are far from the ideal solution r�
i it may be

beneficial to compensate by choosing an alternative in another stage j far from r�
j (i.e. not necessarily

the alternatives closest to the local optimum) in order to satisfy the required condition in the cheapest
way. In such cases, the method does not provide an optimal solution. Thus the method is to be viewed
as a heuristic that provides optimal values in most situations.
5. A plastic industry case study

We now consider a supply chain for a plastics industry (a certain anonymous firm in the western state of
Maharashtra, India) and apply the 5-Step approach for formulating and solving the partner selection prob-
lem. Fig. 7 depicts the supply chain at an aggregate level. The supply chain has six business processes
namely (1) procurement, (2) sheet fabrication, (3) inbound logistics, (4) manufacturing, (5) assembly,
and (6) outbound logistics. Let all the business processes in the supply chain satisfy the assumptions men-
tioned in Section 4.2. Assume for the sake of convenience that there are three alternatives (call them service
providers) at each of the six stages.
The problem here is to determine the optimal mix of service providers for each stage such that the end to

end delivery probability is at least at 6r level and delivery sharpness is at least, say, 1.4. Suppose for each
stage, the mean lead time for all the three alternative service providers is same. Let the mean li for
i = 1,2,3,4,5 and 6 be 7days, 30days, 3days, 30days, 10days, and 3days respectively. Let the target value
of supply chain lead time Y be 82days and tolerance be 6.5days. This implies:
s ¼ 82days;

T ¼ 6:5days:
RAW MATERIAL
PROCUREMENT

SHEET
FABRICATION

INBOUND LOGISTICS MANUFACTURING ASSEMBLY OUTBOUND LOGISTICS

Fig. 7. An example of a linear supply chain: A typical plastic industry supply chain.



Table 1
Standard deviation of lead times and cost for each service provider

Stage Service providers

i A B C

rAi (days) CAi ($/item) rBi (days) CBi ($/item) rCi (days) CCi ($/item)

1 0.50 256.18 0.75 161.44 1.00 125.69
2 0.40 436.40 0.50 413.03 0.60 390.37
3 0.10 077.79 0.20 049.33 0.30 034.81
4 0.40 436.40 0.50 413.03 0.60 390.37
5 0.50 185.79 1.00 080.34 1.50 065.27
6 0.10 077.79 0.20 049.33 0.30 034.81
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The processing cost of one unit of product at each one of the six business processes, varies over the service
providers as a function of variance of lead times. Table 1 gives the values of per unit processing cost and
processing time variance for each service provider.

5.1. Step 1

Some of the parameters for VPA problem are provided explicitly in the given problem. The parameters
which will be needed in further calculations and are implicit to the problem are l, d, h, C�

pm, and Aij. If we
denote the lead time distributions of procurement, sheet fabrication, inbound logistics, manufacturing,
assembly, and outbound logistics by X1, X2, X3, X4, X5, and X6 respectively, then it is easy to see that
l ¼
X6
i¼1

li ¼ 83days;

d ¼ minðs þ T � l; l � s þ T Þ ¼ 5:5days;
h ¼ 6;
C�

pm ¼ 1:4:
The coefficients Aij can be obtained by fitting a second order polynomial curve for the given three pairs
(rAi,CAi), (rBi,CBi), and (rCi,CCi) for each stage i. The coefficients Aij obtained by such an approximation
are tabulated in Table 2.
Now the optimization problem can be formulated as follows:
Minimize

K ¼
X6
i¼1

Ki ¼
X6
i¼1

ðAi0 þ Ai1ri þ Ai2r
2
i Þ ð24Þ

subject to

DS for end-to-end lead timeP 1:4;

DP for end-to-end lead timeP 6r;

ri > 0; i ¼ 1; 2; . . . ; 6:
5.2. Step 2

The constraints of the optimization problem presented in Step 1 can be expressed in terms of decision
variables by invoking relation (17). This leads to



