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Abstract 

In a city of right moving and upmoving cars with hardcore constraint, traffic jam occurs in 
the form of bands. We show how the bands are destroyed by a small number of strictly left 
moving cars yielding a deadlock phase with a rough edge of left cars. We also show that the 
probability of waiting time at a signal for a particular tagged car has a power-law dependence 
on time, indicating the absence of any characteristic time scale for an emergent traffic jam. The 
exponent is the same for both the band and the deadlock cases. The significances of these results 
are discussed. 

It is a common knowledge that vehicular traffic in a city can form a traffic jam 

for sufficiently high density o f  cars, even when the traffic rules are obeyed. The 

jammed-phase involves cars segregating and blocking one another over a large length- 

scale and time, reminiscent of  cooperative phenomena. Such jams are rather ubiquitous 

in various situations from traffic flow to data transmission on a network, phase separa- 

tion in granular materials, etc. In order to identify and characterize the basic features 

of  traffic jams, simple cellular automata (CA)-inspired models [ 1 - 1 1 ]  have gained 

importance over the last few years. Indeed, such CA models indicate that a traffic jam 

can be viewed as a dynamic transition. Apart from the practical relevance, traffic jam 

models constitute a special class in the general framework of  driven systems. The ob- 
vious interest in such studies is in the nonequilibrium steady states, effects o f  broken 

ergodicity, nonequilibrium phase transitions, etc. [12]. 

The CA approach has so far been of  two types: (1) one dimensional for highway 

traffic [ 7 - 1 0 ]  and (2) two dimensional for city traffic [ 1-5,11], with distinct inputs 

for the two types. As yet, the role of  dimensionality in traffic jam is not clear and, 
from the models, one might suspect that the traffic jams in one-dimension are rather 
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Fig. 1. The possible moves for odd and even steps. (a) and (b) correspond to the case with no left cars. 
The new moves with left cars are (c ) - (e ) .  (e) is special because it should not have occured i f  strict hard 

core constraint is used. Since the cars do not look beyond nearest neighbors, this has to be accepted. X, Y 

stand for any type of  car. 

different from that in two dimensions. It is also tempting to propose that the three- 
or higher-dimensional models might be relevant to communication network, computer 

architecture, etc. 
In this paper, we consider only the two-dimensional city traffic case. In the CA 

approach [ 1-5], a city is taken as a square lattice with, say, two types of cars, one set 
moving right and the other going up. A hard core constraint restricts occupation of two 
cars at the same site, preventing accidents. There is also a signal at each site (crossing) 
regulating traffic synchronously so that cars can move only right in the odd steps and 
only up in the even steps, see Fig. 1. A stochasticity is introduced by allowing a 
right (up) car, signal permitting, to go up (right) with probability 7. One starts with 
a random homogeneous initial condition and let the system evolve to its steady state 
according to the stochastic rules [13]. Note also that the rules ensure that the jams are 
not formed due to stray incidents like accidents or peculiar signals. 

The deterministic model (7 = 0) was shown to have a traffic jam phase [ 1-3] with 
no particular structure, while in the stochastic case (~ ~ 0), the jammed state in- 
volves well-defined bands with cars of two types phase segregated, blocking one an- 
other [6,14] provided the density, n, of cars is greater than a critical value nc(7). 
The occurrence of bands with phase segregation is an indication of long-range order 
developing in the system as, e.g., in thermal phase separations, though the process 
here involves no thermal randomness. In Ref. [6], a simple Boltzmann-type approxi- 
mation was developed, probably the only analytical approach available at this stage, 
and a linear stability analysis could reproduce the characteristic length of the bands 
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if  n > 0.5. The phase diagram (called the fundamental diagram) is still out of  reach 
of  this approach [6]. 

Our purpose in this paper is twofold. One is to use this CA model for the city traffic 
to explore the complexity of  the jammed phases, especially how a small change in the 

model can lead to drastic changes in the steady state. Next, we identify a procedure by 

which an emergent traffic jam can be predicted. This is done by analyzing the waiting 

times of  a tagged car while the system is evolving towards a steady state. Both of  these 
features are of  practical importance and their significances are discussed at the end. 

Our model involves an additional type of  cars strictly going left. The left cars can 

coexist with the right cars but can block, and can be blocked by, an up car, see 
Fig. 1. The reason for this additional set is to introduce enough complexity in the 

system for the jam to have a wider variety than a simple band. There are, of  course, 

more complicated situations, but we find this to be the minimal change that produces 

drastic effects. Note that in the absence of  the left cars there is a symmetry for )' < 0.5 
and 7 > 0.5, and left cars destroy this symmetry. 

