Adsorption of fluid vesicles
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The adhesion of fluid vesicles to a planar surface has been studied using Monte Carlo methods and
scaling arguments for the random surface model. Deflated as well as inflated vesicles have been
considered. Inflated vesicles, with internal presgured, exhibit with increasing adhesion strength

a discontinuous conformational transition from unbound sphere-like conformations to strongly
adsorbed two dimensional branched conformations. Deflated vesicles pwith exhibit a
continuous transition from three dimensional to two dimensional branched conformations where the
type of transition is different from adsorption transition of branched polymers. The transition
temperatures scale accordingstgdk T~ p+/N, whereN is the surface area of the vesicle. @97
American Institute of Physic§S0021-9607)50533-7

I. INTRODUCTION II. MODEL AND SIMULATION TECHNIQUES

The mechanisms and consequences of the adhesion of As a model vesicle we used a fluid triangulated surface

cells or vesicles to a substrate is of importance for our un®f spherical topology introduced recentlyyhich has been _
derstanding of cell aggregation, proliferation anginvestigated for the cases of internal pressure and bending
locomotion® One of the basic differences between the adhe!9idity. *° The present model surface is supposed to represent
sion of cells and vesicles is their adhesion mechanismthe bilayer membrane of real vesicles, however, restricted to
he aspects of flexibility and tension. Effects related to the

which is in the case of cells dominated by receptor-ligand. - : . : :
interactions, whereas for vesicles classical forces as van d inite thickness of the membrane is here ignored, since actu-
' le the width of a membrane, about 4 nm, is very small

Waz-alls and CFoqumb are important. Although t-here are man\éompared to the radius of a vesicle which typically varies
additional differences between cells and vesicles, €.g. cOfseyeen 0.1 and 1am. Since we are primarily interested in
cerned with their internal structure, it is conceivable that theyne gverall conformation of vesicles, our model surface can
have some common features with regard to their conformape considered as a simple first approximation to a flexible
tional changes during adhesion processes. Therefore it is @flayer membrane.
interest to investigate certain models sharing some properties A flexible triangular network is used as the simplest ap-
of cells and vesicles. The adhesion of such a model, whiclproximation of a flexible surface in three dimensional space.
we call henceforth a vesicle, is the subject of the presenEach grid point on the mesh is connected by bonds with its
paper. neighboring points. The length of each bond is restricted to a
The membranes of vesicles are approximately incomcertain range by a square-well potential, and the self-
pressible. Therefore they essentially do not change their are@voidance of the surface is implemented by introducing a
Their shapes and related fluctuations are controlled by bendiard sphere on each grid point. The diameter of the hard
ing rigidity of the membrarfe and much less by their sur- sphereazl.Qa, is chosen such that the ratio pf the diameter
face tension. Most of theoretical and experimental works ofnd the maximum bond length’ ma=ay2, disallows the

membrane adhesion have therefore been restricted to Iaré@lf'ﬁfer;]egagon ththe Imgmbt:ane. The mlcr%sciopm IEngth
bending rigidities, where thermal fluctuations are of only mi-& Which defines the relation between our model membrane

nor importancé- Little is known about the behavior of ad- and the dimensions of a real membrane, will not be specified

o o . here, although general considerations would suggest that this
herent ve§|cles at low bending rigidity vyhere the perS_'StenC?ength is in the order of the persistence length, , about
length £, is much smaller than the ra@us of the ye3|e 100 nm. Any attempt to displace a grid point is rejected if
ép<R.  The persistence lendth is  approximately

: ) 4 this causes overlaps of hard spheres, thus the surface is self-
&p=2ao exfl(47/3)x/KT], wherea, is a microscopic length .\ 6iding. The successive steps during the Monte Carlo pro-

of the order of the monomer size ards the bending rigid-  cedure follows the usual Metropolis scheme. Select a grid

ity. point randomly or sequentially, displace it to a nearby loca-
Besides the bending rigidity, the osmotic pressure differtjon which is chosen at random. Then calculate the corre-

enceAp=pj,— Pout is another parameter which determinessponding change in total enerdy (as defined beloy The

the shape of a vesicle. In particular, the combined effects ofiew location of the grid point is accepted if

pressure and adhesion on the shapes of vesicles is of interestp(— SE/kT)> 7, where 0< <1 is a random number, oth-

and will be the focus of the present work. erwise the old configuration is counted as the new one. Each
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FIG. 1. Top view and side view snapshot of a deflatpe-0) vesicle at ~ FIG. 2. Top view and side view snapshot of a deflafpek0) vesicle at
e/kT=1.0 for N=812. e/lkT=4.0 for N=812.

