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Abstract

In this paper, an overview of some recent numerical simulations of stationary crack tip fields in
elastic—plastic solids is presented. First, asymptotic analyses carried out within the framework
of 2D plane strain or plane stress conditions in both pressure insensitive and pressure sensitive
plastic solids are reviewed. This is followed by discussion of salient results obtained from
recent computational studies. These pertain to 3D characteristics of elastic—plastic near-front
fields under mixed mode loading, mechanics of fracture and simulation of near-tip shear
banding process of amorphous alloys and influence of crack tip constraint on the structure of
near-tip fields in ductile single crystals. These results serve to illustrate several important
features associated with stress and strain distributions near the crack tip and provide the
foundation for understanding the operative failure mechanisms. The paper concludes by

highlighting some of the future prospects for this field of study.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Modern design of structures and their components is becoming
increasingly complex, primarily for the following two reasons.
First, newer and more advanced materials (e.g. metallic
glasses, shape memory alloys, etc), whose constitutive
behaviour is significantly different from that of conventional
engineering materials, are being developed. Secondly, there is
an increasing demand from users for an accurate assessment of
the structural integrity and reliability as well as implementation
of these requirements in design. The goal is to design optimal
structures and at the same time ensure that they are fail-safe
under all possible service conditions. In this context, fracture
mechanics assumes an important role, as it enables one to
assess and understand a material’s response in the presence
of flaws, which limit its strength and life, under a variety of
loading conditions. In addition, it allows for identification of
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suitable fracture characterizing parameters such as the stress
intensity factor, K, or the energy release rate J.

An important aspect in fracture mechanics is the
examination of crack tip fields. The concept of ‘similitude’,
which implies that the intensity of the crack tip fields in any
given structure is uniquely determined by the applied value
of K or J, as appropriate, is central to the theory of fracture
mechanics. It is important to critically understand the near-
tip stress and strain distributions for a variety of different
materials. This is not only useful in structural design but also
helps in understanding material failure by shedding light on
potential fracture mechanisms (e.g. brittle cleavage or ductile
void coalescence). This allows one to identify the origin
(or the lack thereof) of a material’s toughness from a continuum
standpoint and, in turn, develop fracture resistant advanced
materials. Further, crack tip fields in combination with a
local fracture initiation criterion can also help in predicting
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the potential direction of crack propagation especially under
mixed mode loading conditions thereby enabling the designer
to take corrective measures.

A considerable amount of research work has been carried
out using analytical and numerical techniques to investigate
crack tip fields in inelastic materials since they were first
studied by Hutchinson [1,2] and Rice and Rosengren [3].
Given this background, some salient results from recent
simulations of stationary crack tip fields in elastic—plastic
materials are reviewed in this paper. Since a comprehensive
review of all the developments is not possible within the limited
space available, some selected results are presented to illustrate
the recent advances, especially pertaining to non-traditional
materials such as amorphous alloys and ductile single crystals.
First, asymptotic studies carried out within the framework of
2D plane strain or plane stress conditions in both pressure
insensitive and pressure sensitive plastic solids are reviewed
in section 2. This is followed by discussion of some recent
results on 3D effects near the crack front under mixed mode
(combined modes I and II) loading in section 3. In section 4,
stress and strain distributions near the crack tip in amorphous
alloys, as well as formation of multiple shear bands inside the
plastic zone, are studied through finite element simulations.
These simulations employ a recently proposed sophisticated
constitutive model for metallic glasses. It must be noted that
amorphous alloys display an intriguing mechanical behaviour,
but nevertheless possess attractive properties, and hence,
have many potential engineering applications ranging from
biomedical to sporting equipment. Finally, in section 5,
recent finite element simulations that highlight the role played
by crack tip constraint in altering the stress and plastic slip
distributions near the tip (in particular, formation of slip shear
bands and kink shear bands) in ductile single crystals are
described. The results from these simulations corroborate well
with recent experimental observations on aluminium single
crystal specimens having low and high constraint. They are
important, both due to some high technological applications of
single crystals and also due to the fact that when the length scale
influenced by the crack tip shrinks, the fields are essentially
embedded within a single grain so that local slip activity
dominates crack tip plasticity.

Thus, the results discussed in this paper serve to
illustrate several important features associated with stress
and strain distributions near the crack tip in elastic—plastic
solids and provide the foundation for understanding the
operative failure mechanisms. The paper concludes by
highlighting some of the future prospects for this field of
study.

2. Asymptotic studies on stationary crack tip fields

2.1. Pressure insensitive plastic solids

In this section, asymptotic studies on stress and strain fields
near stationary crack tips in pressure insensitive elastic—plastic
solids are reviewed. All these studies have been carried
out under the conditions of 2D plane strain or plane stress.
Hutchinson [1,2] and Rice and Rosengren [3] analysed the
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Figure 1. Schematic showing the conventions for the coordinate
system and an arbitrary contour I" surrounding the crack tip.

dominant singular fields near a stationary crack tip in power
law hardening plastic solids under mode I loading. Their
asymptotic solution, which is commonly referred to as the
HRR solution, revealed several important features about the
structure of the stress and strain variations near the crack tip
and paved the way for the development of the field of elastic—
plastic fracture mechanics. In their work, they assumed that
the uniaxial stress—strain curve is described by a Ramberg—
Osgood relation, which is given by
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where o, is the initial yield stress, ¢, = 0,/E is the initial
yield strain and «, n are material parameters. It must be noted
that higher values of hardening exponent n imply less strain
hardening. As the crack tip is approached, the first term in
the right hand side of (1) can be neglected in comparison with
the second term. The small strain, J, deformation theory of
plasticity, which is like a nonlinear elasticity model, is used to
generalize (1) to multi-axial states.