The evolution of  a random configuration can be monitored by the velocity that 
measures the average flow through a site. The velocity can be defined [6] as 

1 Z V~((~Tt+I t 2 v(t) = 2-N L - ~ ' v r  - Gr) ' (1) 
G-R,U,L r 

where N is the total number of  cars, and G~= 1 or 0 according as site r is occupied 

or not at time t by a car o f  type G = R, U,L (for right, up or left moving car). A 

time-averaged velocity is defined as t7 = ~ r ,  ~t~<~ v(t)/(T2 - T1 ). This velocity gives 
a measure of  the movement  in the system and attains a small value if there is any 
traffic jam. 

We also tag one randomly chosen up car and follow its trajectory as the system 

evolves. Because of  the hard core constraint, a finite turning probability, and the signal, 
a ear quite often stays at the same site for a certain time interval. Let us call this the 
waiting time, and let P(t) be the probability density for waiting time t. We evaluate 

P(t) from the trajectory of  the tagged car by studying the histogram of  waiting time 

t, i.e., by computing the number of  times, Q, the car stays at a site for tj < t < t2, 
so that the probability density for a particular realization is Q/(t2 - t l  ). P(t) is then 

obtained by averaging over various realizations. We show that the t dependence of  P(t) 
is different if  the system evolves towards a jammed phase than in a moving phase. 
For the deterministic model, the power spectrum for the waiting time (i.e., its Fourier 
transform) at a particular site was shown to have " l / f "  behavior only at the threshold 
of  the jamming transition [3]. We show that P(t) is a more powerful way of  predicting 
an emergent jam. 

In terms of  the boolean variables R, U,L, the exact stochastic evolution equations 
can be written as 

['-* 1 Rt+l  t (7 ~r q- t t t t -t  t - t - t  t t = a ~,(R,+x + Ur+,,) + a ~r -~- O" ~r(Rr+y + Ur+y ) - ' r  Rr 

- t  - I  t t t - l - t  t 
+R,U~[a ~r_xR,_x + a ~ r_yRr_y]  , 
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[[t+l~r ~ u~t [¢7-t ~r-t ÷ o=t rlr't rVr+yrXrt ÷ ~Tt~tr ÷ (Tt y~r W/+x] - t  t 

-t  - t - t  F~t t U t t - t  t 
+RrUrLr [ Ylr-y r - y  ÷ o" r ] r_xUr_x]  , 

Lt+l t t t t t t t - t - - t_ t  
r "-: LrO" (Lr_ x ÷ Ur_ x - ÷ o" Lr ,  (2) L r _ x U r _ x )  ÷ 17 UrZrLr+  x -t t 

where o -t : t mod 2 is the signal, ¢~ = 1 or 0 with probability 1 - 7 or ? denotes 

turning of  a right-type car at site r and time t, r/ as the corresponding variable for 

the up cars, x, y are the unit vectors for nearest neighbors, ti = 1 - a for any a, and 

Wtr = U~r + Ltr + Rtr - R[Ltr - UtrL~ is a combination boolean variable for site r. These 

equations can be obtained by considering the various possibilities o f  a car staying at 

the same site or coming from a neighboring site. The configuration at time t + 1 is 

determined by the configuration at time t, i.e., each car moves according to the position 

of  the cars at time t. 
A hard core constraint requires that t t RrU r = 0. We also have t t U}L r = 0 except for a 

U-hole-L-type configuration during a horizontal move (Fig. 1). The boolean variable 

W takes care o f  this eventuality. W is 1 if the site is occupied by any type of  car and 

0 if  it is unoccupied. We have numerically evolved the system from arbitrary initial 

configurations for lattices upto 64 × 64 with periodic boundary conditions. We first 

present the results and then discuss them. 

Deadlock  phase: With no left cars, it is known that there is a critical density above 

which traffic jam occurs in the form of  bands [6]. We chose a density (n = 0.67) higher 

than the critical value. As the left car density is increased we observe a roughening 

of  the edges of  the bands. In fact, if the bandwidth is small so that there are two 

bands in the lattice [17], then beyond a certain left-car density, the band changes to 

a single-one indicating that the bandwidth increases as the density increases. A more 

drastic change takes place at a still higher density (though much smaller compared to 

the overall density) when the structure loses the band pattern. This is a new phase 

which we call a deadlock phase.  The structure is bounded by vertical lines on the left 

side and left cars on the right, as shown in Fig. 2. The deadlock phase has a strictly 

zero velocity compared to the band phase where there is a residual velocity (,-~ N - I / 2  ) 

coming from the edges o f  the bands. 

