
International Journal of Fracture 81: 321-341, 1996. 
@ 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

321 

A finite element analysis of plane strain dynamic crack growth 

at a ductile-brittle interface 

KALLOL DAS* and R. NARASIMHAN** 
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India 

Received 12 March 1996; accepted in revised form 20 September 1996 

Abstract. In this work, steady, dynamic crack growth under plane strain, small-scale yielding conditions along a 
ductile-brittle interface is analysed using a finite element procedure. The ductile solid is taken to obey the J2 flow 
theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic 
behaviour. The objectives of this work are to establish the validity of an asymptotic solution for this problem 
which has been derived recently [12], and to examine the effect of changing the remote (elastic) mode-mixity 
on the near-tip fields. Also, the influence of crack speed on the stress fieMs and crack opening profiles near the 
propagating interface crack tip is assessed for various bi-material combinations. Finally, theoretical predictions are 
made for the variation of the dynamic fracture toughness with crack speed for crack growth under a predominantly 
tensile mode along ductile-brittle interfaces. Attention is focused on the effect of mismatch in stiffness and density 
of the constituent phases on the above aspects. 

1. Introduction 

In recent years, there has been an increase in the technological application of multiphase 
components like electronic packaging, thin films and protective coatings. These components 
fail, most commonly, by debonding of the constituent phases along the interfaces. In recent 
experimental studies (see, for example [1]), crack speeds far higher than those attainable in 
homogeneous solids have been observed during crack propagation along interfaces. Hence, it 
is important to understand the mechanics of dynamic crack propagation along a ductile-brittle 
interface. 

Castafieda and Mataga [2] and Drugan [3] derived the asymptotic fields for quasi-static 
crack growth at a ductile-brittle interface. Castafieda and Mataga [2] assumed the ductile 
phase to exhibit linear strain hardening or perfect plasticity, and the brittle phase to be linear 
elastic or rigid. For all the above cases, they obtained two asymptotic solutions for interracial 
crack growth with distinct values of near-tip mode-mixity, m = 2/7r tan -1 (~22/a12), where 
a22/~12 is the ratio of the normal to shear traction on the interface line just ahead of the tip. 
One solution resembled the Mode I field in homogeneous elastic-plastic solids with m close 
to unity, and was called a tensile solution. The other solution resembled the Mode II field 
in homogeneous elastic-plastic solids with m close to zero and was called a shear solution. 
Drugan [3], while considering the perfectly plastic model for the ductile phase and a rigid 
substrate, found a family of asymptotic fields that exhibits a range of values for the near-tip 
mode-mixity m. This was made possible by permitting physically acceptable discontinuities 
in the near-tip velocity fields. 

Several investigators [4-6] have obtained analytical asymptotic solutions for dynamic 
crack growth in homogeneous elastic-plastic solids. Also, many finite element studies (see, for 
example, [7, 8]) have been conducted to validate these asymptotic solutions and to investigate 
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the effect of inertia in enhancing the resistance of an elastic-plastic material to high speed 
crack growth. Dynamic crack growth along an interface between two dissimilar elastic solids 
with arbitrary anisotropy was sudied by Yang et al. [9]. Deng [10] has proposed some families 
of asymptotic fields for plane strain dynamic crack growth at the interface between an elastic- 
ideally plastic solid and a rigid substrate, as well as between two dissimilar elastic-ideally 
plastic solids. 

In some very recent studies, Ranjith and Narasimhan [11, 12] derived the asymptotic fields 
for dynamic crack growth at the interface between a linear hardening ductile phase and a brittle 
substrate under anti-plane strain and plane strain conditions. They assumed variable-separable 
solutions for the stress and velocity components in the form, 

crij = Acr~l)~ij (O)r s, (1) 

= (2) 

where r, 0 are polar coordinates centered at the crack tip. In the above equation, A denotes 
an amplitude factor (which is undetermined from the asymptotic analysis), s a singularity 

exponent, V the crack speed, ~r(01) and c(01) the initial yield stress and strain of the ductile 
phase. They found two solutions (a tensile-type and a shear-type) for each crack speed and 
strain hardening level of the ductile phase in the analysis of the plane strain problem [12]. 
As in the quasi-static case [2], the above two solutions are characterized by distinct near-tip 
mixities m close to unity and zero. 

However, Ranjith and Narasimhan [12] were able to obtain variable-separable solutions 
only between a lower and upper bound of the strain hardening level of the ductile phase for 
each crack speed. As the strain hardening level approaches the upper bound (at a given crack 
speed), the tensile and shear solutions were found to approach each other and to coalesce 
to the same field. However, when the two phases have identical elastic properties, no such 
phenomenon of coalescence was observed. The analytical, asymptotic solution of Ranjith and 
Narasimhan [12] has several drawbacks. First, a variable-separable form is assumed with a 
power law singularity in the radial coordinate as given in eqs. (1) and (2). Secondly, even if the 
above singular solution is valid, its range of dominance near the crack tip is unknown. Finally, 
considering small-scale yielding conditions, the range of remote (elastic) mode-mixities which 
results in a near-tip tensile or shear field has to be investigated. The last two issues noted above 
are expected to depend on the bi-material properties such as stiffness or density ratio of the 
two phases and strain hardening of the ductile phase, as well as crack speed. 

Thus, the objective of the present work is to perform full-field finite element simulations 
of steady dynamic crack growth under plane strain, small-scale yielding conditions along the 
interface between a linear hardening elastic-plastic solid and a brittle solid. The simulations 
will be carried out for different remote (elastic) mode-mixities, different bi-material combi- 
nations and various crack speeds. The finite element results will be used to address the issues 
noted above in connection with the asymptotic analysis of Ranjith and Narasimhan [ 12]. Also, 
the effect of crack speed on the near-tip stress fields, crack profiles and plastic zones will 
be examined for different bi-material combinations. Finally, theoretical predictions for the 
variation of dynamic fracture toughness with crack speed for interface crack growth under a 
predominantly tensile mode will be made from the finite element results. The effect of the 
strain hardening level of the ductile phase and mismatch in elastic stiffness of the two solids 
on the above relationship will be studied. 
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2. Numerical procedure 

2.1. FINITE ELEMENT FORMULATION 

The finite element formulation employed in the present investigation to simulate steady 
dynamic crack growth under plane strain, small-scale yielding conditions is based on moving 
crack tip coordinates and is similar to the one used in [7]. Only a brief review is given in this 
paper. 