Table 2
Cost coefficients for plastic industry supply chain problem

Stage Ai0 ð $
itemÞ Ai1 ð $

item-dayÞ Ai2 ð $
item-day2Þ

Procurement 622.634 �968.872 471.928
Sheet fabrication 537.011 �265.752 035.604
Inbound logistics 120.186 �493.651 696.919
Manufacturing 537.011 �265.752 035.604
Assembly 381.625 �482.053 180.770
Outbound logistics 120.186 �493.651 696.919
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X6
i¼1

r2i ¼
42:25

9C�2
p

¼ 30:25
9C�2

pk

; ð25Þ

ri > 0 8i ¼ 1; 2; . . . ; 6: ð26Þ
5.3. Step 3

As discussed earlier, the first step towards fixing the values of C�
p and C�

pk is to test the feasibility of the
problem. It is easy to see Cpm for this problem is 2.1667 which is greater than 1.4. Therefore, the problem is
feasible. As a next step, we solve the corresponding unconstrained optimization problem and get the point
(Cg

p;C
g
pk) which leads to global minimum cost and then test whether this point falls into feasible region or

not.
For this, let S ¼ fðr1; r2; r3; r4; r5; r6Þ : ri 2 Rþ 8i ¼ 1; 2; 3; 4; 5; 6g. It immediately follows from this

definition of S that K : S 7!R where S is a nonempty open convex set. To test the convexity of function
K, we compute the gradient vector and Hessian matrix of the function. Note that the gradient vector
rKðXÞ for function K at point X ¼ ðr1; r2; r3; r4; r5; r6ÞT can be given by
rKðXÞ ¼

oKðXÞ
or1

oKðXÞ
or2

oKðXÞ
or3

oKðXÞ
or4

oKðXÞ
or5

oKðXÞ
or6

2
66666666666666664

3
77777777777777775

¼

A11 þ 2A12r1
A21 þ 2A22r1
A31 þ 2A32r1
A41 þ 2A42r1
A51 þ 2A52r1
A61 þ 2A62r1

2
666666666664

3
777777777775
:

Also, the Hessian HðXÞ for function K at point X ¼ ðr1; r2; r3; r4; r5; r6ÞT turns out be
HðXÞ ¼

2A12 0 0 0 0 0

0 2A22 0 0 0 0

0 0 2A32 0 0 0

0 0 0 2A42 0 0

0 0 0 0 2A42 0

0 0 0 0 0 2A42

2
666666664

3
777777775
:
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Observe that the gradient vector and Hessian exist for each X 2 S. Hence functionK is twice differen-
tiable over open convex set S. Moreover, the Hessian is independent of X. Therefore, it is enough that we
test the positive definiteness (PD) or positive semi definiteness (PSD) of Hessian at any point of S instead of
testing it over whole S.
It is easy to see that all the diagonal elements of Hessian are positive real numbers because Ai2 are

positive real numbers. Therefore, the Hessian is PD and the function K is strictly convex. It implies
that a local minimum of function K is the unique global minimum. This can be obtained by equat-
ing rKðXÞ to 0. The optimal values of variance for the stages come out be rg

1 ¼ 1:0265days,
rg
2 ¼ 3:732days, rg

3 ¼ 0:3541days, rg
4 ¼ 3:732days, rg

5 ¼ 1:3333days and rg
6 ¼ 0:3541days. The corre-

sponding variance of end-to-end lead time Y comes out to be rg = 5.5622days. Also Cg
p ¼ 0:3895 and

Cg
pk ¼ 0:3296. In order to test the feasibility of this point (Cg

p;C
g
pk) first we compute the DP and DS values

which will be obtained if this point is chosen as design point. According to Lemma 4.4.2, the Cpm curve and
r curve which pass through it are those desired DP and DS. These values comes out to be DP = 2.17393r
and DS = 0.383359.
Because these values are less than what are desired i.e. DP = 6r and DS = 1.4, the point (Cg

p ;C
g
pk) cannot

be taken as design point and we will have to use point E (the point of intersection of the line OP and fea-
sible region) as design point. The current problem falls in Case 2 (Subcase A) of Fig. 6. Therefore point
EðC�

p;C
�
pkÞ can be computed by solving the Eqs. (19) and (18). This point comes out to be:
C�
p ¼ 1:834364282;

C�
pk ¼ 1:552154393:
The DP and DS which are obtained for Y by using this point as design point are 6.15645r and 1.4
respectively.
5.4. Step 4

Substituting the values of C�
p;C

�
pk in Eq. (25), we obtain the following constraint to work with while solv-

ing the optimization problem:
X6
i¼1

r2i ¼ 1:389060165:
Now we will apply the Lagrange multiplier method to solve this optimization problem.