Monte Carlo step consists dFf such attempts, wheié is the  changed, and hence at each triangulation step the Metropolis
total number of the grid points of the network. criterion has to be applied in order to accept or reject the new
The Monte Carlo steps described above are sufficient tyolume according to exp{psV/KT)>» or <7, respectively,
simulate polymerized membranes and vesicles where theherep=Apa®kT and§V is the change of the volume.
constituents of the surface are permanently connected to their The adhesion between the surface of the vesicle and the
neighbors. However, most membranes in biological systenflat substrate is represented by a short range attractive poten-
are fluid where the lipid molecules diffuse laterally in the tial of square-well type
plane of _the membrane thereby continually changing their V(2)=—el(1+2)2, for 0<z<w, 1)
local environment. In order to account for this character of a
membrane without going into the detailed realization of surWhereV(z) = for z<0 andV(z)=0 for z>w. The param-
face diffusion mechanism on the molecular level, one mus€terw is a cut-off, which has been introduced in order to
adopt a much simpler and more abstract model suitable fomodel a contact potential in the present continuum model.
numerical simulation. Combining the model of a flexible net-Obviously, for largew, say in the order of the size of the
work with some kind of fluidity means, one has to relax thevesicle, the inner surface of the vesicle would be attracted
restriction on fixed connectivity, thus allow the grid points to @lso, which is not of interest. Therefore we have limited the
exchange their neighbors, and at the same time, preserve tfnge of the potential te<w=0.57, where the upper limit is
topology and the integrity of the structure. In a triangularthe closest distance two fluid surfaces of the present type can
mesh, this can be accomplished by the following mechanisrPproach each other without violating the excluded volume
(“dynamic triangulation).%*! conditions.

Select a pair of grid points randomly or sequentially ~ Since for finite sizedN of the vesicles and due to the
such that they are the respective vertices of two triangle§hite range of the attractive potential the probability of the

which share the same edge, then perform a bond-exchanyésicle to escape from the attractive range at any temperature
step if the following conditions are satisfied) these two IS nonzero, we have restricted the motion of the vesicle to the

points are not directly connected yet) the numbers of extent that at least one monomer of its surface must be found
direct-connected neighbors of the two vertices of the comat coordinatez<w.

mon edge are both greater than the minimum allowed num-  In determining the averages we have used Mbnte

ber (say, 3; 4) The distance between these two points areCarlo steps.

within the interval of the acceptable bond lengtha,=/2.

If all these conditions are satisfied, the new bond between

these two points is created and the bond of the common edge " . 812

of the two triangles is removed. In this bond-exchange pro- O 272

cedure, the total numbers of bonds and triangles are pre- E 08" A9 N
served, so is the two dimensional topology of the membrane  y

which is the essential of the structure. The advantage of this 0.6~ o *]
simple procedure is its locality, only the local connections

are rearranged and the cumulative effects of the bond- 04 -
exchange and grid point displacement allow the grid points 66

to have more freedom to move in space, not just a restricted o2k 45@ _
diffusion in 3-D as in the case of fixed-connected mesh but *

also in the 2-D surface itself. In fact, within certain number M | |

of steps, each grid point would have the opportunity of being 0 2 4 6
connected with any other point and this resembles the fluid- elkT

ity of the S.VSte.m- It 5h9U|d be noted that during the PrOCESE|G. 3. Adhesion energ/N versus adsorption strengtikT at zero pres-
of dynamic triangulation the volume of the vesicle is sure for vesicles sized=92, 272, 812.
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FIG. 6. Scaled vertical sizR, versuse/kT at zero pressure for vesicles of
various sizes.

FIG. 4. Probability distribution of energl(E) for various values of/kT
at zero pressure for vesicles of sike=812.

