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Abstract. Isothermal remanent magnetization dedsly(t), and ‘in-field’ growth of zero-field-
cooled magnetizationMzgc(t), with time have been measured over four decades in time at
temperatures ranging from 0.B5to 1.257; (whereT¢ is the Curie temperature, determined pre-
viously for the same sample from static critical phenomena measurements) for a nearly ordered in-
termetallic compound NAI, which is an experimental realization of a three-dimensidiak 3)
ferromagnet with weak quenched random-exchange disorder. None of the functional forms of
M (t) predicted by the existing phenomenological models of relaxation dynamics in spin systems
with quenched randomness, but only the expresshdris) = Mo[Myexp(—t/11) + (t/12) 9] and
Mzrc(t) = My[1 — {M] exp(—t/T}) + (t/15) % }] closely reproduce such data in the present case.
The most striking features of magnetic relaxation in the system in question are as follows: Aging
effects are absent in botti,(t) andMzg¢(t) at all temperatures in the temperature range covered
in the present experiments. A cross-over iniglgum dynamics from the one, characteristic of a
pured = 3 ferromagnet with complete atomic ordering and prevalent at temperatures awai;from

to that, typical of ad = 3 random-exchange ferromagnet, occur§ as T.. The relaxation times
11(T)(11(T)) andT(T)(15(T)) exhibit logarithmic divergence at critical temperatufgs(T¢ 1 (H))

and T2 (To2(H)); T¢* andT.2 both increase with the external magnetic field strengthsuch that

at any given field vaIueTTi = Tcré. The exponent characterizing the logarithmic divergenag (i)
andTy(T) possesses a field-independent value-d6 for both relaxation times. Of all the available

theoretical models, the droplet fluctuation model alone provides a qualitative explanation for some
aspects of the present magnetic relaxation data.

Keywords. Magnetic relaxation; spin dynamics; random-exchange ferromagnet; remanent magne-
tization decay; time evolution of zero-field-cooled magnetization.
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1. Introduction

Extensive experimental investigatioris{L0] of magnetic relaxation in spin glasses have
clearly brought out several important aspects of the inherently slow spin dynamics and
aging phenomenon (i.e., the dependence of the relaxation response, measured after a wait
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time, tw, onty) in such materials. The theoretical input required for understanding the
non-equilibrium behavior of spin glasses Heeen provided by the droplet models [11-

13]. In these theoretical approaches, aging results from the growth of spin-glass domains
with time; the size of the domains determines the maximum length scale over which the
system possesses equilibrium properties. Arrathgcial concept introduced by these the-
ories, and vindicated by experimenf6,10] and Monte Carlo simulationd 4], is the
overlap length, which determines the maximum length scale over which the equilibrium
spin-glass domains in the presence of an external perturbation (such as temp@€rature
magnetic fieldAH or exchange bonflJ) are practically indistinguishable from those in the
unperturbed state. Despite a great deal of success enjoyed by the droplet models, certain
aspects of the aging phenomenon in spin glasses are better described [7] by a model that
invokes a hierarchical organization of metastable states in phase space. While a common
consensus about the spin dynamics in spin glasses is slowly emerging, the understanding
of relaxation phenomena in random-exchangef@agnets is far from being complete, as
elucidated below.