The evolution has been repeated several times and we find a broad region of  left 

densities where the steady state can be o f  either type. Such coexistence is a reflection of  

a first-order transition. In fact for ~ = 0.8, there is a range of  left-car densities where we 

have observed sequentially the coexistence o f  "two-band"- "one-band"-phases, two-band 

- one-band - deadlock phases, and one-band-deadlock phase before going over to the 
deadlock phase. 

For Pt = 0, there is a symmetry between ? < 0.5 and 7 > 0.5, but not for Pl ~ 0 
because of  the hardcore repulsion between U and L. For y > 0.5, the segregation of  

U and R is opposite to that for y < 0.5. For a small number of  left cars, with 7' > 0.5, 

the L 's  settle down at the RU interface, and as the number increases they expose some 
of  the U's.  This leads to the roughening of  the edge leading to the deadlock phase. 
See Fig. 2. The density of  left cars for the transition from band to deadlock is a 
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(c) (f) 

(b) (e) 

(a) (d) 
Fig. 2. The steady-state phase changes from two band (a,d) to one band (b,e) and to deadlock (c,f) as 
the number (#) of left cars (red) increases. All are for 64 × 64 lattices with periodic boundary conditions, 
and 2730 right (blue) and up (green) cars. (a, b, c) 7 = 0.2, # = 100, 220, 420. (d, e, f) 3' = 0.8, 
# = 270, 400, 500. Note the reversal in the car pattern for 7 > 0.5. Also note the vertical wall on the left 
in (c) and (f). 

m o n o t o n i c a l l y  inc reas ing  func t ion  o f  7. W e  do no t  go into the deta i ls  o f  these  resul t s  

because  o f  the  large coex i s t ence  region.  

Waiting time: W e  n o w  tag one  up  ear  at r a n d o m  f rom the  b e g i n n i n g  o f  the  evolu t ion .  

The  t ra jec tory  o f  the  t agged  par t ic le  u n d e r  var ious  cond i t ions  are s h o w n  in Fig. 3. W e  

obse rve  that  in the  m o v i n g  phase  the car  t r averses  a m a j o r  par t  o f  the  c i ty  whi le  
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Fig. 3. The path of a tagged "up" car, for several values of y and the number (#) of left cars. (a) When 
there is no jam. This actually corresponds to 7 = 0.5 with no left cars. (b) When the jam consists of one 
single band. 7 = 0.6, # = 160. (c,d) When the jam consists of two bands for 7 = 0.8, # = 0. (c) shows a 
car getting into the middle band, while (d) shows, from a different realization, a car getting into the outer 
band. (e,f) Now, the jammed state is a deadlock phase for ~/= 0.4, # = 270. Two possible paths are shown 
from two different samples. In case (e) the total path is rather small compared to (f). The starting point is 
always chosen, for convenience, near the lower left part of the lattice. 

t h e  m o t i o n  is r e s t r i c t e d  to  b a n d s  in  Fig.  3 b - F i g .  3e.  T h e r e  is n o  s u c h  de f in i t e  p a t t e r n  

for  t h e  d e a d l o c k  p h a s e  as  s h o w n  in Fig .  3e  a n d  Fig .  3f. F r o m  t h e s e  t r a j e c t o r i e s  w e  

c o m p u t e d  t h e  w a i t i n g  p r o b a b i l i t y ,  P(t).  W h e n  t h e r e  is n o  j a m ,  t he  t a g g e d  ca r  d o e s  n o t  

s p e n d  m u c h  t i m e  a t  t h e  c r o s s i n g s  a n d  P( t )  d e c a y s  fast ,  a l m o s t  e x p o n e n t i a l l y .  T h i s  is 
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Fig. 4. P(t) vs. t Plot. The values of  7 and the number of  left cars are given in the legend. The solid line 
has a slope of 2.4, indicating P(t) ~ t 24. The plot for the moving phase represented by the dashed line is 
shown in the inset on a semilog scale. 

shown in Fig. 4a for 7 = 0.5 without any left cars. For values of  7, when there is a 

band phase or a deadlock phase, the waiting time seems to have a power-law decay 

P ( t )  ~ t - w  with w = 2.4 for both the jammed states, see Fig. 4. It therefore appears 

that, for an emerging jammed situation, the waiting time for a car has no definite time 

scale. Haven' t  we all have that feeling when stuck in a jam? 