0<z<w. The contact energy per be&dN as a function of
the adsorption streng#vkT is presented in Fig. 3. The tran-
sition point is located at./kT~1. Interestingly, finite size

In the following subsection we report on our results oneffects are very small although the surface area N changes by
the adsorption of “deflated” §=0) vesicles. Since it is a factor of 9. This is in contrast to branched polymérs
known that deflated vesicles exhibit conformations ofwhere the critical adsorption temperatdrgedepends signifi-
branched structuré§;*>where the mean square radius of gy- cantly on the size according &,(N)=T()—BN~°’. Re-
ration and the volume are proportional to the surface areasently a first order transition has been proposed for the ad-
R2~V~N, one might expect a situation comparable to thesorption of branched model vesicles on lattité§Vhether
case of the adsorption of branched polymers to impenetrabléne present transition is also of first order has been examined
surfaced® However, since branched vesicles differ from by looking at the probability distribution of enerdgy(E). In
branched polymers with respect to the conservation of theicase of a discontinuous transition one would expect close to
topolgy, i.e., branched vesicles can be considered as the athe transition point a bimodal distribution of the enefgyin
nealed analogon of branched polymers with quenched tdrig. 4 the distributionP(E) is presented for various values
pologies, it is conceivable that some statistical quantitie®f ¢/kT. At least fore/kT=1.0 and 1.2, there is no evidence
such as crossover exponértare different in the two mod- of a himodal shape and hence no discontinuity of the energy.
els. The continuity of the transition is further corroborated

Typical snapshots of deflated vesicles are depicted iy the change of the conformation of the vesicles as a func-
Figs. 1 and 2, for weak and strong adsorption, respectivelytion of adhesion strength. The average vertical $zeand
They clearly demonstrate the transition from a weakly boundhe average parallel si,, are presented in Figs. 5-7. The
to a strongly bound state and between the three-dimensiondhkta of the vertical size, as presented in Fig. 5, exhibit a
and the two-dimensional branched structure of the vesiclecontinuous transition between a weakly adsorbed state at
We have estimated the contact eneEgywhich is defined as e<eg. and a strongly adsorbed stateedk T>¢./kT where
the number of monomers of the vesicle found in the intervaR, is independent oN. Below the transition poinR, is

Ill. RESULTS AND DISCUSSIONS

A. Deflated vesicles
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FIG. 5. Average vertical sizR, versuse/KT at zero pressure for vesicles of FIG. 7. Scaled parallel siZg,, versuse/kT at zero pressure for vesicles of
various sizes.

various sizes.
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FIG. 8. Top view and side view snapshot of weakly adsorbed inflatedrFIG. 9. Top view and side view snapshot of a strongly adsorbed inflated
vesicle atp=0.26,s/kT=2.9 for N=812. vesicle atp=0.26,/kT=9.0 for N=812.

expected to scale according Ry~ N corresponding to @ pehavior is also observed fd?, and Ry In Fig. 10 the
three dimensional branched vesicle. This is demonstrated ifysteresis of the adhesion energy is presented. The width of

Fig. 6 for the hysteresis loop depends as usual on the successive cool-
R,—R,(0)=NO5f(kT/e). (2) ingand heating rate. Since we could not totglly suppress the
B hysteresis effect by performing very long simulation runs,
where we have assumef(x)~0 and R,(x)=0.55 for e have located the expected transition point for infinitely
x<<1. ) ) L slow cooling and heating rate symmetrically between the two
The average parallel si®, is presented in Fig. 7. The  yansition points according to successive cooling and heating
data indicate that the spreading of the V%%'Cle on the surfac&yries as depicted in Fig. 10. According to this procedure we
is a continuous process whelRg,=A(T)N"®and the pref-  ,y6 estimated the critical adhesion strengtfikT as a

actor 0.1 A(T)<0.2 is a weak function of temperature. The ,,tion of the scaled pressupa/N which is shown in Fig.
exponent of 0.6 is, as expected, in agreement with the weql_ At pyN>1 the transition line is linear
known case of two dimensional branched polymérdow- ’
ever, our data are not sufficiently precise in order to observe &./kT~ LpyN, 3
the conformational transition iR, between two dimen-
sional branched vesicles @%,,~N°® at e>¢. and three
dimensional branched vesicl&,~ N°®ate<e.. It seems
likely that much large vesicles would exhibit a more clear
picture.