In random-exchange ferromagnets (whichblide both quenched random site-diluted
and bond-diluted ferromagnets) that exhibit re-entrant behavior at temperatures well below
the Curie point]Tc, a thermally-induced cross-over has been observed [15-17] between two
distinct dynamics regimes: geme |, marked by a power-law temporal decay of the ther-
moremanent magnetization (TRM) with negligible aging effects for temperatures close to
Te, characterizing a high-temperature ferromagnetic phase, and regime Il, signalled, at low
temperatures, by a stretched exponentRMIdecay with time and non-equilibrium age-
dependent dynamics (i.e., properties typical ahgpasses), characterizing the re-entrant
phase. While the power law TRM decay and the absence of aging effects are consistent
with the prediction of the droplet fluctuation model [18] for an Ising ferromagnet with
guenched random-exchge disorder, the stretched exponential TRM decay and the aging
phenomenon find a straightforward explanation within the framework of the droplet scal-
ing or domain or hierarchical models [7,11-13]. Neither the former model nor the latter
theoretical treatments offer any explanationthe cross-over between a high-temperature
regime (ferromagnetic phase) of equilibrium dymies to a low-temperature regime (re-
entrant phase) of non-equilibrium dynamics the other hand, the percolation model [19]
for relaxation in random systems (that deals with the relaxation of isotropic, low-energy
dispersive excitations (magnons) within domadistributed in size with a probability dic-
tated by the percolation theories, and asssithat each domain relaxes independently with
a relaxation rate which varies exponentially with inverse domain size and thereby takes
into account the finite-size quantization of elementary excitations) reproduces [15,16] the
power law (stretched exponential) TRM deaalyen the dynamics is dominated by the do-
mains aligned along (antiparallel to) the gmetic field direction, but fails to account for the
aging effects in the re-entrant phase. Recognizing the fact that the studies of magnetic re-
laxation have so far been confined to th@stly disordered random-exchange (e.g., spin
glasses or re-entrant ferromagnets) spirtesys only, an extensive magnetic relaxation
study has been undertaken on a ferromagritbtweak quenched random-exchange disor-
der. This study addresses itself to not oriig thermoremanent magnetization decay but
also the time-evolution of zero-field-cooled magnetization from the {inze0) at which
a magnetic field of given strength is suddenhjtshed on. Such experiments are shown
to reveal a number of new and novel aspects of magnetic relaxation in the ferromagnetic
system under consideration.
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2. Experimental details

Polycrystalline sample of the ljAl o5 (actual composition: Nk osAl24.92) alloy was pre-

pared in the form of a rod of 10 mm diameter and 100 mm length from ultra-high-purity
(99.999%) nickel and aluminium by radio frequency induction technique. A sphere of 3
mm diameter and a disc of 10 mm diameted &mm thickness were spark-cut from the
rod, annealed at 52C for 16 days in quartz tube evacuated to a pressure of Torr

and subsequently water-quenched. An elalgoaatlysis of the X-ray diffraction patterns
taken on the disc sample yielded the value for the long-range atomic order parameter as
S=0.954+0.02. Details about the preparation and characterization of the samples in ques-
tion are given elsewhel@(]. In a completely ordered Ml intermetdlic compound, Ni

and Al atoms respectively occupy face cent@ssites) and corners (B sites) of the face
centered cubic unit cell. Thus, A and B sites form the Ni and Al sublattices. In a partially
ordered NjsAl 5 alloy, if the number of right atoms (Ni atoms on A sites, Al atoms on B
sites) and wrong atoms (Ni atoms on B sites, Al atoms on A sites) on a given sublattice are
denoted by andw, the total number of atoms on the A or B sites is givemby r + w.

The long-range order parameter, definecdas (r —w)/n = (2r/n) — 1, equals unity for

the completely ordered case whes: n. In view of this standard definition, the observed
value of Sindicates that in the present sample,®2¥ 1.0 (2.5+ 1.0)% of A or B sites

are occupied by Ni (Al) or Al (Ni) atoms. Tdhwrong atoms generate site disorder and

in the sample under consideration they giigerto quenched random-exchange disorder
since Ni atoms are magnetic while Al atoms are non-magnetic. Now that the percent-
age of the wrong atoms is very small, random-exchange disorder is weak. The following
types of magnetic relaxation measuremerage been performed on the annealed (nearly
ordered) sample of spherical shape, using the PAR 4500 vibrating sample magnetometer
system.

() Isothermal remanent magnetization decay: After cooling the sample to a desired
temperaturd, from temperatures as high a3.dn zero-field, a magnetic field of
fixed strength in the range 15 GeH < 15 kOe is applied after a wait timtg
and then dropped to zero within a time period that ranges from 15 s to 2 min de-
pending upon the field strength. The deadyemanent magnetization with time
atT = Ty from this time (when the externally applied field was brought down to
zero) ¢ = 0) onwards is recorded. This mode of measurement is henceforth referred
to as the ‘unconventional’ method. The conventional method of measuring isother-
mal remanent magnetization decay has also been used. In this method, sample is
cooled in a fixed field in the range 15 GeH < 15 kOe fromT = 2T to Ty, and
after a wait timety,, the field is brought down to zero. The remanent magnetiza-
tion is measured as a function of time starting from the ttrae0 when the field
is zero.