A semi-infinite crack which has grown along the interface between a ductile phase (referred 
to below as material #1) and a brittle material (designated here as material #2) at a speed V for 
a long enough time is considered, so that all transients associated with crack initiation have 
died out. A steady mechanical state is then established with respect to the moving crack tip. 
Further, small-scale yielding conditions are assumed such that the zone of plastic deformation 
in the ductile phase is contained in a small region near the crack tip and the elastodynamic 
K-field [9] holds good at points far away from the crack tip. The following normalizations 
are used for the crack tip coordinates (xl, xe), displacements ui, stresses aij,  strains eij and 
velocities vi: 

2g = xi/(IKIl  ')) 2 

ui = uil(IKlZlE(1)a~ l)) 

~ij = ~i j /~ l) (3) 

~ij ---- (Tij/O'~ 1) 

=  j(W(o 

In the above equation, a(0 I) is the initial yield stress of the ductile material, c~ 1) = cr~ |)//~(I) is 

its initial yield strain and E (|) its Young's modulus. Also, 1KI is the magnitude of the remote 
dynamic stress intensity factor which is a complex quantity for interface crack growth [9]. 
Here, the plane x2 = 0 corresponds to the interface and the crack grows in the positive x |  

direction. Finally,/3 = V / C  (l) denotes a normalized crack speed, where C (1) = ~/E(l)/p(1) 

is the elastic bar wave speed and p(|) the density of the ductile phase. In this work, the 
steady-state condition ( ' )  = O( )lOt = -VO(  )/OXl is invoked to simplify the governing 
equations. 

On utilizing the above normalization in the equations of motion, and applying the virtual 
work principle, the following finite element equation may be obtained [7] 

K U  = F + R_, (4) 

where U is the vector of nodal point displacements. The stiffness matrix K and the force 
vectors F__ and __R in the above equations are defined as 

K =  ; B T C B d V - / 3 2  f ~ ONT ON d (5) 

(6) 
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R = L BT6*& dV. (7) 

In the above equation, ~ is the normalized traction vector acting on the portion ST of the 
boundary (of domain V) whose outward normal is n_n_. Further, ___G denotes the elasticity tensor 
normalized by the Young's modulus E0) of the ductile phase and fi is the density normalized 
by p0). Thus, fi = 1 when a material point lies in the ductile phase and ~ = p(2)/pO) if it lies 
in the elastic substrate. For the ductile phase, an additive decomposition of the total strains 
into elastic and plastic parts (~ = U + ~ )  is assumed here. Also, N and/3 are the shape 
function matrix and strain-displacement matrix, respectively• It is noted that the solutions are 
carried out under 2-D plane strain conditions. 

In this paper, the brittle material (material #2) is assumed to obey linear isotropic elasticity. 
The ductile phase (material #1) on the other side of the interface is taken to obey the d2 flow 
theory of plasticity with linear isotropic strain hardening. The initial yield stress of this phase 

is denoted as a~ 1) and its tangent modulus as E~ 1) . In presenting the results in the next section, 

a hardening parameter a = E} l) /E (1) will be used. 

2.2. COMPUTATIONAL ASPECTS 

The dominant term in the stress and displacement fields near a dynamically propagating crack 
tip at the interface between two dissimilar linear elastic materials is scaled be a complex stress 
intensity factor K [9]. These fields are expressed in polar coordinates (r, 0) with the origin at 
the crack tip in the following form [9, 13]: 

Tee{ Kri  } -1 Zm { Kri¢ } -2 . 

(8) 

~ e { K r  iE} 2/ ;1 Zrn { Kr i~ } 
• • v). 

7 7 V ~ - 

(9) 

Here, 3~)  and z~ a) denote dimensionless angular functions of stress and displacements and 
# is the shear modulus of the appropriate material. The bi-material constant e is a function of 
the elastic properties of the two materials and the crack speed V. The above angular functions 
and e are given in [9, 13]. 

It is clear from (8) that the tension and shear effects are inseparable near an interface crack 
tip. A measure of the relative proportion of shear to normal tractions on the interface requires 
the specification of a length quantity. Thus the mode-mixity ~b is specified by 

al2(L, O) Zm{KLie} -- tan(~bo + e In L), (10) 
tan ~b -- a22 (L, 0) TZe(KL ie ) 

where ~b0 = tan -I  (Zm{K} /Re{K})  is the phase of K. The length L is arbitrary. The 
difference in ~b due to changing L from L1 to L2 is given by 

~ 2  -- ~1  = eln(L2/L1). (11) 

In the present small-scale yielding formulation, (8), (9) after normalizing according to (3), 
are applied as boundary conditions on the outermost boundary of a large circular domain with 
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~U 

Figure I. A coarse representation of the finite element mesh. 

radius L. The domain modelled along with a coarse representation of the finite element mesh 
is shown in Figure 1. In this figure, the interface is located along :~2 = 0 and the crack line 
along (~2 = 0, ~t < 0). The upper half (i.e., ~2 > 0) denotes the ductile phase (material #1), 

and the lower half (i.e., z2 < 0) the brittle phase. Since (IKI/~I)) 2 is the only relevant length 
parameter in the small-scale yielding formulation, all mesh dimensions are normalized by it 
(see also (3)). 

Displacement boundary conditions based on the elastic field (9) are specified on the portion 
S,, of the outer boundary which is a circular arc of normalized radius L = 5 centered at the 
crack tip. It will be found in Section 3 that the maximum plastic zone size obtained in 

any computation performed here is within 0.8(IKl/cr~l)) 2. Thus, • is more than six times 
the (normalized) size of the active plastic zone, which ensures that small-scale yielding 
conditions prevail. The computations reported here are carried out for different values of ~b 
and normalized crack speed 3 corresponding to various bi-material combinations. For all the 
bi-material combinations the Poisson's ratio is assumed as v0) = v(2) = 0.3. It must be 
noted that the value of ~b given according to (10) depends on the above chosen value of L 

(i.e., 5(IKl/~r~l))2), except for the bi-material with EO)/E (2) = 1, pO)/p(2) = 1 which has 
c - 0. If an alternate length scale is desired to be used in defining %b, then its value must be 
appropriately modified according to eq. (11). Traction boundary conditions based on (9) are 
prescribed on the portion ST of the boundary in Figure 1. 