In [1,3], a separable form in polar coordinates (r,6)
centred at the crack tip (see figure 1) was assumed as r* f(6)
for the dominant term in the strain variation. A straightforward
analysis based on the path independence of the J-integral
shows that s = —n/(n + 1). Here, it must be noted that
J-integral is defined by [4]

81,{,'
J = /1: <Wl’l1 _Oijnja_)cl) dS, (2)

where W (€) is the strain energy density of the material, I" is any
open contour encircling the crack tip in the counterclockwise
direction and n is the unit outward normal to I" (see figure 1).
By substituting the assumed form for the asymptotic fields in
the compatibility equation, a fourth-order nonlinear ordinary
differential equation is obtained for the angular variation of the
Airy’s stress function. This equation, subjected to traction-
free conditions on the crack flank (¢ = ) and mode I
symmetry conditions on the line ahead of the tip (8 = 0),
was solved numerically using a Runge—Kutta method in [1, 3].
An alternate finite element procedure to derive the angular
functions associated with the dominant singular term has been
discussed by Symington et al [5].
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The HRR fields may be expressed as [6]
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where the dimensionless angular functions 6;;, €;; and u; as
well as the constant 7, depend on the hardening exponent n
and whether plane strain or plane stress conditions prevail
inside the plastic zone. The constants i; account for a possible
translation of the crack tip itself. The above dimensionless
angular functions (normalized such that the angular part of the
Mises equivalent stress 6, has a maximum value of unity) and
the constant /,, are given in [1] for different values of n. It is
important to note that the normalized opening stress 6,, and
the hydrostatic stress 61, = 6y, /3 are highly elevated ahead of
the crack tip (§ = 0), while the plastic shear strain component
€,¢ 18 large above (or below) the crack tip under Mode I, plane
strain. By contrast, under Mode I, plane stress, the stress state
ahead of the tip is biaxial with the tangential plastic strain
€gp attaining a large value in this region. Further, it should be
observed from (3)—(5) that the J-integral, which depends on the
applied load, crack length and other geometrical dimensions
serves as a measure of the strength of the crack tip stress and
deformation fields. However, as pointed out by Hutchinson [6],
in order to use J as a valid fracture characterizing parameter, it
is essential that the region of dominance of the HRR field (3),
(4) should exceed the size of the fracture process zone where
microscopic processes such as void growth and coalescence
occur. These processes are governed by finite strains and
non-proportional loading which are not represented by the
small strain deformation theory of plasticity on which the HRR
analysis is based. The above requirement is referred to as the
condition of J-dominance [6].

Shih [7] and Hutchinson and Shih [8] extended the above
solution to include combined modes I and II loading under
conditions of plane strain and plane stress, respectively. Their
analysis shows that while the form of the near-tip fields remains
the same as (3)—(5), the normalized angular functions and
I,, depend additionally on the near-tip plastic mode mixity
parameter M, defined by

M, = % lim {tan_l [M]} . 6)

T r—0 o9(r,0 =0)

Thus, M, is a measure of the relative strengths of the normal
and shear tractions on the line immediately ahead of the crack
tip and is equal to 1 for pure mode I and O for pure mode II.
Further, the results of Shih [7, 8] imply that under mixed mode
loading the near-tip fields are scaled by J and parametrized
by M,. By using a special finite element procedure which
embeds the singular fields (4) in the near-tip region, Shih [7]
and Hutchinson and Shih [8] established under small scale

yielding (SSY) conditions the relationship between M, and
the remote elastic mixity M. defined by

2 | K
M, = —tan —, 7
T 11

where K7 and K7y are the far-field mode I and II stress intensity
factors. In subsequent studies, Pan and Shih [9-11] derived
the near-tip fields for combined modes I-III, II-IIT and I-II-1IT
loadings. However, it must be noted that under these conditions
the singularity orders may differ from those given by the HRR
solution (see [9-11]).

In many advanced materials such as ceramic and metal
matrix composites and thin films deposited on substrates,
interfacial fracture is a common failure mode and may limit
their overall strength and ductility. In a series of investigations,
Shih and Asaro [12-14] examined the stress and plastic strain
distributions near a stationary crack tip that lies at the interface
between two elastic—plastic materials and showed that the
crack tip fields are members of a family parametrized by a
plastic mode mixity parameter £ and are scaled by J. For SSY
conditions, & can be viewed as the overall phase angle of the
plastic zone [14]. While the structure of the interfacial crack
tip fields for opening-dominated loading strongly resembles
the mixed mode HRR solution [7, 8] of homogeneous solids,
crack tip blunting and zone of substantial plasticity are larger in
the former. The above studies [12—14] also show that no crack
face contact occurs over physically relevant length scales,
which mitigates a pathological feature of the linear elastic
solution [15]. A detailed review of elasticity and plasticity
aspects associated with interfacial cracks may be found in [15].

It has been observed from numerical studies [16, 17]
and fully plastic slipline solutions [18] that while the level
of stress triaxiality (or crack tip constraint) under mode I,
plane strain is high in geometries involving predominantly
bending over the uncracked ligament, it could be lower when
subjected to tensile loads. This has led to several analytical
studies [19,20] aimed at determining the higher order terms
in the asymptotic solution for the crack tip fields. These were
complemented by numerical investigations [21,22] wherein
two-parameter descriptions of the near-tip stress and strain
variations were explored. While the two parameters were
taken as the J-integral and the T'-stress (the second term in
the linear elastic crack tip field) by Betegon and Hancock [21],
an alternative J—Q characterization of the elastic—plastic crack
tip fields where Q is a triaxiality parameter was proposed by
O’Dowd and Shih [22]. The latter form, which is more robust
since it can be applied to both small and large scale yielding
conditions, can be expressed in the forward sector (|| < 7 /2)
as [22]

oij = (0j;)urr + Q040;}, (8)

where the first term is the HRR field. The parameter Q is
negative for low constraint fracture geometries such as center
cracked panel (CCP) under tension [22]. The form (8) is
consistent with a four-term asymptotic expansion obtained by
Xia et al [20]. Roy and Narasimhan [23] found from modified
boundary layer simulations that under mixed mode loading
with a given remote elastic mode mixity M., the imposition of
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anon-zero T-stress changes M, from its value corresponding
to pure SSY (i.e. T = 0; see [7]). This alters the stress
triaxiality near the crack tip. Basu and Narasimhan [24]
and Jayadevan et al [25] demonstrated that a valid J-Q
field exists under mode I dynamic loading irrespective of
the specimen geometry and loading rate. They noted that
a specimen which maintains high constraint under quasi-
static loading may exhibit progressive loss of triaxiality as the
loading rate increases. Biswas and Narasimhan [26] showed
that this inertia-driven constraint loss may be responsible for
the experimentally observed enhancement in dynamic fracture
toughness of ductile materials.

All the studies referenced above pertain to isotropic,
pressure insensitive plastic solids obeying the von Mises
yield condition. However, polycrystalline alloys may
show pronounced plastic anisotropy due to preferred
crystallographic orientation of the grains (or texture) arising
from mechanical processing (like rolling or extrusion). Also,
ductile single crystals are inherently anisotropic due to plastic
flow caused by slip on distinct slip systems. Analysis of crack
tip fields in ductile single crystals is discussed in section 5. Pan
and Shih [27, 28] considered power law hardening orthotropic
materials obeying Hill’s quadratic yield function [29] under
conditions of plane strain and plane stress, respectively. On
choosing the coordinate axes to coincide with the principal
axes of plastic orthotropy, the above yield function under plane
strain (in the x;—x; plane, see figure 1) reduces to:

o = 3P0 —on)’ + 0. ©)
Here, p is a plastic anisotropy parameter (with p = 1
representing the isotropic or von Mises case) and t. is the
shear yield strength with respect to the x;—x, axes. A power
law hardening form similar to (1) was assumed by Pan and
Shih [27, 28] for the relationship between the shear strain and
shear stress with respect to the above axes. The dominant crack
tip fields have the same structure as (3)—(5) with additional
dependence of the angular functions and the constant 7, on
p. An important observation made in [27] was that for highly
orthotropic materials (p < 1 or p > 1) the near-tip plastic
strain field may consist of narrow bands of intense shear along
certain directions.