(i) Time evolution of magnetization in field: Sample is cooled in zero-field from a tem-
perature much higher thai (T = 2T;) to the measuring temperatuf&n), and
after a wait timet,y, a static magnetic field is applied. The evolution of zero-field-
cooled magnetizatiotMzrc) with time is recorded from the timg = 0) the field
has reached the desired value. With a viewdoestaining whether the aging effects
are importantty, is varied from 0 to 2 h.
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Figure 1. Representative plots &l (t) at T ~ 25 K and widely different wait time,

tw, values. A total absence of aging effects is evidenced by the fact that the temperature
difference of 0.332 K completely accounts for the discrepancy betwedw thevalues

att > 100 s.

3. Results and discussions

Both the above-mentioned methods of meamythe decay of isothermal remanent mag-
netization with timeM;(t), yield exactly the same results and no aging effects could be
detected at any temperature. As an illustration of no aging effects in the time decay of
isothermal remanent magnetization, figure 1 displaysMhe) curves for the wait times

tw = 0 s andy, = 7200 s taken at 25 K. Moreover, the magnetic field history of the sample
affects only the magnitude &fl; but not its functional dependence titnAnother impor-

tant point to note is that due to the wellk signal when the sample is exposed to fields
<100 Oe prior tdV,(t) measurements particulady temperatures close g, poor signal-
to-noise ratio severely limits the time window over whilgh(t) can be accurately mea-
sured. Hence, figure 2 depicts the representaily¢) data taken at different but fixed
temperatures over three decades of timgdconds, i.e., in the time interval19< t < 10*

s, whent,, = 0 and a fieldH = 15 kOe was applied before measuridg(t) using the so

called unconventional method. First of all, an attempt was made to fiviiig data to

the expressions used in the literature [1-19] (i.e., stretched exponential, power law, power
law-stretched exponential product) to deberisothermal remanent magnetization decay

in spin glasses and re-entrant ferr@nats. Strong departures of the presdnit) data

from the best fits based on these expressions permitted us to rule out all these possibili-
ties. This inference is consistent with the observation that the sample in question does not
exhibit any of the characteristic attributes of either spin glasses or re-entrant ferromagnets.
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Figure 3. Remanent magnetizationtagt= 0 s (open circles), as a function of reduced
temperaturel /Te. Solid circles represent the spontaneous magnetization data taken
from [20].

Having exhausted all possible combinations of the expressiomé,{oy reported in the
literature, we finally arrive at the following combination:
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Figure 4. Prefactor,M1, and relaxation timers, as functions of temperature. The
solid (dotted) curve in the lower panel represents the logarithmic fit (power law fit).

M (t) = Mg [Ml exp(—t/n) + (t/Tz)_a] , (1)

which reproduces quite well the observeddigependence of remanent magnetization at
all the measuring temperatures, as is evideom figure 2 where the best least-squares
fits, based on eq. (1), are depicted as continuous curves throulyh {teata (symbols).

Note that these fits deviate from tiv(t) data taken at < 20 s; such deviations have
been attributed to the undamty in fixing the zero of tine accurately and to the decay

of stray fields. Hence thi!;(t) data taken at < 20 s have been left out of the analysis.
The values of the parametévly, M1, 71, T, anda at different temperatures corresponding

to the fits based on eq. (1) are displayed in figures 3—5. The main salient features that
the data shown in these figures presasttae following: (i) For temperaturés < 0.9T;

(Curie temperatur@. = 56.377 K, as determined [20] from the detailed analysis of the
spontaneous magnetizatidg(T), data in the critical regionMp scales withMs while

the remaining parameters possess nearly temperature-independent magniMdesIof
12985, =10%s anda = 1078, (i) For T > 0.9T;, Mg decays to zero af =

1.2T;, M1 anda increase by several orders of magnitude andnd 1, exhibit a singular
behavior. It immediately follows from the observations (i) and (ii) that (a) the contribution
to M,(t) due to the first term in eq. (1) overshadows the one arising from the second term
for T < 0.9T;, (b) the latter contribution (the power law contribution) rapidly picks up

in magnitude and dominates over the first for temperatures in the immediate vicinity of
Te, and (c) the exponential term again eggdly governs the time dependencelf for

T > Tc. The deductions (a), (b) and (c) are made all the more obvious by the data displayed
in figures 6, 7 and 8, respectively. These figures show the percentage deviation of the
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Figure 5. Exponenta, and relaxation timety, as functions of temperature. The solid
(dotted) curve in the lower panel represents the logarithmic fit (power law fit).