An important aspect in the numerical formulation of elastic-plastic problems is the algo- 
rithm used for updating internal variables, plastic strains and stresses. In the present steady- 
state formulation, these quantities at a certain material point (~'t, ~2) are obtained by integrating 
the rate constitutive equations from the elastic-plastic boundary in the negative ~1 direction, 
along a line holding ~'2 constant. The stress update algorithm used here is the Tangential 
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Figure 2. Active plastic zones surrounding the crack tip propagating with normalized veloci ty/~ --  0.001 for the 

bi-material with E O ) / E  (2) = 1, p(t)/p(2) = 1, oL = 0.05. 

Predictor - Radial Return method with subincrementation [14]. In order to facilitate the 
above integration, a rectangular portion ABCD consisting of rectangular elements aligned 
parallel to the interface line is used as shown in Figure 1 such that all plastic deformation 
including the wake region is always contained within it. It is noted that it is inappropriate to 
specify the elastodynamic K-field as boundary condition on the portion of the downstream 
(left) boundary which coincides with the wake region (portion ST in Figure 1). However, it 
is felt that its effect may be only negligible as far as the near-tip fields are concerned. This is 
because, as will be seen in Section 3, the vertical height of the wake region is quite small (of 

the order of 0.2 to 0.3 
As shown in the coarse mesh of Figure 1, four-noded isoparametric quadrilateral ele- 

ments are employed. A mesh consisting of 2238 elements and 2348 nodes was used in 
the computations. The mesh is graded near the tip with the smallest element size equal to 
2 x 10-6([KI/a(00) 2, which is very much smaller than the plastic zone size. Thus, the near- 
tip fields are expected to be resolved quite accurately by this mesh, as will be confirmed in 
Section 3 when comparisons are made with the analytical solution [12]. 

The force vector __R in (4) involves the plastic strain ~ (see(7)) which is unknown apriori. 
Hence, an iterative procedure described in [15] is used to solve (4). The B-Bar  method 
proposed by Hughes [ 16] is employed to treat nearly incompressible deformation under plane 
strain condition, which would otherwise result in an over-stiff response in the finite element 

grid. 

3. R e s u l t s  a n d  d i s c u s s i o n  

3.1. PLASTIC ZONES 

The active plastic zones corresponding to different far-field mixities ~b for the bi-material 
with E(I)/I?, (2) = 1,P(I)/P (2) = 1 ,a  = 0.05 at crack speed/3 = 0.001 in normalized 
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Figure 3. Active plastic zones surrounding the crack tip propagating with normalized velocity 3 = 0.001 for the 
bi-material with E(I)/E (2) = 0.2, pO)/p(2) = 1, cz = 0.05. 

crack tip coordinates "~l, 22 are shown in Figure 2. It can be seen from this figure that the 

plastic zone ahead of the crack tip increases from about 0.035(IKI/cr~l)) 2 to 0.7(IKI/a~l)) 2 
as ~b increases from 0 ° to 90 °. The height of the plastic zone above the interface increases 

from 0.15(IKI/  t)) = to 0.3(IKI/  l)) 2 as ¢ increases from 0 ° to 60 °, but decreases to 

0.2(IKI/t7~l)) 2 at ~b = 90 °. Further, for ~b in the range from 0 ° to 60 °, a secondary plastic 
reloading zone adjacent to the crack line is present. The height of this secondary plastic zone 
decreases with an increase in ~b from 0 ° to 60 °. Interestingly, a tiny tail-like trailing portion is 
present at an angle of about 130 ° with respect to the crack tip for ~b = 90 °. 

The results at high crack speed for this bi-material showed that the size of the plastic zone 
ahead of the crack tip is not affected to any appreciable extent. But the effect of crack speed 
is manifested by an increase in the height of the plastic zone by about 30%, as well as the 
height of the secondary plastic region for the cases ~b = 0 ° and 30 °. Further, the length of the 
trailing tail-like portion for ~b = 90 ° increases significantly in length as/3 increases. 

The plastic zones for the bi-material with E ( I ) / E  (2) = 0.2 and p(1)/p(2) = 1 at a crack 
speed of/5 -- 0.001 are shown in Figure 3. In interpreting the plastic zones in this figure, it 

must be noted that the values of ~b are based on a length scale L -- 5 (] K I/cr~ l) ) 2 (see Figure 1). 
On comparing it with Figure 2, it can be seen that the size of the plastic zone corresponding 
to the case ~b = 0 ° for the bi-material with EO)/E (2) = 0.2 is significantly larger in front 
of the crack tip. This feature may also be observed in the stationary interface crack results of 
Shih and Asaro [17] for the case of a rigid substrate. The overall size of the plastic zones for 
~b -- 30 ° and 60 ° is smaller in Figure 3 as compared to Figure 2. But the plastic zone boundary 
corresponding to ~b = 90 ° is larger ahead of the tip for E(1) /E  (2) = 0.2. However, the trailing 
tail-like portion for ~b = 90 ° is absent corresponding to the bi-material with E (1)/E(2) = 0.2. 
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Figure 4. Variation of the mode-mixity parameter m with radial distance ahead of the crack tip for various values of 
remote ~b at/3 = 0.25. The material parameters are EO) /E  (2) = 1, p(O/p(2) = 1, a = 0.25. The corresponding 
asymptotic mode-mixities obtained from the analytical tensile and shear solutions are also indicated by m t and 
m ' ,  respectively. 