Several experimental studies, involving micro-indentation
[30], micro-torsion [31] and micro-bending [32], have
indicated that plastic flow of micron-sized metal samples
exhibits a strong size effect. In particular, additional
strengthening occurs due to non-uniform plastic deformation
on size scales of the order of a few microns owing to generation
of geometrically necessary dislocations. In order to explain
the observed size effect, several phenomenological plasticity
theories have been proposed, all of which incorporate a
dependence on strain gradient (see, for example [33-35]).
From the fracture viewpoint, the effect of strain gradients is
crucial in understanding how the stresses near a sharp crack
tip can attain levels necessary to cause cleavage or atomic
decohesion [36]. Xia and Hutchinson [37] and Huang et al
[38] analysed stationary crack tip fields under plane strain
conditions using the couple stress theory [33]. They found that
the dominant displacement field is irrotational, and the normal

stress ahead of the tip under mode I is about the same as that in
classical plasticity [1-3]. This is attributed to the fact that the
couple stress theory incorporates only rotation gradients and
not stretch gradients. Jiang et al [39] conducted finite element
analysis of a stationary crack under mode I, SSY conditions
using the mechanism-based strain gradient (MSG) plasticity
theory [35]. They found that the stress singularity and levels
of effective and opening stresses ahead of the tip are higher
than those given by the HRR solution at distances from the tip
less that 0.3/, where / is a length scale in the constitutive model.
This length scale is estimated to be about 4 ;#m for copper [39].
Thus, the elevation in stress as predicted by the MSG theory as
compared with the HRR solution occurs at distances from the
tip less than about 1 um which is still large compared with the
average spacing between dislocations. However, further multi-
scale modelling using discrete dislocation theory, nonlocal
plasticity and conventional plasticity theories is required to
understand the nature of the fields at different length scales
from the crack tip.

2.2. Pressure sensitive plastic solids

Many engineering materials such as polymers, ceramics and
metallic glasses as well as geomaterials such as rocks and
soils exhibit pressure sensitive plastic behaviour [40-44]. The
Drucker—Prager yield function, which is given by

$ (01, 00) = 0c + 0 tan f — (1— tanﬂ>oc, (10)

3

is commonly used to represent the plastic response of some of
these materials. Here, o, and o}, are the Mises equivalent stress
and hydrostatic stress, respectively. Further 8 is a pressure
sensitivity index and o, is the yield stress under uniaxial
compression. It must be noted that the case § = 0 corresponds
to the von Mises model. Liand Pan [45, 46] studied the mode I,
asymptotic stationary crack tip fields in pressure sensitive,
dilatant materials obeying a yield condition of the form given
by (10) along with power law hardening under plane strain
and plane stress conditions, respectively. They found that
HRR-type solution exists (for k = tan /+/3 within a limiting
value) with the singularity order of the stress and strain fields
remaining the same as in (3) and (4). However, the angular
functions and the constant I, also depend on k. Their results
show that the stress state ahead of the crack tip relaxes with
increase in «, while the plastic strain (especially, the tangential
component €49 ) enhances. This has important implications for
fracture mechanisms such as craze formation or void growth
in amorphous polymers [47] and shear banding in amorphous
alloys (see section 4).

Yuan and Lin [48] extended the work of Li and Pan [45, 46]
by deriving a two-term asymptotic expansion of the plane
stress and plane strain crack tip fields. They also conducted
finite element computations using a modified boundary layer
formulation and confirmed that the inclusion of second order
terms under plane strain conditions increases the dominance
of the analytical solution considerably. It is found that an
associated flow rule may tend to overestimate the extent of
plastic dilatancy (see, for example, Chiang and Chai [49] for
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amorphous polymers), which has motivated the use of a non-
associated flow rule. Thus, the plastic part of the strain rate
éfj is taken to be directed along the normal to a flow potential
surface G, which is given by

G(oij) = 0. +op tan .

an

On comparing (10) and (11), it may be seen that 8 =  leads to
an associated flow rule. Papanastasiou and Durban [50] noted
that the use of a non-associated flow rule (with ¥ < B) can
slightly enhance the singularity order of the asymptotic fields
(over that given by the HRR solution) in pressure sensitive
plastic solids. Moreover, the plastic shear strain €,4 enhances
significantly when ¢ < f for large values of strain hardening
exponent n. Interestingly, Rudnicki and Rice [44] have noted
that shear band type instabilities which result in localized
plastic deformation occur more easily in pressure sensitive
plastic solids when ¢ < S.

In the following sections, recent numerical studies
undertaken to investigate issues such as 3D effects under mixed
mode loading, crack tip fields in amorphous alloys and role of
constraint in ductile single crystals are described.

3. 3D mixed mode (I and II) fields in elastic—plastic
solids

The stress and deformation fields near a crack front are
inherently 3D in nature. However, no analytical, asymptotic
solution near a 3D crack front in an elastic—plastic solid
is available in order to judge the validity of the crack tip
fields reviewed in the previous section which are based on
the assumptions of 2D plane strain or plane stress. Hence,
detailed 3D finite element analyses are essential to characterize
the stress and strain variations near a crack front in elastic—
plastic solids and also ascertain the range of dominance of 2D
plane strain and plane stress solutions. To this end, Nakamura
and Parks [51] performed a 3D boundary layer analysis of a
thin ductile plate under mode I loading. Also, Narasimhan
and Rosakis [52] and Zehnder and Rosakis [53] carried out
numerical (both 2D and 3D) and experimental investigations on
a ductile three-point bend specimen and found strong thickness
variations of stress fields and the local energy release rate J
very near the crack front. Their results, and those reported
by Nakamura and Parks [51], revealed that strong 3D effects
are present within a radial distance of about one-half of the
plate thickness from the crack front. However, the above
studies were restricted to mode I loading in materials obeying
the von Mises yield condition. In order to characterize the
effects of pressure sensitivity and plastic dilatancy on near-
front fields under mode I, Subramanya et al [54] conducted 3D
numerical simulations using a boundary layer model similar
to [51]. In their simulations, a linear Drucker—Prager yield
theory(governed by (10), (11)) was employed to describe the
constitutive response of the material. They observed that while
pressure sensitivity leads to a significant drop in the hydrostatic
stress all along the crack front, it enhances the plastic strain
and crack opening displacements.