Let us now discuss these results. First, we have shown that the simple phase dia- 

gram can be modified drastically by the addition of  a s m a l l  density of  left cars. Our 

simulations are at a density for which, except for ~ = 0.5, bands are supposed to form 

along the diagonal in the absence of  any left cars. In the deadlock phase, there is a 

vertical wall on the left side but the left cars bunch together on the right side. Since 

the left cars, by construction, are restricted to one dimension, we concentrate on the 

motion of  the left cars of  one row only. These cars can hop to the left, only if the 

site is not occupied by a U or L car. Note that the left cars are transparent to the 
right cars. If, in the spirit o f  the Boltzmann approximation, the effect of  the up cars 

is taken into account by a random blocking of  a vacant site with probability n /2  (the 

density of  up cars), u n c o r r e l a t e d  both in time and space, no bunching can occur (we 

have also checked it explicitly). In other words, the bunching of  left cars we observe 

is mainly due to a correlated blocking both in space and time. More quantitatively, 
one might use the Boltzmann approximation of  Ref. [6] to study the stability of  a 
homogeneous phase. In this approximation, the exact stochastic equations are replaced 

by time evolution equations for the average densities, ignoring all correlations. From 
Eq. (2), one sees that a small density o f  left cars would be a small perturbation to the 
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equations derived in Ref. [6]. Such a small perturbation does not destroy the instability 

towards a band phase, and, hence, cannot yield a deadlock phase. 
Similarly, one can invoke a Boltzmann approximation for P(t )  also. An up car at 

time t +  1 will stay at its site if (i) the sites it can move to are blocked, (ii) signal stops 
it, or (iii) the turning probability does not allow it to move. Therefore, the probability 
of staying over at the same site at time t is proportional to 

- '  ' " "  ' ' + ~ ' O ' r w L x ]  • p(r , t )  -= [Gtot  r -]- t7 r/r Wr+y + O" r/r ( 3 )  

It then follows that the probability of waiting time t at a site r, if the up car comes 
t to the site at time T, is proportional to I-Ira=0 p(r, T + m). P( t )  is now obtained by 

averaging over all sites, all T and all realizations. In the simplest situation if we 

replace all the boolean variables by the averages as in the Boltzmann approximation 
[6], we see that in a moving phase (in absence of any left cars) P( t )  ~ [(1 +n)/2]  t 

exp( - t  [ln(l + n)/2 I). This shows an exponential tail consistent with our observation 
for the moving phase. Inclusion of a small density of left cars do not change this result 
significantly. To get a power-law tail, again the correlations have to play a role. 

For one-dimensional highway traffic, the life time of jammed regions has been found 
to have a power-law tail and this has been attributed to the avalanches or self-organized 
critical (SOC) behavior of the model [8]. This SOC behavior is characteristic of the 
steady state of the one-dimensional model. In the two-dimensional case, we are ob- 
serving the power-law behavior in the approach to the steady state. It is tempting to 
associate an underlying SOC-type behaviour as the origin of this power-law for waiting 

times, but such an identification is not apparent. 
The bunching of the left cars on the right edge in the deadlock phase has another im- 

plication. If these left cars are removed from the deadlock structure, the jammed phase 
goes into one single-band structure along the diagonal, not necessarily the steady-state 
solution of the original zero left car density case. The deadlock phase is a compact 
lattice spanning structure, and to create more than one band, it is necessary to produce 
cracks (i.e., vacant sites) in the middle of the structure, which due to hard core repul- 
sion and tight packing (see Fig. 2) is impossible. An interesting way to look at this 
is to think of the minute quantity of left cars acting as an adhesive to bring together 
the bands. Since, the left cars get segregated in any case, their removal from the road 
is rather easy, and the system relaxes to a single structure. This might be a practical 
way of bringing together the jammed region into the central part of the city relieving 
all other regions. We wonder if this helps in real life in any way. 

To summarize, we have shown that the band phase for two types of cars can be 
modified drastically by addition of a small number of left-moving cars. The bunching 
of the left cars in the deadlock phase is significant. We have also shown that the 
waiting time has a power-law distribution as the traffic jam is approached. In contrast, 
in the moving phase, the long waiting times are almost absent. This gives a useful way 
of predicting beforehand whether a traffic jam is emerging or not. An experimental 
verification of this prediction would be highly interesting. 
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