3.2.  EFFECT OF FAR-FIELD MIXITY ON NEAR-TIP MIXITY 

The effect of  far-field (elastic) mode-mixity ~b on the near-tip mixity will be examined in this 
section. To this end, the variations of the mode-mixity parameter m(~') = (2/7r) tan-1 (or00 (~', 
O)/aro(~, 0)) with log ~ for different far-field mixities ~b at crack speed/3 = 0.25 for the bi- 
material with E O ) / E  (2) = 1, p(1)/p(2) = 1, c~ = 0.25 are shown in Figure 4. At a sufficiently 
large distance from the crack tip, where the elastodynamic K-field prevails, re(F) in this 
figure approaches the value determined by the prescribed ~b (in degrees), which is given by 
m = 1 - ~b/90 °. It can be seen from Figure 4 that as the crack tip is approached, m tends 
to a definite limit of  around 1.1 for ~b = 0 ° and 30 °. This limiting value is close to that 
corresponding to the asymptotic tensile solution of [12] which is indicated as m t in the figure. 
On the other hand, m approaches a limit of around -0 .1  near the crack tip for ~b = 90 °. This 
value is close to that obtained from the asymptotic shear solution [12] which is marked as m s 
in the figure. For the case ~b = 60 °, m(~) increases monotonically as ~" --+ 0 and appears to be 
approaching the limit set by the asymptotic tensile solution. It is clear that for this bi-material, 
a transition in the character of the near-tip solution from a tensile to a shear-type field occurs 
between ~b = 60 ° and 90 °. 

The variations of re(F) with log ~" for the bi-material with E(I)/E(2) = 0.2, p(l)/p(2) = 
1, a = 0.25 at crack speed/3 = 0.001 corresponding to different remote mixities ~b are 
displayed in Figure 5. Since the asymptotic solution of [12] at high crack speed is not available 
for this bi-material, results are presented for the quasi-static case. The nature of the curves 
in this figure are quite different from those shown in Figure 4 for the case E ( O / E  (2) = 1. 
First, an asymptotic limit for m (of around 1.2) is attained at a much larger distance from 
the tip (in the range of ~" = 10 -3 to 10 - t )  for q) ranging from 0 ° to 60 ° in Figure 5. This 
asymptotic limit is close to that predicted by the tensile analytical solution [12], which is 
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Figure 5. Variation of the mode-mixity parameter m with radial distance ahead of the crack tip for various 
values of remote ~b at/3 = 0.001. The material parameters a r e  j ~ ( l ) / / ~ ( 2 )  = 0.2, p(l)/p(2) = 1, c~ = 0.25. The 
corresponding asymptotic mode-mixities obtained from the analytical tensile and shear solutions are also indicated 
by m t and m 8, respectively. 

shown by m t in the figure. Secondly, unlike in Figure 4, m(~) for the case ~b = 90 °, increases 
monotonically as ~" --+ 0 and appears to be approaching the same asymptotic limit attained 
by the curves corresponding to ~b = 0 ° to 60 °. On the other hand, it is found that the curves 
pertaining to ~b = 120 ° and 135 ° (which correspond to cases where the remote normal stress 
on the interface line is compressive) approach near-tip value of rn which are negative. In 
particular, the near-tip value of m obtained for ~b = 135 ° in Figure 5 is close to that predicted 
by the analytical shear solution which is marked as ms. Bose and Castafieda [18] who also 
investigated this issue, did not examine the cases with remote ~b > 90 °, and concluded that a 
shear near-tip field is not attained for quasi-static crack growth at a bi-material interface with 
a rigid substrate. The finite element results displayed in Figures 4 and 5 were not affected 
significantly by crack speed. 

3.3. VALIDATION OF ASYMPTOTIC SOLUTIONS 

It must be recalled that the asymptotic solutions of [12] involve two key assumptions. First, 
the dominant term of the stress and velocity components are assumed to be variable-separable 
in polar coordinates r, 0 centered at the crack tip. Secondly, a power singularity (of the type 
r s) in the radial variation of the dominant term is assumed. In this section, the validity of the 
above assumptions is examined, and the range of dominance of the asymptotic solutions is 
investigated by comparing them with the results of the full-field finite element analyses. 

First, the radial dependence of the near-tip stress field is examined. The variation of In (~00) 
with ln(~) along 0 = 0 ° and 45 ° with respect to the crack tip, obtained from the finite element 
solutions corresponding to ~b = 0 ° at/3 = 0.001, are shown in Figure 6 for the bi-material 
combination withE(1) /E (2) = 1, p(1)/p(2) = 1, a = 0.25. It should be recalled that the 
near-tip mixity is close to that predicted by the tensile solution for ~b = 0 °. The radial variation 
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Figure 6. Logarithmic plot of the radial variation of ~00 at two different angles for the bi-material with E ( ' ) / E  (2) = 
1, p(l)/p(2) = 1, ct = 0.25 at ~b = 0 °,/3 = 0.001. The solid straight lines correspond to best fits having slopes 
equal to the singularity strengths of the corresponding analytical tensile solutions. 

along the 45 ° line is extracted after performing a post-process smoothening procedure [19]. 
It must be noted first that the variation of 900 along 0 = 0 ° and 45 ° in this plot are virtually 
indistinguishable. Further, the finite element results show that the tangential stress 900 varies 
linearly in log-log coordinates with distance near the crack tip. Hence, straight line fits were 
made to the finite element results for the variation of In(900) with ln(~'), from which the 
near-tip singularity exponents, as predicted by the finite element procedure along 0 = 0 ° and 
45 °, were obtained as the slope. These will be denoted below as s t and s 2, respectively. 

Next, straight line fits with slope equal to the singularity order s* corresponding to the 
asymptotic tensile solution of [12] were made to the same finite element data points. The 
amplitude factor A in eq. (1) was determined from this straight line fit along 0 = 0 ° since 
~00(0 --- 0 °) is assumed as unity in the asymptotic tensile solution derived in [12]. The 
normalized distance ~1 and ~ along 0 = 0 ° and 45 °, respectively, from the crack tip, where 
the difference between the points obtained from the numerical solution and the above fitted 
straight lines exceeds an allowable deviation (say, 5%) is taken as a measure of the range of 
dominance of the tensile solution. In a similar manner, the singularity strength and range of 
dominance of the shear solution are determined, using the radial variation of~rrO corresponding 
to the remote ~b which gives rise to a near-tip mixity close to that predicted by the analytical 
shear solution. Here, 9r0 is used instead of 900, since 9r0 plays the dominant role in the 
shear-type solution. 