Subramanya et al [55] carried out extensive elastic—
plastic simulations using a boundary layer (SSY) formulation

Figure 2. Schematic 3D view of a cracked circular plate of
thickness / and radius r, along with the coordinate system used in
the boundary layer formulation of [54, 55] (reproduced with
permission [85] from [55]).

to investigate the 3D nature of the near-front fields under mixed
mode (combined modes I and II) loading. They considered a
large circular disc (see figure 2) containing a crack lying on
one of its radial planes with the straight crack front along the
axis of the disc (z-axis). The mid-plane of the disc is given
by z = 0, while z/h = £0.5 correspond to the free surfaces
of the disc. Due to symmetry, only one-half of the thickness
of the disc (z > 0) was modelled with appropriate symmetry
conditions imposed on its mid-plane. The material was taken
to obey the J, incremental theory of plasticity with isotropic
power law hardening. The values of initial yield strain o,/ E
and strain hardening exponent n were chosen as 0.002 and 10.
The mixed mode elastic (K- Kp;) field was prescribed as remote
boundary conditions on the outer boundary of the circular disc
and different values of elastic mode mixity M. (see (7)) were
considered. Since the size of the plastic zone relative to the
disc thickness, A, has a direct bearing on the nature of the near-
front fields [51], the analyses were carried out for load levels
corresponding to R/ h values ranging from 0.1 to 5 (where,
R is the maximum in-plane radius of the plastic zone with
respect to all z/h). Some of the salient results obtained from
these simulations are discussed below.

In figures 3(a) and (b), 3D views of the plastic zone at
two load levels corresponding to Ry /h = 0.1 and 0.5 are
presented for the mixed mode case with M, = 0.7. In this
figure, the size scale is set by the disc thickness #. The trace
of the plastic zone on the free surface of the disc is highlighted
by the red contour. At small load (figure 3(a)), the shape
of the plastic zone all along the crack front is similar to the
plane strain case (see [7]) except in a small region near the
free surface. In this region (0.4 < z/h < 0.45), change in
shape of the 3D plastic zone from plane strain [7] to plane
stress case [8] has initiated at a very small load level. It
must be noted that this transition to the plane stress plastic
zone shape does not commence at the free surface owing to
steep thickness gradient in stresses near the crack front (see
figure 5) and a significant drop in the local energy release
rate [51] close to the free surface. Due to these reasons,
plane stress conditions are not attained at the free surface
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Figure 4. Comparison between 3D near-front (at r/ h=0.001)
angular stress distribution (symbols) corresponding to R /h = 2
at z/h = 0.075 and plane strain HRR solution (indicated by solid
lines) for M, = 0.7 (reproduced with permission [85] from [55]).

close to the crack front as will be seen later. As the load
increases, transition to plane stress shape progresses towards
the mid-plane of the plate. At the load level corresponding
to Rrr,“a" /h = 0.5 (figure 3(b)), the plastic zone at the mid-
plane has almost transformed to the plane stress shape [8],
whereas it still retains the plane strain characteristics near the
free surface. With further increase in load, the 3D plastic zone
traces all along the crack front acquire the limiting shape given
by plane stress analysis. Subramanya et al [55] observed that
for lower M., the transformation to plane stress shape occurs at

a smaller effective stress intensity factor (|K| = ,/ K12 + K 121
as compared with that for mode I predominant loading.

Notwithstanding the shape and size of the plastic zone,
Narasimhan and Rosakis [52] found that the stress distribution
near the crack front in the mid-plane of a three-point bend
specimen agrees closely with the plane strain HRR field.
Similar agreement between the the angular stress distribution
computed from 3D finite element analysis at r/h = 0.001
close to the mid-plane for M, = 0.7 [55] and the plane
strain mixed mode HRR-type solution [7] can be perceived in
figure 4. This is despite the fact that figure 4 corresponds to the

z/h

Figure 5. Variation of oy, /0, with z/h at R} /h = 0.1 and 2 for
M, = 0.7 along 6 = 0° (reproduced with permission [85]
from [55]).The curves pertain to r/h = 0.001, 0.01, 0.1, 0.5 and
1.0. The arrow direction indicates increasing '/ h values.

stage when R/ h = 2 and when the plastic zone has acquired
the shape given by the 2D plane stress analysis. As mentioned
in section 2.1, the HRR solution indicates significantly higher
stress triaxiality near the crack tip for plane strain as compared
with the plane stress condition. Figure 5 shows the variations of
normalized hydrostatic stress oy, /0, through the plate thickness
for M, = 0.7 obtained by Subramanya et al [55]. In
this figure, variations of oy, /0, at different normalized radial
distances r/ h from the crack front for two different load levels
(corresponding to R™/h = 0.1 and 2) are presented. It can
be seen that very near the crack front and in the interior of the
plate (small / h and z/ h), where plane strain conditions apply,
the hydrostatic stress is highly elevated. When the applied load
is small (see solid lines in figure 5), oy, close to the crack front
(r/h < 0.1) is almost constant for 0 < z/h < 0.4 and drops
dramatically as the free surface is approached. At a higher
load level (see dashed lines in figure 5), a more significant
thickness variation of oy, can be perceived very near the crack
front. As noted in [55], this is especially true when the mode
I component of loading is high as in figure 5. These results
imply that vast differences in growth rates between micro-voids
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Figure 6. Angular distribution of normalized hydrostatic stress near
the crack front (r/h = 0.001) corresponding to R /h = 2 at

z/h = 0.075 and 0.4975 for M, = 0.3 and 0.7 (reproduced with
permission [85] from [55]).

situated adjacent to the mid-plane and free surface of the plate
near the crack front are expected as the load level increases.
Subramanya et al [55] also compared these results with full-
field numerical solutions based on 2D plane stress and plane
strain conditions. They noted that for r/h < 0.1, oy, from 3D
analysis is well approximated by 2D plane strain estimates near
the mid-plane. On the other hand, the stresses remain uniform
through the thickness for /A > 0.5, and are in reasonable
agreement with the plane stress numerical solution irrespective
of mode mixity and the load level.