experimentaM,(t) data taken at temperatures 28.058K« T¢), 60.408 K(T ~ T) and
70.038 K(T > T¢) from the best least-squares fits to Mg(t) data based on either the
exponential term alone or the power law term alone or the combination of the two, as in
eg. (1). Even a cursory glance at these figures suffices to reveal that the deviations are the
least and statistically distributed around zero for the exponential fit at 28.q33K T)
and 70.038 K(T > T¢), and for the fit based on eq. (1) (or more so, for the power law
fit for t > 500 s) at 60.408 KT =~ T;). The deviation plots shown in figures 6-8 thus
demonstrate that the power law decay (§eeond term in eq. (1)) and the exponential
decay (the first term in eq. (1)) essentiallytefenine the temporal behavior of remanent
magnetization within and outside the critical region, respectively. However, this inference
does not imply that the exponential (power )Jaecay is absent within (outside) the critical
region. That this is indeed the case, is evident from figures 7 and 8 where the inclusion of
the exponential term, besides the power law term, yields considerably lower deviations for
t < 500 s afT = 60.408 K whereas the exponential term makes a significant contribution
only fort < 60 s atT = 70.038 K; fort > 60 s at the same temperature, it is difficult to
distinguish between the pure power law and pure exponential fits.

An attempt has been made to analyse the singular behavior of the relaxatiorr{imes
andrt, in terms of the following expressions:

(T) = Aln|(T = THI/TIP+C ()

and
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Table 1. Optimum fit parameters appearing in eqs (2) and (3). The numbers
in the parentheses denote the uncertainty in the least significant figfires
{5il(yi(obs —yi(cal))?/(yi(0b9)?]} /(N — Np). N is the total number of data points

in the temperature range of the fit aNg is the number of free fitting parameters.

A(s) TI(K) B Ci x* a(e) T'K b c(s) X
(1074 (1073

1

Logarithmic

divergence, eq. (2)-0.25(1) 59.5(1) 1.9(1) 9.9(1) 5.01-0.25(1) 59.5(1) 1.9(1) 9.9(1) 5.01
Power law

divergence, eq. (3)-0.48(1) 59.1(2)—0.55(5) 10.4(1) 6.15 —0.48(1) 59.1(2)—0.55(5) 10.4(1) 6.15

2

Logarithmic
divergence, eq. (2) 1.4(1) 58.4(1) 23(1) 1.01) 1.88 1.4(1) 58.4(1) 23(1) 1.0(1) 1.88
x10-11 x10-11
Power law
divergence, eq. (3) 1.5(1) 58.1(1)»-11(1) 1.01) 7.68 1.5(1) 58.1(1)-11(1) 1.0(1) 7.68
x10715 x10715
1(T)=a[(T-T)/T P+, ©)

wheret stands forr; or 1,. The best least-squares fits based on egs (2) and (3) are rep-
resented in figures 4 and 5 by continuous and dotted curves, respectively, and the corre-
sponding values of the fitting parametéysTS, B andC in the former case, ana TJ, b
andc in the latter, are listed in table 1. From the fits shown in figures 4 and 5 as well as
from the reduced chi squarg?, values displayed in table 1, it is clear that bofrand,
exhibit logarithmic divergence at* = 59.5(1) K andT.2 = 58.4(1) K, respectively, with
the exponenB possessing an order of magnitude higher value in the case of

The droplet fluctuation model [18] yields the temporal spin-autocorrelation function,
Ci(t) = (S(0)S(t)) — (S)?, at long times, for a pure (ordered)dimensional Ising ferro-
magnet as

Gi(t) ~ exp—(t/1)"V/?] (4)

(whererT is a correlation time that diverges das— T¢), and for ad-dimensional Ising
ferromagnet with weak quencheahdom-exchange disorder as

Ci(t) ~t T, (5)