The values of s t, s 2, ~-I and F2, thus extracted from the finite element results for the case 
~b = 0 ° corresponding to the bi-material with E(1) /E (2) = 1, p(])/p(2) = 1, are summarized 
along with the singularities s* of the analytical tensile solution [12] in Table 1. Results are 
presented in this table corresponding to different a values and different crack speeds ~. It can 
be seen from this table that the finite element results for the singularity exponents match quite 
well the analytical values s* irrespective of a and/L Further, the strength of the singularity Isl 
for the tensile field decreases as the strain hardening parameter a decreases at a given crack 
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Table 1. Singularity exponent s obtained from finite element analysis with ~b = 0 ° and the corresponding analytical 
tensile results, as well as the range of dominance ~D of the tensile solution obtained from the radial variation of 
aoo component of stress. Superscripts 1 and 2 of s and fD denote the corresponding values estimated along 0 = 0 ° 
and 45 ° , respectively. The analytically obtained s is shown by s*. Non-availability of analytical solution is pointed 
out by N.A. The material parameters are E(O/E (z) = 1, pO)/p(2) = 1. 

a 0.001 0.15 0.20 0.25 

s ÷D s ÷m S ÷D S ~D 

s* -0.4415 -0.4351 -0.4289 
0.40 s I & ÷]9 -0.4351 0.0206 -0.4294 0 .0175 -0.4165 

s 2 & ~ -0.4569 0 .0038 -0.4517 0 .0037 -0.4468 

s* -0.4151 -0.4048 -0.3940 
0.30 s I & ~ -0.4041 0.0194 -0.3930 0 .0167 -0.3834 

s 2 & ~ -0.4218 0 .0045 -0.4100 0 .0043 -0.4019 

s* -0.3693 -0.3499 -0.3270 
0.20 s t & ÷~ -0.3558 0.0174 -0.3341 0 .0147  -0.3134 

s z & ÷2 -0.3680 0.0061 -0.3450 0 .0055 -0.3238 

s* -0.2696 -0.2064 
0.10 s I & ÷]9 -0.2695 0 .0109  -0.2049 0.0020 N.A. 

s 2 & ~ -0.2702 0 .0063 -0.1899 0.0016 

s* -0.1889 
0.05 s l& ÷]9 -0.1814 0.0068 N.A. N.A. 

s2 & ~2 -0.1888 0.0003 

-0.4181 
0.0173 -0.4076 
0.0038 -0.4352 

-0.3747 
0.0144 -0.3664 
0.0043 -0.3830 

0.0116 N.A. 
0.0052 

N.A. 

N.A. 

0.0131 
0.0027 

0.0111 
0.0038 

speed/3 ,  and also a s /3  increases at a fixed a .  The latter effect is more  pronounced at low 

values of  a .  
Table 2 contains similar results obtained f rom the finite e lement  solution corresponding to 

%b = 90 ° for  the same bi-material  along with s* predicted by the analytical shear solution. As 
in Table 1, the agreement  between the values s 1 and s 2 determined f rom the finite e lement  
solution at 0 = 0 ° and 45 ° with the analytical results s* is good, except  perhaps at low values 

of  c~. It can be observed f rom Table 2 that [s[ decreases with a decrease in a at a fixed/3. But  

the effect  o f  increase in crack speed/3 at a fixed a on s is negligible in contrast  to the tensile 

solution of  Table 1. On compar ing  Tables 1 and 2, it can be noticed that at a given crack speed, 

]s] for the tensile solution is higher than that o f  shear solution for high values of  a ,  whereas  

the reverse holds at a low a .  Further, the above cross-over  of  Is] o f  the tensile and shear fields 
happens  at a higher a as crack speed increases. 

Table 3 summar izes  the s and rD values extracted f rom the finite e lement  results for %b = 0 ° 
corresponding to the bi-material  combinat ion with E O ) / E  (2) = 0.2 and p(t)/p(2) = 1. The 

singularity exponent  s* determined f rom the corresponding analytical tensile solution is also 
presented. Only limited data is given in this table, since it is possible to obtain the analytical 
tensile solution only for a very limited range of  a between a lower and an upper  bound for 
a given crack speed/3  (see [12]). It can be seen f rom this table that the trend of  variation of  
s with a and /3  is similar to the case with E(1) /E (2) = 1 presented in Table 1. Further, a 
compar i son  of  Tables 1 and 3 reveals that the strength of  singularity is less when the substrate 
is stiffer irrespective of  a and/3. 
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Table 2. Singularity exponent s obtained from finite element analysis with ~b = 90 ° and the corresponding analy- 
tical shear results, as well as the range of dominance ~o of the shear solution obtained from the radial variation 
of (r,0 component of stress. Notations are some as in Table 1. The material parameter are E (1)/E(2) = 1, p(l)/ 
p(2) ---- 1. 

a 0.001 0.15 0.20 0.25 

s ~D S ~D S ~D S fD 

s* -0 .4298 -0.4297 -0 .4296 -0.4295 

0.40 s~& f l  -0 .4210 0.0648 -0.4203 0.0759 -0.4195 0.0725 -0 .4187 0.0882 

s 2 & ~ -0 .4306 0.0027 -0.4311 0.0027 -0.4315 0.0027 -0 .4324 0.0026 

s* -0 .4028 -0.4025 -0 .4022 -0 .4018 

0.30 sl & ÷]9 -0 .3944 0.0562 -0 .3932 0.0808 -0.3921 0.0833 -0.3911 0.0667 

s 2 & ~ -0 .4018 0.0029 -0 .4026 0.0028 -0.4033 0.0027 -0 .4048 0.0026 

s* -0 .3620 -0.3611 -0.3603 -0 .3592 

0.20 s I & ÷]9 -0.3601 0.0387 -0 .3518 0.0990 -0.3501 0.0670 -0 .3486 0.0637 

s2& ÷2 -0.3561 0.0011 -0 .3566 0.0010 -0 .3582 0.0027 -0.3615 0.0027 

s* -0 .2867 -0.2871 -0.2848 -0 .2812 

0.10 s j & ~ -0 .2900 0.0116 -0 .2857 0.0228 -0 .2819 0.0371 -0.2781 0.0624 

s 2 & ~ )  -0 .2630 0.0001 -0.2655 0.0004 -0 .2687 0.0000 -0 .2760 0.0000 

s* -0 .2227 -0 .2174 -0.2121 

0.05 s I & ~ -0 .2259 0.0071 -0.2183 0.0076 -0 .2126 0.0078 N.A. 

sz& ~2 -0 .1629 0.0000 -0 .1670 0.0000 -0.1765 0.0000 

Table 3. Singularity exponent s obtained from finite element analy- 
sis with ~b = 0 ° and the corresponding analytical tensile results, 
as well as the range of dominance ~D of the tensile solution 
obtained from the radial variation of (roe component of stress. 
Notations are the same as in Table 1. The material parameters are 
E(1)/E (2) = 0.2, pO)/p(2) = 1. 

f~ 

a 0.001 0.15 

s ~D s ~D 

s* -0 .3710 

0.30 s I & r]9 -0.3625 0.0070 

s* -0.3291 
0.20 s I & ~ -0 .3232 0.0067 

s* -0 .2236 
0.10 s I & ~1 -0.2281 0.0058 

s* -0 .1536 

0.05 s I & ~D --0.1557 0.0036 

N.A. 