The angular variation of the near-tip hydrostatic stress also
depends on mode mixity, load level and thickness location
as seen from figure 6 [55]. Here, the angular variations of
on/o, (at r/h = 0.001 near the mid-plane and free surface)
pertaining to the stage when R**/h = 2 are presented. For
M. = 0.3, figure 6 shows that the hydrostatic stress both near
the mid-plane and the free surface attains a flat peak (or plateau)
for —90° < 0 < —30° with the mid-plane value being almost
twice that at the free surface. On the other hand, for M, = 0.7,
this flat peak occurs in the range —60° < 6 < 0° and its
value near the mid-plane is about thrice that at the free surface.
Thus, the angular location where the peak oy, occurs shifts in
the direction of negative 6 as the mode Il component of loading
increases. Further, for a given Rg‘a" / h, the hydrostatic stress
at the mid-plane is higher for mode I predominant loading.
Also, for M, = 0.3, oy, is compressive both near mid-plane
and at the free surface for & > 30°. These observations are
important since a strongly triaxial stress field influences the
nucleation and growth of micro-voids, which lead to ductile
fracture initiation.

Figure 7 shows the radial variation of normalized opening
stress oy /o, for M, = 0.7 on three planes normal to the crack
front at the load level corresponding to R™/h = 2 [55].
The results obtained from 2D numerical simulations are also
shown. It is seen that oy determined from the plane strain
simulation is higher than that computed from plane stress
analysis up to a radial distance of about 0.9 h from the crack
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Figure 7. Radial variations of oy /0, along three different planes
normal to the crack front corresponding to R/ h = 2 for
M, = 0.7, 60 = 0° (reproduced with permission [85] from [55]).

tip. The oy variations determined from the 3D analyses in
the interior of the plate merge with each other and with the
plane strain result for small »/h. With the increase in radial
distance, the stress distributions in the interior of the plate
fall below the plane strain variation and approach the plane
stress distribution for r/h > 0.5. By contrast, oy near
the free surface is well below the 2D plane stress curve for
small r/h. It approaches the latter for r/h > 0.8. This
was attributed by Subramanya et al [55] to the violation of
plane stress conditions near the free surface due to the strong
thickness gradient of stresses close to the crack front. However,
Subramanya et al [55] noted that for mode II predominant
loading, the radial distribution of stresses along different planes
normal to the crack front approach the plane stress variation at
smaller r/ h (less than 0.5).

4. Numerical simulations of crack tip fields in
amorphous alloys

4.1. Constitutive response of amorphous alloys

Certain metallic alloys, when subjected to high cooling rates,
solidify in a disordered form leading to thin ribbons of metallic
glasses or amorphous alloys [56]. Alternately, metallic
glasses could be produced at relatively slow cooling rates
(of the order of 1-100K s™!) in bulk form in certain multi-
component alloy systems [57, 58]. These bulk metallic glasses
or BMGs are believed to have many potential applications
owing to their unique combination of properties such as
superior tensile strength, high yield strain, reasonable fracture
toughness and good corrosion resistance [59]. Although
amorphous alloys are considered to be macroscopically brittle,
they do exhibit substantial plastic deformation near the
crack tip before fracture. However, unlike in crystalline
metals, yielding in amorphous alloys is pressure/normal-
stress sensitive, plastically dilatant and accompanied by strain
softening [42,60]. Furthermore, plastic flow may occur in
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a heterogeneous manner by the formation of discrete shear
bands [59]. Hence, classical pressure insensitive models
such as the von Mises theory are inadequate to describe the
mechanical response of amorphous alloys. Special constitutive
theories such as the one proposed recently by Anand and
Su [61] are required.

The Anand and Su model [61] is a finite strain, discrete
shear-yielding, Mohr—Coulomb type theory for elastic-
viscoplastic response of metallic glasses. In this model, plastic
flow is assumed to occur by shearing accompanied by dilatation
relative to six potential slip systems that are defined with
respect to the principal directions of stress. The internal
friction parameter p is assumed to be a constant and controls
the normal-stress/pressure sensitivity of yielding. The plastic
dilatancy parameter x is variable and decreases to zero with
increase in plastic dilatation n. Further, plastic dilatation
also controls strain softening. Thus, as 7 increases to a
saturation level, the cohesion, ¢ (yield strength in pure shear),
monotonically decreases from its initial value ¢, to a limiting
value. Indeed, Anand and Su [61,62] have demonstrated
that their model can accurately represent overall features like
load versus displacement response, as well as details of shear
band formation during the deformation of metallic glasses in
a variety of situations such as indentation and strip bending.

4.2. Mechanics of fracture of amorphous alloys

A wide range in values of the mode I fracture toughness for
metallic glasses from 2MPa./m to 80 MPa./m, have been
reported [63]. One of the reasons for this variability is
the nature of processes occurring near the crack tip such as
shear banding [64] and brittle microcracking [65]. Further,
an empirical correlation between fracture toughness and
Poisson’s ratio of metallic glasses of different compositions
has been reported in the literature [63]. The reason
for this correlation from a mechanistic standpoint is not
clear. Recently, the mode II fracture toughness of a Zr-
based BMG was found to exceed four times its mode I
fracture toughness [66], which is in contrast to that observed
for crystalline alloys. Thus, many issues related to the
fracture behaviour of metallic glasses are still not completely
understood. These would depend strongly on the nature
of the near-tip stress and deformation fields which, in turn,
are influenced by the characteristic features of mechanical
response of amorphous alloys such as internal friction,
softening, plastic dilatation, Poisson’s ratio, etc.

In order to understand the mechanics of fracture in
amorphous alloys, Tandaiya et al [67, 68] have recently carried
out detailed finite element investigations of near-tip fields
around a stationary crack under mode I, plane strain, SSY
conditions. The constitutive model proposed by Anand and
Su [61] was employed in the simulations. The loading was
applied in steps by gradually increasing the remote mode I
stress intensity factor. The influence of friction parameter, flow
softening and Poisson’s ratio on the plastic zone, stress and
deformation fields and notch opening profiles were studied.
In order to gain an insight into the near-tip processes like
shear banding and crack branching, plastic slipline fields and
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Figure 8. Effect of friction parameter 1 on the normalized plastic
zones in amorphous alloys corresponding to pure mode I loading
(reproduced with permission [86] from [67]).

possible brittle crack trajectories around the notch root were
generated. Further, the localization of plastic strain into
discrete shear bands was simulated numerically by employing
a statistical distribution of initial cohesion among the finite
elements. Some salient results from the above studies, as well
as a few very recent ones pertaining to mixed mode (I and II)
loading, are presented below.