In the case of @l = 3 Ising system, quenched random-exchange disorder is a relevant
perturbation in the renormalization group (R&nse and if the regions with antiferromag-
netic or zero coupling exist, this model predithat the temperature-dependent exponent
x should approach zero (a finite universal valueYas 0 (T — T¢). Even though NjAI
is not an Ising ferromagnet as it, like crystalline Ni, exhibits cubic (rather than uniaxial)
magnetocrystalline anisotropy [21], a qualitative agreement between the present results
and the above theoretical predictions concerning the forn@s(of (which is proportional
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to M(t)), i.e., egs (4) and (5), fad = 3 as well as the temperature dependences of the
correlation timer and exponent becomes apparent when due consideration is given to
the following. The system in question is nothing butla= 3 ferromagnet with weak
guenched random-exchange disorder (brougbtiaby the residual site disorder). In such

a system, quenched random-exchange disader as a relevant scaling field and hence
affects a cross-over in the equilibriudynamics from the one, characteristic ofla= 3

pure (ordered) ferromagnet and prevalent at temperatures awayfframthat typical of

ad = 3 random-exchange ferromagnetlas+ Te. It is, therefore, not surprising that the
exponential decay, eq. (4), and power law deeay (5), completely account for the time
dependence of the remanentgnatization outside and within the critical region, respec-
tively. In the NgAl sample in question, we have recently observed [20] a cross-over in the
static (thermal) critical behavior from the Gaussian regime to the fixed point (characterized
by the multiplicative logarithmic corrections to the mean-field power laws) as the temper-
ature, on both sides df, approaches the critical poifit. Considering that the droplet
fluctuations have more dramatic effect on dynamics than on thermodynamic (static) prop-
erties, this cross-over can be viewed as a con&s-from the static critical behavior of the
pure system to the random-exchange fixed pthiat describes the critical behavior of a

d = 3 ferromagnet with weak site disorder (random-exchange disorder).

The attention is next focussed on the time-evolution of the zero-field-cooled magneti-
zation, Mzec(t), starting from the timé = 0 when a static field of given strength is ap-
plied. Figure 9 displays the representatiig-c(t) data (symbols), taken at various fixed
temperatures in a field dl = 100 Oe without any wait time (i.ety = 0), and the best
least-squares fits (continuous curves) based on the expression

Mzrc(t) = Mp [1 - {Mfexp(—t/1)) + (/1) =} (6)

which has a form consistent with eq. (1). A representative pldtigfc vs. time for
different wait times(ty = 0 and 7200 s) al = 22 K andH = 100 Oe, shown in figure

10, serves to demonstrate that no aging effects are discernible at any temperature in such
experiments; the small disparity between the relaxation curves particularly at short times
(t <50 s) is traceable to the slight difference imigerature. A perfect agreement between
the data and the fits noticed in figure 9 bears a testimony to the fact that eq. (6) forms
an excellent description of the observed time dependenbgf at all temperatures ex-

cept forT = 72189 K; at this temperaturel > T.), instead of eq. (6), the expression
Mzpc(t) = Mg[Miexp(—t/17) + (t/15)~] fits theM,(t) data better. Figure 9 shows the
best theoretical fit (continuous curve), based on the latter expression, fdraét) data

taken at this temperature. The optimum values of the free fitting parané4et; , 71, 75

anda’ obtained at different temperatures are plotted against temperature in figures 11-13.
Note that theMzgc(t) data taken afl > T in H = 10 Oe andH = 100 Oe have been
corrected for the diamagnetic contribution arising from the empty sample holder. Such
corrections, determined from the empty sample holder rur$ at10 Oe and 100 Oe,
become necessary at such temperatures.

The striking features presented by the temgture variations of the parameters are
the following: (I) My(T) atH = 10 Oe exhibits the demagnetization-limited-like behav-
ior, typical of ferromagnets, at temperatures below the zero-field Curie temperature [20]
Te(0) =56.377 K. (I1) For T < 0.9T¢(H) (field-dependenit, to be defined later)M; and
M; depend sensitively on field and, to a lesser extent, on temperafjuaeda’ are in-
sensitive to both field and temperature whergas temperature-independent but depends
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Figure 10. Representativzrc(t) data taken aH = 100 Oe and widely different
wait time, ty, values, showing the absence of aging effects (see text).