1. Lagrange function

Lagrange function L(r1,r2, . . . ,r6,k) is given as:
Lðr1; r2; . . . ; r6; kÞ ¼ Kþ k
X6
i¼1

r2i � 1:389060165
 !

:

2. Necessary condition for stationary points

Let point P� =ðr�
1; r

�
2; . . . ; r

�
6; k

�Þ correspond to the optimal point, then this point must satisfy the following
necessary conditions:



Table
Pairs o

Stage (

1
2
3
4
5
6
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� 968:872þ 2ð471:928Þr�
1 þ 2k

�r�
1 ¼ 0;

� 265:752þ 2ð035:604Þr�
2 þ 2k

�r�
2 ¼ 0;

� 493:651þ 2ð696:919Þr�
3 þ 2k

�r�
3 ¼ 0;

� 265:752þ 2ð035:604Þr�
4 þ 2k

�r�
4 ¼ 0;

� 482:053þ 2ð180:770Þr�
5 þ 2k

�r�
5 ¼ 0;

� 493:651þ 2ð696:919Þr�
6 þ 2k

�r�
6 ¼ 0;

r�2
1 þ r�2

2 þ r�2
3 þ r�2

4 þ r�2
5 þ r�2

6 ¼ 1:389060165:
Solving this system of equations by standard numerical methods we get the following solutions:
r�
1 ¼ 0:680498days;

r�
2 ¼ r�

4 ¼ 0:482201days;
r�
3 ¼ r�

6 ¼ 0:263456days;
r�
5 ¼ 0:572881days:
Under this operating condition, the cost of delivery is:
K� ¼ 802:299 $

item
:

It can be verified easily by the sufficiency condition that this point indeed corresponds to the point of
minima.

5.5. Step 5

By comparing the optimal standard deviations r�
i obtained in Step 4 with the given data in Table 1 we

can compute, for each stage, the service providers whose variance is closest to the optimal. These are listed
in Table 3. It is easy to see that we can construct 64 combinations out of these 12 service providers listed in
Table 3, where each combination representing a particular mix of service providers. We have computed the
end-to-end supply chain cost K, process capability indices Cp and Cpk, DP, and DS for each of these 64
combination and the results are tabulated in Table 4. In this table, for each combination, rather than com-
puting the exact sigma level for DP we have only specified whether or not DP is greater than 6r level. If
greater, we have indicated in the corresponding by �Y�, otherwise it is indicated by �N� (for ‘‘no’’).
From Table 4, it can be easily seen that the combination which ensures the desired DP and DS level in

minimum possible cost is the combination number 53 i.e. BBBBAB. Thus the optimal mix of service pro-
viders for stages 1, 2, 3, 4, 5, and 6 of the given problem are B, B, B, B, A, and B respectively.
3
f almost optimal service providers for each stage

i) Li Ri

A B

A B

B C

A B

A B

B C



Table 4
DP, DS, and delivery cost for combinations of near optimal service providers for each stage of plastic industry supply chain

Combination Cp Cpk DP (6r level) DS K ($/unit)