Figure 8 shows the effect of Mohr—Coulomb friction
parameter u on the plastic zones corresponding to pure mode
I loading plotted in notch tip coordinates normalized by
(K1/co)?. The plastic zone shape and size will remain invariant
with respect to these normalized coordinates under SSY once
the notch has blunted adequately. It can be seen from figure 8
that the plastic zone size increases with w. In particular, the
extent of the plastic zone ahead of the notch tip doubles when
w is increased from O to 0.15. Further, the location of the
maximum extent of plastic zone rotates forward with respect
to the notch line and increases from 0.05 to 0.07(Ky/ ¢o)%. The
angular variation of maximum principal logarithmic plastic
strain, In Af , around the notch tip at a normalized radius
r/(J/c,) = 1.5 is displayed in figure 9 corresponding to
pure mode I loading condition for three different values of
the friction parameter. It can be seen from figure 9 that for
angles 6 < 90°, the plastic strain level is strongly enhanced
with increase in p. Thus, the peak plastic strain increases
by about 17.5% with increase in p from 0 to 0.15 and it
also occurs at smaller 6. Also, as u increases, many distinct
serrations in the near-tip angular distribution of plastic strain
can be observed in the forward sector ahead of the notch
tip (up to about & = 90°). This corroborates with similar
features perceived on the leading boundary of the plastic zone
in figure 9. It suggests a tendency for plastic strains to
localize into discrete shear bands, which have been observed in
experiments on metallic glasses (see, for example, [64]). This



J. Phys. D: Appl. Phys. 42 (2009) 214005

R Narasimhan et al

0.06 T T
e — u=0.00 |
- - u=0.05 |
== u=0.15 |
0.04 i
[oRg o
=
£
0.02 i
0 1
120 180

Figure 9. Effect of i on the angular variation of maximum
principal logarithmic plastic strain In A} at 7/(J /c,) = 1.5
corresponding to pure mode I loading of amorphous alloys
(reproduced with permission [86] from [67]).

3 . . . . .
- l.l=0
- - u=0.05
2_ -
- - u=0.15
1t i
ot i
-3 L L L 1 1
-3 -2 - 0 1 2 3

Figure 10. Effect of friction parameter u on the deformed notch
profiles in amorphous alloys corresponding to a mode II dominant
mixed mode loading condition (with M, = 0.3) at

|K1/(con/Bo) = 15.

aspect is discussed later in this section.

Figure 10 shows the deformed notch profiles correspond-
ing to ©# = 0, 0.05 and 0.15 under a mode II dominant mixed
mode loading condition (with M. = 0.3) at a normalized ef-
fective stress intensity factor of |K|/(con/Do) = 15, where b,
is the initial notch root diameter. The distances are normalized
by b,. It can be seen from figure 10 that in all the three cases,
the notch has deformed into a shape having a blunted lower
part and a sharpened upper part. Also, an increase in p leads
to enhanced blunting and stretching of the notch surface which
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Figure 11. Effect of 1« on the angular variation of tangential stress
atr/(J/c,) = 1.5 in amorphous alloys corresponding to a mode I
dominant mixed mode loading condition (with M. = 0.7).

corroborates with larger near-tip plastic strains. In figure 11,
the effect of © on the angular variation of normalized tangen-
tial stress, ogg /Co, at a normalized radius r/(J /c,) = 1.5 from
the tip is presented. This figure corresponds to a mode I dom-
inant mixed mode loading condition (with M, = 0.7). It can
be seen from figure 11 that the peak tangential stress occurs at
6 = —35° (in the blunted part of the notch) for all the three
u cases. Also, higher u causes a dramatic decrease in the
magnitude of the peak tangential stress. The effect of 1 on the
tangential stress is perceptible in the angular range from —120°
to 50°. Further, a small compressive tangential stress can be
observed for & > 70° on the upper part of the notch. In fact,
the decrease in oyy/c, with increase in u is found to be more
pronounced for pure mode I loading as compared with mixed
mode loading cases. Tandaiya et al [67] pointed out that the
decrease in stress levels combined with enhancement in plastic
strains and plastic zone size with increase in u will suppress
brittle cracking and lead to enhancement in fracture resistance.
Indeed, Xi ef al [69] have found a correlation showing direct
correspondence between the fracture toughness and the plastic
process zone size for various metallic glasses.

In figure 12, fringe contours of In )»1;’ obtained from a
simulation in which the initial value of the cohesion is varied
among all elements using a normal distribution with standard
deviation of 3% of the mean value ¢, are presented. This figure
pertains to pure mode I loading condition with © = 0.15 at
a normalized load of J/(cob,) = 0.8. It can be seen that
the plastic zone contains two families of shear bands (with
included angle less than 90°) that resemble discrete fingers
projecting out from the notch. The intense plastic straining in a
few bands close to the notch tip may cause ductile shear failure
along these bands, leading to the formation of macroscopic
cracks [70]. Also, it should be mentioned that the shear bands
away from the notch root (not visible in figure 12) in the
outer reaches of the plastic zone are similar to those observed
experimentally for Vitreloy 1 metallic glass by Flores and
Dauskardt [64]. It is interesting to note from figure 12 that the
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Figure 12. Contour plot of maximum principal logarithmic plastic
strain In ] at J/(cob,) = 0.8 corresponding to pure mode I loading
situation in amorphous alloys showing the enlarged view of the
shear bands near the notch tip (reproduced with permission [86]
from [67]).

notch surface has deformed into a shape with several vertices.
These vertices form at locations on the notch surface where
the two families of shear bands intersect each other and may
be interpreted as shear offsets or surface steps.

The effect of varying Poisson’s ratio (while keeping all
other material properties the same) on the plastic zone is shown
in figure 13. In this figure, the plastic zone is presented for four
different values of Poisson’s ratio v = 0.3, 0.36, 0.42 and 0.48.
Here, notch tip coordinates are normalized by (K;/o!)? where
o is the yield strength in uniaxial tension. It can be seen from
figure 13 that the plastic zone size and shape are remarkably
affected by the change in Poisson’s ratio. Thus, with increase
in v, the plastic zone size is reduced along the leading edge,
whereas it is unaffected along the trailing edge. Specifically, its
extent directly in front of the notch tip is reduced by more than
50% when v is increased from 0.3 to 0.42. Tandaiya et al [68]
noted that this behaviour is attributed to the combined effect of
normal-stress dependence of yielding, shearing accompanied
by plastic dilatation and flow softening which characterize the
mechanical response of BMGs. They also argued that if a
ductile failure mechanism due to development of shear cracks
along the shear bands is operative in the fracture process zone,
then the decreased plastic strain ahead of the tip with increase
in v will delay onset of failure. This would explain, at least
in part, the observed trends between fracture toughness and
Poisson’s ratio for metallic glasses [63].