-0 .3073 

-0.2931 

-0 .1927 

-0 .1752 

N.A. 

0.0024 

0.0015 
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Figure 7. Compar ison  o f  angular variation of  stress and velocity components  at fl = 0.15 obtained from finite 
e lement  analysis at ~" = 10 -4  for ~b = 0 ° and the corresponding analytical tensile solution. The material parameters  
are E(J)/E (2) = 0.2, p(l)/p(2) = 1, ct = 0.20. 

Next, the range of dominance Fb and F2 of the asymptotic solutions along 0 = 0 ° and 45 °, 
respectively (based on ~00 and fir0 stress), are examined. It must be mentioned at the outset 
that attention is focused here only on the physically most relevant stress component, viz., tr00 
for the tensile-type field and tYrO for the shear-type field. In interpreting the results for ~D, 

it must be recalled that the maximum plastic zone extent is between 0.2 and 0.8([KI/a~])) 2. 
From Tables 1 and 2 it can be seen that the range of dominance at 0 = 45 ° is smaller than 
that directly ahead of the crack tip. In Table 1, Fb is found to decrease monotonically with a 
decrease in a at a fixed crack speed fl and also with an increase in fl at a fixed a. A comparative 
study of the Tables 1 and 2 shows that ?b for the shear field is larger than the tensile field at any 
given a and/~. Further, on comparing Tables 1 and 3 it is found that the range of dominance 
of the tensile solution is less for the bi-material with a stiffer substrate. 

In addition to the singularity strength, the finite element results for the near-tip angular 
variation of the stress and velocity components are compared with the analytical results in order 
to establish their validity. Attention is restricted only to the variation of the field variables in the 
ductile phase. Since the finite element results are computed at the integration stations which are 
arranged in a rectangular grid near the crack tip, a post-process smoothening procedure [ 19] 
was adopted for obtaining the angular variation of stresses and velocities on a semi-circular 
contour around the crack tip. The radius of the above near-tip semi-circular countour was 

chosen as 10-4([Kl/cr (])) 2 which is of the order of 1/10000 of the plastic zone size. In Figure 7, 
the angular variations of the normalized cartesian stress components ~ij and th ~2 velocity 
component obtained from the finite element results along the above-mentioned semi-circular 
countour are presented for the bi-material with E(l)/l?, (2) = 0.2, p(1)/p(2) = 1, a = 0.2 
corresponding to ~b = 0 ° and crack speed fl = 0.15. Also shown in this figure are the 
variations based on the analytical tensile solution [12]. In plotting the analytical solution, eqs. 
(1) and (2) are employed along with the value of the amplitude factor A which is determined 
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Figure 8. Compar ison  o f  angular variation of  stress and velocity components  at 3 --- 0.2 obtained f rom finite e lement  
analysis at ~" = 10 -4  for ~b = 90 ° and the corresponding analytical shear  solution. The material parameters  are 
E(1 ) /E  (2) = 1,p(~)/p (2) = 1,c~ = 0.25. 

as explained earlier in this section. A similar comparison between the analytical shear solution 
and the finite element results for the bi-material with E(1)/E (2) = 1, p(l)/p(2) = 1, a = 0.25 
is presented in Figure 8. The crack speed/~ = 0.2 and the value of ~b used to generate the 
finite element results is 90 ° . It can be seen from these figures that the finite element results for 
the all-around angular stress and velocity distributions agree well with the asymptotic fields. 
The above comparisons of the singularity orders and the near-tip angular stress and velocity 
distributions show that the asymptotic soluion [12] is valid near the crack tip. 

3.4. N E A R - T I P  STRESS DISTRIBUTION AND CRACK OPENING PROFILES 

It is important to understand the influence of crack speed on the near-tip angular variation 
of stress components for various bi-materials. Also, the effect of changing the stiffness and 
density ratio of the bi-material on the angular stress variation at a fixed crack speed should 

be assessed. In Figures 9-11, the near-tip angular variation (at a radius r = 10-4(IKI/a0(t)) 2) 
of the normalized stress components obtained from finite element analysis corresponding to 
~b = 0 ° are shown for three different bi-material combinations with the same strain hardening 
level a --- 0.25. Results are displayed for crack speeds fl = 0.001 and 0.25 in these figures. 

Figure 9 shows the effect of crack speed for the bi-material with E 0 ) / E  (2) = 1, p(1)/p(2) = 
1. The most noticeable effect of crack speed is in decreasing ~u  and ~22 and, hence, the triaxial 
stress ~kk/3, in the region ahead of the crack tip. The reduction in the opening stress ~22 and 
the hydrostatic stress ahead of the crack tip with an increase in crack speed is mainly due to 
material inertia operating inside the crack tip plastic zone of the ductile phase. Further, it must 
be noted from Figure 9 that the upward turn in ~t I occurs closer to the crack flank (0 --+ 180 °) 
at a higher crack speed. However, crack speed does not significantly affect the ~12 component 
of stress all around the crack tip. 



Plane strain dynamic crack growth 335 

4 0  

3 0  

2O 

& 

ol j  1 0  

0 -  

- 1 0 -  

i l I J i I i i I i i 

# = 0 .001 
. . . . .  ~ = 0 , 2 5  / 

^ ! 