1 AABAAB 2.283867 1.932503 N 1.571866 1413.429932
2 AABAAC 2.222953 1.880960 Y 1.551582 1398.910034
3 AABABB 1.686748 1.427248 Y 1.330972 1307.979980
4 AABABC 1.661757 1.406102 N 1.318591 1293.459961
5 AABBAB 2.177582 1.842569 N 1.535908 1390.059937
6 AABBAC 2.124591 1.797731 Y 1.516970 1375.540039
7 AABBBB 1.642546 1.389846 N 1.308930 1284.609985
8 AABBBC 1.619443 1.370298 Y 1.297150 1270.089966
9 AACAAB 2.222953 1.880960 Y 1.551582 1398.910034
10 AACAAC 2.166667 1.833333 N 1.532063 1384.390015
11 AACABB 1.661757 1.406102 N 1.318591 1293.459961
12 AACABC 1.637846 1.385870 N 1.306550 1278.939941
13 AACBAB 2.124591 1.797731 Y 1.516970 1375.540039
14 AACBAC 2.075290 1.756015 N 1.498715 1361.020020
15 AACBBB 1.619443 1.370298 Y 1.297150 1270.089966
16 AACBBC 1.597288 1.351551 Y 1.285680 1255.569946
17 ABBAAB 2.177582 1.842569 N 1.535908 1390.059937
18 ABBAAC 2.124591 1.797731 Y 1.516970 1375.540039
19 ABBABB 1.642546 1.389846 N 1.308930 1284.609985
20 ABBABC 1.619443 1.370298 Y 1.297150 1270.089966
21 ABBBAB 2.084876 1.764126 Y 1.502313 1366.689941
22 ABBBAC 2.038229 1.724655 Y 1.484575 1352.170044
23 ABBBBB 1.601646 1.355239 N 1.287950 1261.239990
24 ABBBBC 1.580204 1.337096 Y 1.276721 1246.719971
25 ABCAAB 2.124591 1.797731 Y 1.516970 1375.540039
26 ABCAAC 2.075290 1.756015 N 1.498715 1361.020020
27 ABCABB 1.619443 1.370298 Y 1.297150 1270.089966
28 ABCABC 1.597288 1.351551 Y 1.285680 1255.569946
29 ABCBAB 2.038229 1.724655 Y 1.484575 1352.170044
30 ABCBAC 1.994578 1.687720 Y 1.467452 1337.650024
31 ABCBBB 1.580204 1.337096 Y 1.276721 1246.719971
32 ABCBBC 1.559601 1.319662 N 1.265780 1232.199951
33 BABAAB 1.967665 1.664948 Y 1.456635 1318.689941
34 BABAAC 1.928308 1.631645 Y 1.440448 1304.170044
35 BABABB 1.546633 1.308689 N 1.258817 1213.239990
36 BABABC 1.527299 1.292330 N 1.248327 1198.719971
37 BABBAB 1.898468 1.606396 N 1.427882 1295.319946
38 BABBAC 1.863046 1.576423 N 1.412625 1280.800049
39 BABBBB 1.512344 1.279676 N 1.240122 1189.869995
40 BABBBC 1.494253 1.264368 Y 1.230088 1175.349976
41 BACAAB 1.928308 1.631645 Y 1.440448 1304.170044
42 BACAAC 1.891222 1.600264 Y 1.424790 1289.650024
43 BACABB 1.527299 1.292330 N 1.248327 1198.719971
44 BACABC 1.508673 1.276569 N 1.238094 1184.199951
45 BACBAB 1.863046 1.576423 N 1.412625 1280.800049
46 BACBAC 1.829535 1.548068 Y 1.397849 1266.280029
47 BACBBB 1.494253 1.264368 Y 1.230088 1175.349976
48 BACBBC 1.476796 1.249597 N 1.220295 1160.829956
49 BBBAAB 1.898468 1.606396 N 1.427882 1295.319946
50 BBBAAC 1.863046 1.576423 N 1.412625 1280.800049
51 BBBABB 1.512344 1.279676 N 1.240122 1189.869995
52 BBBABC 1.494253 1.264368 Y 1.230088 1175.349976
53 BBBBAB 1.836092 1.553616 Y 1.400767 1271.949951
54 BBBBAC 1.803990 1.526453 N 1.386356 1257.430054
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Table 4 (continued)

Combination Cp Cpk DP (6r level) DS K ($/unit)

55 BBBBBB 1.480238 1.252509 N 1.222234 1166.500000
56 BBBBBC 1.463263 1.238145 Y 1.212624 1151.979980
57 BBCAAB 1.863046 1.576423 N 1.412625 1280.800049
58 BBCAAC 1.829535 1.548068 Y 1.397849 1266.280029
59 BBCABB 1.494253 1.264368 Y 1.230088 1175.349976
60 BBCABC 1.476796 1.249597 N 1.220295 1160.829956
61 BBCBAB 1.803990 1.526453 N 1.386356 1257.430054
62 BBCBAC 1.773515 1.500667 Y 1.372381 1242.910034
63 BBCBBB 1.463263 1.238145 Y 1.212624 1151.979980
64 BBCBBC 1.446858 1.224264 Y 1.203239 1137.459961
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Note that Table 4 can only have at most 64 entries. Often, if a service provider is already fixed for a par-
ticular stage, this number will be much less than 64. Also, note that whatever the number of candidate serv-
ice providers at each stage, we will have to look into at most 64 combinations in this case because of the
variance pool allocation that we have already done.