5. Crack tip fields in ductile single crystals

In order to understand and predict the fracture behaviour of
polycrystalline materials from a fundamental perspective, it is
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Figure 13. Effect of Poisson’s ratio on the normalized plastic zone
in amorphous alloys corresponding to pure mode I loading
(reproduced with permission [87] from [68]).

important to first investigate plastic deformation at a crack tip
in a ductile single crystal. In this context, it may be noted
that when the crack opening displacement is much less than
the grain size, the crack tip fields are entirely contained in
a single grain. Further, some key structural components are
being fabricated in single crystal form. For example, blades in
high pressure turbines of jet engines are made of single crystals
of nickel-based superalloys.

5.1. Asymptotic analysis of crack tip fields in single crystals

Rice [71] proposed asymptotic solutions for the crack tip
stress field in ductile single crystals under mode I, plane strain
conditions within small strain, ideal plasticity framework. He
analysed FCC and BCC crystals with the crack lying on the
(0 10) plane and the crack front along the [10 1] direction. The
motivation for investigating this crack orientation is because it
has been frequently observed to occur in experimental studies
on fracture of ductile single crystals (see [72-74]). Three
combinations of 3D slip systems which result in plane strain
deformation were considered. For the case of the FCC single
crystal, the traces of these effective slip systems are inclined at
55°, 125° and 0° to the crack line in the plane of deformation
(the x;—x, plane). The Schmid law was considered as the
anisotropic yield criterion, which for the 2D effective slip
systems leads to a hexagonal yield locus in the stress plane with
axes given by (011 —022) /27, and o1,/ T,, Where 1, is the critical
resolved shear stress. Rice [71] assumed that for a stationary
crack the yield condition can be met asymptotically all around
the crack tip, thus requiring discontinuities in the stress state to
satisfy the equilibrium condition. His solution consists of four
constant stress sectors separated by stress and displacement
discontinuities. The Cartesian stress components prevailing in
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Table 1. Cartesian stress components prevailing in different slip
sectors in the asymptotic near-tip solution of Rice [71] for ideally
plastic FCC single crystal.

Sector Angularrange 02/t 011/T0  O12/T
A 0°-54.74° 7.35 4.9 0
B 54.74°-90° 4.9 3.67 —1.73
C 90°-125.26° 245 3.67 —1.73
D 125.26°-180° 0 245 0

the four constant stress sectors, labelled A, B, C and D, in the
case of the FCC single crystal are summarized in table 1. It
must be noted that the stress triaxiality in the region ahead of
the tip is very high (oy/7, = 5.3) and hence this solution
should apply to high constraint geometries such as deeply
cracked three-point bend specimen. Rice [71] also predicted
intense shear, either in slip mode or kink mode, along the sector
boundaries. Thus, corresponding to the FCC crystal, Rice’s
solution involves slip shear bands at § = 55° and 125° and
kink shear band at 90°.

Saeedvafa and Rice [75] obtained HRR-type asymptotic
solutions for crack tip fields in power law hardening single
crystals. They assumed a simple Taylor (isotropic) hardening
model. In the limit of small hardening, their angular stress
distribution converges to the solution of Rice [71]. Drugan [76]
extended Rice’s analysis to derive asymptotic solutions without
kink-sector boundary by introducing sub-yield near-tip sector
and applying full stress continuity at the elastic—plastic sector
boundaries. He showed that the presence of such an elastic
sector can lower the stress triaxiality ahead of the crack tip.

5.2. Numerical simulations of mechanics of fracture of single
crystals

Cuitino and Ortiz [77] numerically studied three-dimensional
crack tip fields in copper single crystals loaded in a four-point
bending configuration. Their calculations were based on a
dislocation hardening model and showed notable differences
in the slip activity at the free surface and in the interior of the
specimen. Flouriot et al [78] carried out three-dimensional
finite element simulations of a compact tension specimen to
investigate the mode I crack tip fields in elastic-perfectly
plastic FCC single crystals of Ni-based superalloys. They
demonstrated the highly three-dimensional nature of plastic
strain fields and compared their numerical results against
experimental data. Patil er al [79] performed a combined
numerical and experimental study of crack tip fields in a single
edge notched (tensile) specimen (SENT) of an aluminium
single crystal. The analysis was conducted from contained
to large scale yielding conditions. They considered the
crack orientation analysed by Rice [71], but found much less
triaxiality and also a different near-tip distribution of plastic
slip in the above specimen as compared with that expected
on the basis of Rice’s solution. In particular, they noted that
two kink shear bands (involving lattice rotation) may form
at & = 90° and about 8 = 45° with respect to the notch
line which was confirmed from observations using electron
back scattered diffraction (EBSD) on the specimen surface.
These discrepancies suggested possible strong configuration
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dependence of the near-tip fields in ductile single crystals under
large scale yielding conditions, which was actually predicted
by Rice [71].

In order to understand the above issue, Patil et al [80]
recently studied the effect of crack tip constraint on stress
and plastic strain distributions in FCC single crystal, having
the orientation considered by Rice [71], under mode I, plane
strain conditions. They performed finite element simulations
by employing a two-parameter (stress intensity factor K and 7'-
stress) based modified boundary layer approach within crystal
plasticity framework (ignoring elastic anisotropy). They
generated solutions corresponding to different values of 7'/7,,
which indicates the level of crack tip constraint, with 7 /t, > 0
representing high constraint while 7/t, < 0 signifies low
constraint. The fringe contours of the maximum principal
logarithmic plastic strain, ln(kﬁ’), obtained by Patil et al [80]
for T/t, = 0 and —2 at K/(t,+/b,) = 80 are displayed in
figures 14(a) and (b), respectively. It can be observed from
these figures that the 7'-stress has a significant effect on the
plastic zone shape and size, which is akin to isotropic plastic
solids. The shape of the plastic zone is governed by the shear
bands that form due to plastic slip on various systems. For
T /7, = 0, distinct contributions from two slip shear bands at
angles of about 55° and 125° to the notch line, and a kink shear
band at an angle of 90° (as predicted by Rice [71]) to the plastic
zone shape can be perceived in figure 14(a). By contrast, the
predominant contribution to the plastic strain distribution for
T/t < 0 (see, figure 14(b)) comes from the slip shear band
inclined at an angle of 55° to the notch line.

The near-tip stress distribution is significantly affected by
the constraint level. The radial variations of the normalized
opening stress (022/7p) with normalized distance r/(J/t,)
ahead of the notch tip as given by Patil ef al [80] are displayed
in figure 15, corresponding to different levels of constraint. It
can be noted from the figure that negative T causes a significant
downward shift in the radial variation of o;, while positive T
tends to marginally increase the opening stress above the 7 = 0
case. Itis also evident from figure 15 that the curves pertaining
to different values of 7'/ 7, are roughly parallel to each other for
r/(J/tp) > 2. This suggests that the deviation of o, from the
T = 0 case is essentially independent of normalized distance,
r/(J /1), from the notch tip.