Previous studies on the adsorption of branched vesicle

on latticed* have reported on a second conformational tran</ kT~pyN, the appropriate scaling variable#pN. Be-

sition with increasing adhesion strength from two dimen-IOW €c/KT the vesicle is inflated and hence the perpendicular
sional branched conformations to disc-like conformations. Ir£12€ Scales with the surface area similar as for a sphere,

the latter case a vesicle is thought to be spread compactly ore ™ VN. Below the transition point the vesicles are fldt.
the plane, similar as for two dimensional self-avoiding ringSnould be noted that the dataRf above the transition point,

polymeréswhereny~ N°-75. Although there is no evidence as depicted at the right hgnd side of Eig. 12, have been re-
for such a transition in our present simulations we cannofluced by a factor of 100 in order to fit to the scale of the
exclude that for much larger vesicles this second type of

branched-compact transition in two dimensions would take

whereas fopN—0 a crossover to the special transition at
p=0, as discussed in the previous section, is expected.
The average perpendicular sizZBs of the vesicles as a
function of adhesion strength and pressure is shown in Fig.
%2. Since the critical adhesion strength scales according to

place. orr | . T
150 0=06
B. Inflated vesicles E
In the following subsection we report on our results on 100 -

the adsorption of “inflated” p>0) vesicles. This situation
is different from the previous one since at low adhesion
strength the vesicles are inflated provided the pressure is

larger than a threshold vaftfein the order ofp* ~N~/2, A S0 i
snhapshot of such a situation is depicted in Fig. 8. With in-

creasinge/KT the vesicle becomes more flat until it spreads | | |

out on the surface undergoing a transition to a two- 00 2 4 6
dimensional branched structure as depicted in Fig. 9. This e/kT

spreading trans_ition is discontinuous anq eXhibitS_a_ConSidFlG. 10. Hysteresis of adhesion energy as a function of adhesion strength
erable hysteresis of the energy as a function/&fT. Similar  &/kT.
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FIG. 11. Phase diagram of adhesive vesicles. FIG. 13. Scaled parallel si#®,, versuss/py/N below and above the critical

adhesion strength, for vesicles of various sizes. The dataRyf,/N° as
) ) ) ) presented at the right hand side of the figure have been shifted by 0.15
figure) For e > ¢ the vesicles are two dimensional and haveupwards in order to separate from the data at the left hand side of the figure.

an average thickness in the range of<OR,<<0.6.

The effective scaling of the parallel compondRy, is
presented in Fig. 13. At low adhesion strengift part of _ o
the figur@ the parallel component scales as expected for d he result ae<e. is somewhat surprising, because the vol-
spherical object proportional to the perpendicular componerifMes _of inflated \_/e5|cle§ increase faster than the expected
according toR,,~R,~N. However, in order to obtain a Pehavior of spherical objects/~N**. However, this result
satisfactory overlap of the data we have introduced a weal® IN reasonable agreement with previous simulations on in-
dependence on the pressure, approximaggly- p% This flated vesicles. For tlh7e p())rsesent continuum m.odel ve?é*lgie
pressure dependence may be attributed to deviations fromM@s been fount~N*"%, whereas for a lattice modéiit
spherical shape with increasing adhesion strengtkT, ~ has been feporteVNN_l'Spo'G- The deviation from the ex-
Above the adhesion threshold the vesicle is strongly adPected ordinary spherical shape have been 1gxpla|n.ed. based
sorbed and flat. The two dimensional structures are comp&" & generalized blob picture of de Genne&*®and simi-
rable to those of branched polymers. Therefore the paralldfly by a g_ene;rahzatlon of Pincus' restfitfor stretched
component scales accordingly R,,~N°% The exponent polymer chains:

compares well with the estimate 0.61 for branched The effective scaling of the adhesive contact energy is
polymers'® presented in Fig. 15. Since the data scatter too much in the