5.6. Some more insights

A sensitivity analysis of the VPA problem is possible if we take different points on the line (18), which is
Cpk ¼ 6:5

5:5
Cp in this case, and solve the optimization problem. We have solved this problem for a couple of

points and tried to investigate the dependencies of optimal cost on DS. The plot is shown in Fig. 8. Several
inferences can be deduced from this plots.

• A given DP results in a unique DS and also vice versa. Therefore, the DP and DS which are given as
constraints in the problem may not be a valid pair and cannot be achieved as it is. However, VPA tries
to choose a pair of DP and DS which suit the requirement in the best possible manner. For example,
from the above plot it is clear that DS corresponding to DP = 6r is less than 1.4, therefore the point
for which DS = 1.4 is chosen as design point, even though the corresponding DP = 6.15645r is a little
higher than 6r. The reason is that this point suits the design requirements in the best possible manner.
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Table 5
Sample values for decision variables at some representative DP and DS pairs

DP DS r1 (days) r2 = r4 (days) r3 = r6 (days) r5 (days) Cost ($/item)

6r 1.37214 0.694302 0.508311 0.267497 0.592825 785.952
5r 1.16366 0.788656 0.746783 0.294104 0.745988 668.365
4r 0.90195 0.885917 1.202550 0.319801 0.942760 525.029
3r 0.61113 0.971198 2.126740 0.341016 1.160770 358.195
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• The curve can be divided into two parts
– From Cpm = 0 to the C

g
pm ¼ 0:383359 (point of global minima). In this part delivery cost decreases as

the quality of delivery increases.
– From Cg

pm ¼ 0:383359 to Cpm ¼ 2:1667. In this part delivery cost increases as the quality of delivery
increases.

The behavior of the second part of the curve is consistent with our intuition but the first part is counter-
intuitive. A justification behind this is as follows. As described earlier, for a given actual yield a, there
exist upper bounds and lower bounds for Cp and Cpk. In a similar way it is possible to get the lower
bound for Cpm value also. It implies that in order to achieve a specified level of precision, a minimum
level of accuracy is a must. If accuracy of the process is lower than that minimum level, then no matter
how much effort one puts in, the precision can never reach the specified level. In one sentence it can be
summarized as ‘‘For being precise, one should be accurate also’’. This is the fundamental cause behind the
behavior of the curve in its first part. In the first part of the curve, accuracy is so low that even achieving
a relatively low precision itself is very costly but in the second part of the curve accuracy is so high that
achieving such high accuracy itself is very expensive.

• Table 5 lists some sample values of decision variables ri and optimal delivery costs at some representa-
tive DP values along with corresponding DS values.

The following is an interesting observation made through these sample values. As the quality level in-
creases, variance of end-to-end lead time Y (i.e. r) decreases. In order to accommodate such reduction
in r, variance ri of individual process(es) reduces. Observe that the processes which are expensive, for exam-
ple procurement, undergo a very little change in variance. However, the cheaper processes, such as sheet
fabrication and manufacturing, are used as a vehicle to reduce the variance. The reason behind it is reduc-
ing the variance of cheaper processes is more cost effective than reducing the variance of expensive proc-
esses for achieving the same quality level of end-to-end lead time.
6. Summary and future work

In this paper, we have presented an approach to achieve variability reduction, synchronization, and
therefore delivery performance improvement in supply chain networks. Our approach exploits connections
between design tolerancing in mechanical assemblies and lead time compression in supply chain networks.
The specific problem we solved here is the variance pool allocation problem. The VPA problem distributes
a pool of variance across individual stages of a supply chain in a cost effective way, so as to achieve desired
levels of delivery performance.
The contributions of this paper can be summarized as follows.

• Explaining the relevance of process capability indices Cp, Cpk, and Cpm in describing variability effects in
the end-to-end supply chain delivery process.
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• Introducing two performance metrics, delivery probability and delivery sharpness, to describe the preci-
sion and accuracy aspects of supply chain deliveries.

• Formulating the variance pool allocation ion problem, an important design optimization problem in
supply chains.

• Proposing a five step approach to solve the VPA problem for linear supply chains.
• Illustrating the efficacy of the approach through a six stage plastics industry case study, by solving a spe-
cific problem, namely choosing an optimal mix of service providers in the supply chain stages.