Figure 16 shows the trajectories of the stress state
encountered on traversing around the notch tip from 6 = 0
(line ahead of the notch tip) to & — m (notch flank) in
the stress plane. Results extracted at a normalized radial
distance of r/(J/1,) = 4 from the notch tip are presented
corresponding to 7/t, = 1, 0, —0.5, —0.85 and —1.5. It
can be observed that for 7/t, > 0 the trajectory in the stress
plane follows the yield locus ABCD, which is similar to that
given by the asymptotic solution of Rice [71]. Thus, the
stress state all around the crack tip is at yield for 7 /7, > 0.
However, as T /1y decreases, the stress state initially follows
the yield locus but later deviates and falls inside it which
implies the presence of an elastic sector in the near-tip region.
As already mentioned, Drugan [76] showed that the presence
of an elastic sector near the crack tip may reduce the stress
triaxiality. On imposition of further negative T -stress, a plastic
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Figure 14. Fringe contour plots of maximum principal logarithmic
plastic strain In A} in FCC single crystal corresponding to (a) T = 0
and (b) T = —21, and the same level of K /(t,+/b,) = 80
(reproduced with permission [88] from [80]).

sector develops adjacent to the notch flank and the stress
state prevailing in this plastic sector corresponds to vertex A.
Moreover, the point at which elastic unloading starts shifts
from vertex D and progressively approaches first vertex C and
then vertex B as 7'/t, changes from a high positive to a high
negative value. Itisimportant to emphasize that the trajectories
presented in figure 16 are different from those proposed by
Drugan [76]. In his asymptotic solution, the stress state in the
elastic sector is taken to vary along an arc commencing from
point B and ending at point D in figure 16. In other words,
it was assumed by Drugan [76] that the plastic sector at the
crack surface corresponds to vertex D, instead of vertex A as
suggested by figure 16.

In figure 17, angular variations of effective plastic slip,
y, for all three conjugate slip system pairs at r/(J/t,) = 4
reported by Patil ef al [80], corresponding to T /t, = 2,0, —1
and —2 are presented. Figure 17(a) shows that plastic slip on
the pair of conjugate systems (1 11)[110] and (111)[011]
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Figure 15. Radial variations of opening stress (02,/7p) at @ = 0° in
FCC single crystals, for 7/7y = 2, 0, —1 and —2 and the same level
of K /(tea/b,) = 80 (reproduced with permission [88] from [80]).
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Figure 16. Trajectories plotted in the stress plane of the state
encountered on traversing around the crack tip at r/(J/t,) = 4 in
FCC single crystal obtained from finite element analysis with
different 7'/ 7, values.

attains a peak value at about 6 =~ 55°, irrespective of the
level of T-stress. Thus, the slip activity on this pair of
systems results in a slip shear band. It can be observed from
figure 17(a) that the peak value of y enhances strongly with
increase in 7 '-stress in the negative direction. The effective
plastic slip on conjugate pair (111)[110] and (111)[011]
(figure 17(b)) shows a more interesting response to different
T -stress levels. For high positive T', the peak value of slip in
this system occurs at about & = 125° and hence leads to the
development of a dominant slip shear band at this angle. On
the other hand, for high negative T, the peak value is observed
at & = 35° to 45°, resulting in the development of a kink
shear band at this angle to the notch line. The slip activity on
the pair of systems (111)[101] and (11 1)[10 1], displayed
in figure 17(c), shows the peak occurring at about 6 ~ 90°,
irrespective of T -stress level and leads to a kink shear band at
this angle. This corroborates the recent EBSD results obtained
by Patil e al [81] on a high constraint three-point bend
specimen of an aluminium single crystal which has clearly
shown the existence of lattice misorientation bands at +90° to
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Figure 17. Angular variations of effective plastic slip y on all three
conjugate slip system pairs in FCC single crystal: (a) (11 1)[110]
and (11 DH[011],(B) (11 1)[110]and (111)[011] and
(e)@A1D[101]and (11 D[101]atr/(J/r) =4 for T/19 = 2,0,
—1 and —2 and same level of K /(z,+/b,) = 80 (reproduced with
permission [88] from [80]).

the notch line. Furthermore, as already mentioned, Patil et al
[79] have reported that two kink shear bands (involving lattice
rotation) form at 6 = 90° and about 6 = 45° with respect to
the notch line in a low constraint SENT specimen.
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Thus, the work of Patil er al [79-81] has shown that the
stress distribution near a crack tip in a ductile single crystal
will depend strongly on the constraint level with elastic sectors
present in low constraint geometries. Furthermore, the slip
activity in ductile single crystals is also profoundly influenced
by crack tip constraint resulting in possible fascinating
dependence of slip and kink shear band patterns near a crack
tip on the fracture configuration.

6. Concluding remarks

In this review, various facets associated with recent simulations
of 3D mixed mode elastic—plastic fields near a crack front,
mechanics of fracture of amorphous alloys and constraint
effects in single crystals, have been briefly highlighted. These
illustrate that numerical simulations aimed at delineating
crack tip fields have made considerable progress, particularly
because of the availability of powerful computational resources
as well as continuous development of efficient algorithms.
Further, formulation of increasingly precise constitutive laws
for describing the response of both conventional as well
as new materials also enables detailed assessment of their
fracture behaviour. Due to these advances, it is now
possible to apply fracture mechanics concepts in a variety
of situations of engineering importance.  Nevertheless,
considerable amount of work still needs to be performed.
These include characterization of crack tip fields in cellular
materials, wherein the characteristic microstructural length
scale is in millimetres, and shape memory alloys, where, in
addition to plasticity, transformation induced strains can also
accrue ahead of a crack tip [82]. Furthermore, polycrystal
plasticity simulations [83] of crack tip fields are important
because they can account for evolution of texture near the
tip and also incorporate effects such as dislocation based
hardening mechanisms and grain size. These effects cannot
be captured using phenomenological anisotropic plasticity
theories such as that due to Hill [29].

It must be emphasized that simulations cannot predict
the fracture resistance of a given material per se unless
failure criteria based on physical mechanisms are explicitly
introduced into the simulations (see, for example, [26, 84]).
The latter make detailed experimental characterization
indispensable. Indeed, advances in experimental methods such
as crack tip strain field mapping using digital image correlation
(DIC), optical methods such as interferometry and caustics,
tomography using synchrotron radiation and microscopy
techniques such as EBSD have made such characterization
possible [53,82,81]. Simultaneously, efforts are being made
to link the continuum descriptions of a solid with atomistic
aspects through molecular dynamics and discrete dislocation
plasticity simulations. However, bridging the length scales in
a seamless fashion and yet without the loss of fidelity of the
simulations remains a challenge to be addressed.
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