^ / 

- 2 0  , , t , , i , , , , , 
0 45 9 0  1 3 5  1 8 0  

0 

Figure 9. Effect of crack speed on the angular variation of stress components at ~" ----- 10 -4, t,b = 0 ° corresponding 
to the bi-material combination with E(I)/E (2) = 1, p(1)/p(2) = 1, c~ = 0.25. 
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Figure 10. Effect of crack speed on the angular variation of stress components at 7" = 10 -4, ~b ----- 0 ° corresponding 
to the bi-material combination with E(1)/E (2) = 0.2, p(1)/p(2) _ 1, ot = 0.25. 

The  influence of  crack speed on the near-tip angular  stress variation for the bi-material  
with E ( 1 ) / E  (2) = 0.2, p(1)/p(2) = ] is presented in Figure 10. This figure is plotted to the 

same scale as Figure 9 to facilitate direct comparison.  It can be seen f rom Figure l0  that 
crack speed has a more significant effect  on the near-tip stress variations for the bi-material  
with EO)/E (2) = 0.2. Thus,  while G22 and Gll ahead of  the crack tip for E(1)/E (2) = 0.2 
(Figure 10) exhibit  a reduction of  about  50 percent as fl increases f rom 0.001 to 0.25, they 
decrease by only 20 percent  for  E ( 1 ) / E  (2) = 1 (see Figure 9). Further, it is interesting to note 
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Figure 11. Effect of crack speed on the angular variation of stress components at ~" = 10 -4, ~ = 0 ° corresponding 
to the bi-material combination with E ( O / E  (2) = 1, p(l)/p(2) = 0.3, o~ = 0.25. 

in Figure 10 that while the curve corresponding to 711 at fl = 0.001 shows an upward turn 
close to 0 = 180 °, a sharp downward turn is exhibited by the curve pertaining to fl = 0.25. 
This implies that while the state of stress at the crack flank is tensile at low crack speed, it 
becomes compressive at high crack speed. 

Figure 11 corresponds to the case where E(l) /E(z)  = 1 and pO)/p(2) = 0.3. It is observed 
from this figure that when the two materials have different densities, there is a phenomenal 
effect of crack speed on the near-tip stress variation. The opening stress 722 ahead of the crack 
tip in Figure 11 decrease by as much as 50 percent as crack speed fl increases from 0.001 
to 0.25. While 311 close to 0 = 0 ° is almost the same for the two crack speeds, it decreases 
everywhere else around the crack tip with elevation in crack speed. Further, 711 becomes even 
more compressive at/3 = 0.25 than the case with E(1)/E (2) = 0.2 (see Figure 10), while a 
tensile stress state prevails at the crack flank at low/3. It is also observed from Figure 11 that 
the angular distribution of 3z2 changes significantly with an increase in crack speed/3. Thus, 
it becomes positive ahead of the crack tip at high crack speed, whereas it is negative at low 
crack speed. This feature is quite unlike Figures 9 and 10, where 712 is found to be almost 
unaffected by an increase in crack speed. 

A direct comparison in Figures 9 and 10 reveals the effect of elastic stiffness mismatch on 
the near-tip stress variation at a fixed crack speed fl since identical scales are used in these 
figures. The magnitude of 711 and 322 all around the crack tip (at fixed radius) decreases 
irrespective of the crack speed when the elastic substrate is stiffer. This is a consequence of 
the fact that the strength of the singularity Isl is less when the substrate is stiffer for a given 
strain hardening parameter a and crack speed/3 (compare Tables 1 and 3). Further, the stress 
state near the crack flank becomes compressive at high crack speed for the case with stiffer 
substrate. As will be seen later in connection with Figure 13, the presence of a compressive 
stress parallel to the crack flank behind the crack tip at high crack speed for the bi-rnaterial with 
E(1)/E (2) = 0.2 inhibits the opening of the crack face. The effect of density mismatch can be 
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Figure 12. Effect of  crack speed on the angular variation of  stress components at ~" = 10 -4 ,  ~b = 90 ° corresponding 
to the bi-material combination with EO)/E(2) = 1, pO)/p(2) = 0.3, a = 0.4. 

appreciated from a comparative study of Figures 9 and 11. At low crack speed (/3 = 0.001), 
this mismatch has no effect on the stress distribution since the inertia term is insignificant. Its 
influence can be noticed by examining the curves in Figures 9 and 11 corresponding to a high 
crack speed/3 = 0.25. For the bi-material with p(1)/p(2) = 0.3,911 and 922 are significantly 
less in magnitude at/3 = 0.25 as compared with the bi-material with pO)/p(2) = 1. 

Next, the effect of crack speed on the shear-type solution is examined. It is found that crack 
speed has negligible effect on the near-tip angular stress distribution of the shear-type solution 
for the bi-material with no mismatch in elastic stiffness and density. For example, the change 
in all-around stress components due to an increase in crack speed/3 from 0.001 and 0.25 for 
such a bi-material with a = 0.4 corresponding to ~b = 90 ° is restricted to less than 5 percent. 
Now, the effect of crack speed on the near-tip angular distribution of stress components for 
the bi-material with EO)/E  (2) = 1,pO)/p(2) = 0.3, a = 0.4 corresponding to ~b = 90 ° is 
displayed in Figure 12. It can be noticed from this figure that the angular variations of stress 
components exhibit a significant change with an increase in crack speed. In particular, it can 
be observed that for 0 greater than about 30 °, there is a dramatic difference in the variation of 
the 911 stress component. 