At this stage, we would like to make an important observation about the proposed approach. The mod-
els of the type discussed here are best suited for first level decision making which throws up several candi-
date solutions and rejects unsatisfactory candidates. For example, we can choose to reject all candidates
who fail to achieve, say, a three sigma level of delivery performance. Subsequently, at the second level
of decision making, the candidate solutions shortlisted at the first level are shrunk based on strategic con-
cerns, relationships, and the like. It is important to have a shortlisting mechanism based on sound models
and considerations and the proposed work is positioned to be used here. It would not be prudent to use this
model alone to take important strategic decisions such as supplier selection.

6.1. Future work

The paper leaves plenty of room for further work in several directions. The VPA problem has been inves-
tigated only for linear supply chains. Apart from computational reasons, there is no major difficulty in solv-
ing the VPA problem for supply chains with non-linear flows. VPA is only one of a rich variety of design
optimization problems that one can address in the framework developed in this paper. An immediate prob-
lem that would strike one here is allocation of a pool of nominals among individual business processes. This
has implication for choosing resources such as logistics and suppliers in an optimal way. Choice of an opti-
mal mix of customer orders is another problem that could be attempted in this framework. In a companion
article [37,41], we have looked at an inventory allocation problem in a multi-echelon supply chain, where
we use the framework (variance pool allocation) developed in this paper to determine optimal inventory
levels in different supply chain stages.
In case the various supply chain partners have different expected lead times, which is likely in practice,

the proposed solution procedure cannot be used as is. We can certainly formulate the problem so as to relax
this assumption. The resulting problem will be two dimensional (that is, involving allocation of both means
and variabilities) and under quadratic approximation, should pose no difficulties in solving. This is an inter-
esting extension to the problem.
The supply chain example that we have looked at belongs to the MTO type. Here again, there is no rea-

son why our approach cannot be applied for coordination types other than MTO, such as MTS and BTO
(Build to Order). In fact, in the framework that we have developed in this paper, one can address almost
any type of design optimization problem with variability reduction as the basic strategy. In a related paper
[37] and a Master�s thesis [39], we have defined the general notion of a six sigma supply chain and presented
a general mathematical programming problem for supply chain design optimization.
Finally, variability is certainly not lead time alone. Variation is fundamental to any metric or process. In

this paper, we have emphasized lead time (motivated by the importance of time based competition). End-
to-end lead time is an encompassing metric that takes into account most aspects of system dynamics (for
example, resource contention, queuing, inventories, etc.). The framework discussed in the paper will apply
equally well to any metric other than lead time too. In general, let X1, . . . ,Xn represent n random variables
that describe n phenomena in any system and let Y be a performance metric of interest, which is given as,
Y = f(X1, . . . ,Xn), where f is a deterministic function (analytic or computational). The framework developed
here will apply to any Y, as long as f is known deterministically.
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Appendix A. Proof of the results in (5)–(8):

Proof for (5): We start with the equation T = b + d and it is easy to see that
T ¼ bþ d

) 1 ¼ b
T
þ d
T

) 1 ¼ b
T
þ d

3r

� �
3r
T

� �

) 1 ¼ b
T
þ Cpk

Cp

) Cpk ¼ Cp 1�
b
T

� �
:

Proof for (6): Rearrangement of expression for Cpm results in
1

9C2pm
¼ r2

T 2
þ b2

T 2

) 1

9C2pm
¼ 1
9

3r
T

� �2
þ b

T

� �2
:

Substituting the values from Eqs. (1) and (5), we get the desired identity relation:
1

9C2pm
¼ 1

9C2p
þ 1� Cpk

Cp

� �2
:

Proof for (7): By the definition of potential, it is easy to see that
Potential ¼ U
U � l

r

� �
� U

L� l
r

� �
;

¼ 2 U
U � l

r

� �
� 0:5

� �
;

¼ 2 U
T
r

� �
� 0:5

� �
;

¼ 2U 3
T
3r

� �� �
� 1;

¼ 2U 3Cp

� �
� 1:
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Proof for (8): We will prove the result for the case s > l. The arguments will be symmetric in the case s 6 l.
It is easy to see that
Actual yield ¼ U
U � l

r

� �
� U

L� l
r

� �
;

¼ U
d
r

� �
� 1� U

l � L
r

� �� �
;

¼ U
d
r

� �
� 1þ U

bþ T
r

� �
;

¼ U
3d
3r

� �
þ U

2T � d
r

� �
� 1;

¼ U 3Cpk

� �
þ U 6Cp � 3Cpk

� �
� 1:
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