on field such that;(H = 10 Oe)> 15,(H = 100 Oe). (lll) AtT > 0.9T¢(H), Mj and
Mj drop rapidly and change sign & = T¢(H), o’ increases steeply to reach a peak at
T = T¢(H), while 7; and T, exhibit a singular behavior. As in the caseMf(t) data, the
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observations (II) and (IIl) basically reflect the fact that power law and exponential relax-
ation mainly govern the behavior dfzc(t) within and outside the critical region, respec-
tively. The singular behavior of the relaxation timgsand 1, like those ofr; and 1o,

has been analysed using expressions (2) and (3) with the result that logarithmic divergence
again provides a better degation (more convincingly forr}) of the observed critical be-
havior of7; andtj than a simple power law does. Thaistis indeed the case is made clear

by the optimum fits based on eqs (2) and (3), shown in figures 12 and 13 as continuous
and dotted curves, respectively, and by the valueg?oflisplayed in table 2. This table

also lists the optimum values of the paramerérsTCT'(H), B’ andC’ (a’,TCT'(H), b’ andc)

for the fit based on eq. (2) (eq. (3)'ICT'(H) represents the temperature at whighor 75
diverges for a given value dfi. From the entries in table 2, it is evident that for a given
value ofH, 11(T) and15(T) data yield the same value for the critical temperature within

the uncertainty Iimits,TCT'(H) assumes a higher value with increasing field strength and
that the logarithmic expone# is field-independent (within the error bars). At this stage
it should be emphasized that even though essentiallyr{i¥¢ data points in the critical
region are able to clearly distinguish between the logarithmic and power law divergences
in the present case, a much larger number of data points in the critical region are needed to
refine the value of the critical temperatufig, and hence, that of the critical exponeBy,
which characterizes the logarithmic divergence(f) atT =T/ .

Even though the droplet fluctuation model [18] does not consider the ‘in-field’ relaxation
of zero-field-cooled magnetization per se, some of the above observations do find a qualita-
tive interpretation in terms of this model. In this model, the effect of external magnetic field
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Figure 13. Exponentga’, and relaxation time, as functions of temperature for fields
H = 10 Oe (solid circles) and 100 Oe (open circles). The continuous (dotted) curve in
the lower panel represents the logarithmic fit (power law fit).

is to suppress the droplet fluctuations and hence, in moderate or low fields, the long-time
behavior of the temporal spin-autocorrelatfonction, i.e., eqgs (4) and (5), remains unal-
tered but the temperature at whithdiverges is expected to increase with field, consistent
with the present observation. A droplet, whose free energy is considerably less than the
average, is formed when the domain wall surrounding the droplet passes through regions
of weak ferromagnetic coupling, brought into drisce by quenched site (or equivalently,
random-exchange) disorder, and thus the locathain-wall free energy is reduced. Such
a dropletis long-lived because the domainMspinned to the regins of weak ferromag-
netic coupling (e.g., the regions surrounding the finite ferromagnetic clusters dn-=tg
infinite ferromagnetic network plus finite ferromagnetic cluster models proposed earlier by
Coleset al [22] and Kaul [23]) and in order to dissolve the droplet, the domain wall must
move away from these favorable locations and cross a large free-energy barrier. Higher the
external magnetic field strength, easier it is for the domain wall to cross the barrier (or, in
other words, to get depinned) and hence shorter the lifetime of the droplet. It immediately
follows thatt; should decrease with increasing field, as is indeed observed.

The existing theories, including the droplet fluctuation model, fail to provide any expla-
nation for the present findings such as: (a) logarithmic divergence @f) and, (15),
(b) insensitivity oft; anda’ to both field and temperature far < 0.9T¢(H), (c) prac-
tically no dependence on temperaturerdf(r, and a) for a given field strength (at zero
field) andT < 0.9T.(H) (< 0.9T¢(0)), and (d) the observation (Ill) above.

4, Summary and conclusion

With a view to study magnetic relaxation & ferromagnet with weak quenched random-
exchange disorder, two types of time-deperntdmeeasurements, namely, the isothermal
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Table 2. Optimum values for the fit parameters appearing in egs (2) and (3).