Finally, the effect of remote mode-mixity ~b, crack speed/3 and strain hardening a of the 
ductile phase on the near-tip crack profile in the ductile material is investigated. The extent of 
crack opening at a finite distance the tip is found to reduce as ~b increases from 0 °. However, 
the crack profiles for ~b in the range from 0 ° to 30 ° are almost the same very close to the 
crack tip (~1 < 0.002), irrespective of crack speed. This is consistent with the fact that a 
tensile-type field is definitely attained near the tip for this range of ~b. The normalized crack 

opening profiles ~2 = U2 / (IK[ 2/E(1) o.(0 l) ) in the ductile phase with normalized distance ~1 
behind the crack tip are shown in Figure 13 corresponding to ~b = 0 °. Results are presented 
in this figure for two crack speeds (/3 = 0.001 and 0.25) corresponding to t?,O)/E (2) = 1 and 
0.2 ( w i t h  t9 (1) / /9  (2) = 1 ) and o~ = 0.1. From this figure, it can be readily seen that irrespective 
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Figure 13. Normal ized  crack opening  profiles corresponding to two crack speeds at ~b = 0 ° for two bi-mater ia l  

combina t ions  with pO)/p(2) = 1, c~ = 0.10. 

of crack speed, the extent of crack opening in the ductile phase is less when the substrate is 
stiffer. Further, the reduction in crack profile with an increase in/3 in Figure 13 shows that the 
ductile phase becomes more resistant to opening at high crack speed due to material inertia. 
The above effect is more pronounced for the bi-material with the stiffer substrate. This is due 
to the presence of a compressive stress parallel to the crack flank behind the crack tip at high 
crack speed for the bi-material with the stiffer substrate as noted in connection with Figure 10. 
Also, it is found that the decrease in crack opening profile with an increase in crack speed 
is more transparent at low strain hardening ~. This implies that the length scale over which 
inertia affects the near-tip crack opening profile is restricted to a smaller region near the crack 
tip for the case of a flexible substrate or that pertaining to high strain hardening of the ductile 
phase. 

3.5. THEORETICAL DYNAMIC FRACTURE TOUGHNESS 

In this section, theoretical predictions are made for the variation of the dynamic fracture 
toughness with crack velocity for interface crack growth under a predominantly tensile (open- 
ing) mode. Thus, attention is restricted only to the case of remote ~b = 0 °, which gives rise 
to near-tip mixity m close to unity. Here, IKI is used as a measure of the interface dynamic 
fracture toughness under small-scale yielding conditions. The main objective is to assess the 
influence of strain hardening of the ductile phase and stiffness mismatch of the two phases 
on the IKal versus crack speed relation. For this purpose, a ductile fracture criterion based 
on the attainment of a critical opening displacement of the crack flank in the ductile phase 
is employed. The above criterion requires that a critical opening displacement u2 = (u2)c of 
the upper crack flank (corresponding to the ductile phase) should be maintained at a small 
micro-structural distance r = (r)c behind the crack tip for continued crack growth. The 
motivation for employing this criterion stems from experimental observations of self-similar 
crack profiles during crack growth in homogeneous ductile solids. On employing the above 
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criterion for both quasi-static crack growth and crack propagation at a higher speed, the ratio 
of the dynamic fracture toughness I Kal to the quasi-static limit I Kqs I can be obtained (see [8] 
for details). 

The variation of the theoretically predicted IKal/lKqsl with crack speed fl is shown in 

Figure 14. In this work, the critical value ofu2/(e~l)r) is taken as 35 (see also [8]). Results are 
presented for two stiffness ratios, E ( l ) /E (2) = 1.0 and 0.2, (but with no density mismatch) and 
two values of strain hardening, o~ = 0.25 and 0.10. As already mentioned, these results pertain 
to ¢ -- 0 °. On examining the curves depicted in the figure, it can be inferred that the elevation 
of the dynamic fracture toughness over the quasi-static value is higher for a bi-material with a 
stiffer substrate, particularly at high crack speeds. Further, it should be noted that at high crack 
speeds, the above elevation in the dynamic fracture toughness is considerably enhanced when 
the ductile phase exhibits lower strain hardening. The above results indicate that the effect of 
material inertia (operating inside the crack-tip plastic zone of the ductile phase) in enhancing 
the resistance to dynamic crack propagation along the interface is more pronounced when 
the elastic substrate is stiffer and when the ductile phase exhibits low strain hardening. The 
above conclusion is also corroborated by the observations made on the near-tip stress fields 
in Section 3.4. 

4. Conclusions 

In this paper, steady dynamic crack growth along a ductile-brittle interface under plane strain, 
small-scale yielding conditions has been analysed using a finite element procedure. The 
important conclusions of this work are as follows: 

(1) For the bi-material with E(1)/E (2) = 1, pO)/p(2) = 1, the mode-mixity m near the tip 
approaches the value predicted by the analytical tensile solution [12] when 0 ° ~< ¢ <~ 30 °, 
and tends towards that predicted by the shear solution [12] when ¢ = 90 °. The transition 
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from a tensile-type to a shear-type field occurs between ~b = 60 ° and 90 °. For the bi- 
material with a stiffer substrate, m approaches the near-tip limit set by the analytical 
tensile solution when 0 ° ~< ~b ~< 90 °. Shear-type solutions are obtained when the remote 
normal stress on the interface line is compressive (i.e., ~b > 90°). 

(2) Crack speed reduces the singularity strength I sl associated with the tensile-type solution, 
particularly at low values of  o~. But, crack speed has negligible effect on s for the shear 
solution. For the bi-material with the stiffer substrate Is] is lower for a fixed a and/3. In 
general, the values of  s as well as the all-around angular stress and velocity distributions 
obtained from the finite element analyses match quite well with the analytical results 
[12]. Thus, the validity of  the analytical solutions of  [12] near the tip is established. 

(3) The range of  dominance of  the tensile solution is found to decrease with a decrease in o~ 
at a fixed crack speed/3, and also with an increase in/3 at a fixed oe. Further, the range 
of  dominance at 0 = 45 ° is smaller than that directly ahead of  the crack tip. Introduction 
of  a stiffer substrate reduces the range of  dominance of  the tensile field. The shear field 
exhibits a larger range of  dominance than the tensile field at a given a and/3. 

(4) The most noticeable effect of  crack speed on the near-tip angular stress distribution for 
the tensile-type field is in decreasing the opening stress ~22 and the triaxial stress ahead 
of  the tip. The above effects are more pronounced when the substrate is stiffer or if there 
is a density mismatch. Introduction of  a stiffer substrate reduces the stresses all around 
the crack tip, irrespective of  crack speed. 

(5) The decrease in the near-tip crack opening profile in the ductile phase with an increase 
in crack speed corresponding to the tensile-type solution is more significant for the bi- 
material with a stiffer substrate. This can result in higher elevation in the dynamic fracture 
toughness over the quasi-static limit for such a bi-material when crack propagation occurs 
in a predominantly opening mode, especially at high crack speeds. Also, this effect is 
expected to be more pronounced when the ductile phase has low strain hardening. 
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