The effective scaling of the volume is presented in Fig.IOW adhgsion regime_ we cannot exclude that in both regimes
14. The best collapse of the data are obtained fofne leading powers in N and p are the same. However, ac-
V~NL7p%4 pelow the adhesion threshold, add-N above cording to the data we obtain a slight difference,
! ) 0.5_ 1.15,0.3_
The latter result is as expected, since for the branched stru6/NP**=0ge(X) at e<e, whereasE/N*'**=fg(x) at

tures the volume must be proportional to the surface area?>87!\7£d different scaling functiorge(x) andfg(x) with
x=g/pyN.
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FIG. 12. Scaled vertical sizR, versuss/p\/N below and above the critical e/pN

adhesion strength, for vesicles of various sizes. The dataRfabove the
transition point(right hand side of the figujehave been reduced by a factor FIG. 14. Scaled volumé&/ versuse/pyN below and above the critical
of 100 in order to fit to the scale of the figure. adhesion strength, for vesicles of various sizes.
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04 T T temperature state, where the vesicle is strongly adsorbed ex-
hibiting two dimensional branched conformations.
ﬁ Disc-like two dimensional conformations, which have
037 2 e pe been reported recently for strongly adhesive vesicles on
P M lattices'* have not been detected for the present continuum

L]
0ol oy | model.

1=

1.15p0.3 ACKNOWLEDGMENT

Ao
01~ o n Financial support by the Indo-German project 1L3A2B
© is gratefully acknowledged.

0 0.2 0.4 0.6 1G. I. Bell, M. Dembo, and P. Bongrand, Biophys.45, 1051(1984.
2p. B. Canham, J. Theor. Bid26, 61 (1970.
e/pN SW. Helfrich, Z. Naturforsch28¢ 693 (1973.
4E. A. Evans, Biophys. 114, 923 (1974.
FIG. 15. Scaled energk verSUSa/p\/N below and above the critical ad-  SE. Bouchaud and J. P. Bouchaud, J. Pltisri9 50, 829 (1989.
hesion strengtle for vesicles of various sizes. 6U. Seifert and R. Lipowsky, Phys. Rev. 42, 4768(1990.
"U. Seifert, Phys. Rev. Letf4, 5060(1995.
8L. Peliti and S. Leibler, Phys. Rev. Lefi4, 1690(1985.
IV. CONCLUSIONS °A. Baumgatner and J.-S. Ho, Phys. Rev.44, 5747(1990; J.-S. Ho and
A. Baumgatner, Europhys. Lettl2, 295(1990.
In summary, we have investigated the adhesion of fluid°G. Gompper and D. Kroll, Phys. Rev.46, 7466(1992; Phys. Rev. B51,
vesicles to a planar impenetrable surface using Monte Carl95lg(1:§2nd A Baunigmer. Mol. Simul6, 163 (199D,
methods. As a model vesicle we have studied the randornA Baumgamer, Physga AL90, 63 (1992; J. Chem. Phys98, 7496
surface model. In the case of deflated vesicles with internal (1993.
pressurep=0 we have found a continuous transition be- 13L Lam and K. Binder, J. Phys. &1, L405 (1988.
tween three dimensional and two dimensional branched con- 54(23(;'36‘(’1%'3'3A L. Stella, M. C. Tesi, and F. Sullivan, Phys. Revi&
formations. The transition temperature is independent of thésg 'paisi and N. Sourlas, Phys. Rev. Ldi, 871 (1981,
size of the vesicles, and hence different from the adsorptioffA. c. Maggs, S. Leibler, M. E. Fisher, and C. J. Camacho, Phys. Rev. A
transition of branched polymers. In the case of inflatedl742, 691(1990. _ , _ o
vesicles with internal pressupe>0 we have found a discon- Ithiadi;;;””e&a“”g Concepts in Physi¢Eornell University Press,
tinuous transition between the high temperature state, whereg Lipowsky and A. Baumgner, Phys. Rev. A0, 2078(1989.

the vesicles exhibit a spherical inflated shape, and the lIowP. Pincus, Macromolecules 386 (1976.

J. Chem. Phys., Vol. 107, No. 11, 15 September 1997

Downloaded 06 Sep 2001 to 140.105.16.64. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