(a) forH =10 Oe

Al TH(K B C@) x2 d@) TTK b d) xP

(1073) (1075 (1079

51

Logarithmic

divergence, eq. (2)  1.2(1) 64.1(1) 16.6(1) 7.91) 4.1 1.2(1) 64.1(1) 16.6(1) 7.91) 4.1
x107° x1075

Power law

divergence, eq. (3)  9.5(1) 64.1(2)-8.4(1) 8.0(1) 4.5 9.5(1) 64.1(2)-8.4(1) 8.0(1) 4.5
x10-12 x10-12

)

Logarithmic

divergence, eq. (2)  .6(1) 64.0(1) 15.9(1) 3.8(1) 2.2 .G(1) 64.0(1) 15.9(1) 3.8(1) 2.2
x1077 x1077

Power law

divergence, eq. (3)  2.3(1) 64.0(2}-7.1(1) 3.4(1) 8.9 2.3(1) 64.02-7.1(1) 3.4(1) 8.9
x10-16 x10-16

(b) forH =100 Oe

1

Logarithmic

divergence, eq. (2)  9.6(1) 65.5(1) 16.0(1) 8.1(1) 0.2 9.6(1) 655(1) 16.0(1) 8.1(1) 0.2
x1077 x1077

Power law

divergence, eq. (3)  3.2(1) 65.5(2}-8.9(1) 8.2(1) 2.0 3.2(1) 65.5(2}-8.9(1) 8.2(1) 2.0
x10-12 x10-12

)

Logarithmic

divergence, eq. (2)  7.3(1) 65.6(1) 16.0(1) 4.8(1) 0.47 7.3(1) 65.6(1) 16.0(1) 4.8(1) 0.47
%1079 x107°

Power law

divergence, eq. (3)  2.3(1) 65.5(1}10(1) 5.2(1) 3.8 2.3(1) 65.5(1)-10(1) 5.2(1) 3.8
x10-16 x10-16

remanent magnetization decsd(t), and the ‘in-field’ growth of zero-field-cooled magne-
tization,Mzrc(t), with time, have been performed on a nearly ordered (long-range atomic
order parametet 0.95+ 0.02) sample of the weak itinerant-electron ferromagnejANi

in the temperature ranged®T; < T < 1.25T;, whereT, is the Curie temperature. None of
the expressions proposed hitherto for descrihg) in quenched random spin systems

in the literature, but only the following expressions f(t) andMzgc(t)

M(t) = Mo[Myexp(—t/T1) + (t/T2) ]
and
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Mzro(t) = Mg [1— {Mjexp(—t/11) + (t/15) " }]

are found to reproduce such data very closely. An elaborate analysis of the data based
on these expressions reveals several interesting aspects of magnetic relaxation in the fer-
romagnetic system in question that include the following: (i) No aging effects have been
observed iV (t) or Mzec(t) at any temperature. (ii) The power law decay (growth) and

the exponential decay (growth) essentiallyestmine the time dependence of remanent
magnetizationM(t) (zero-field-cooled magnetizatidtzgc(t), in the presence of external
magnetic fieldH) within and outside the critical region, respectively. (iii) The relaxation
times11(T)(11(T)) and 12(T)(75(T)) exhibit logarithmic divergence at critical tempera-

turesTd(Te 1(H)) and T2 (Te2(H)). (iv) Te*(H) andTe2(H) increase withH such that at

any given field value',l'cr1 = Tcré. (v) The exponenB(B'), characterizing the logarithmic
divergence ofty(T), 72(T)(15(T), 75(T)), possesses an order of magnitude higher value
for 1, compared to that for; (field-independent value @' ~ 16 for botht; and ).

(vi) For T < 0.9TJ (T < O.9TCT'(H)), T1,T2 and o are temperature-independenf @énd

a' are insensitive to both field and temperature whemgais temperature-independent

but depends on field such thaj(H = 10 Og > 13(H = 100 Og), where T (T (H))
stands for botfi,* andT.? (TCTQ(H)) and (Tcré(H)); in the same temperature range, i.e.,

for T <0.9T] or 0.9TCT'(H), a anda’ have widely different (by orders of magnitude)
values butr; = 11 ~ 9.8 s. Within the framework of the droplet fluctuation model, the
above observation (i) is a maeitation of a cross-over in the equilibrium dynamics from
the one characteristic of a putle= 3 ferromagnet (in which atomic ordering is complete)
and prevalent at temperatures away frignto that typical of ad = 3 random-exchange
ferromagnet, a3 — T, caused by quenched random-exchange disorder, whicteis-a

vant perturbation in the renormalization group sense in the present case. Barring certain
aspects of magnetic relaxation that find, at begjpaitative explanation in terms of the
droplet fluctuation model, most of the above findings expose the inadequacy of the existing
theories in that they fail to offer any explanation for most of the observations listed above.
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