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On the Incommensurate Phase of Pure and Doped Spin-Peierls System CuGeO3

Somendra M. Bhattacharjee a, Thomas Nattermann b and Christopher Ronnewinkel b

a Institute of Physics, Bhubaneswar 751 005, India
b Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany.
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Phases and phase transitions in pure and doped spin-Peierls system CuGeO3 are considered on
the basis of a Landau-theory. In particular we discuss the critical behaviour, the soliton width
and the low temperature specific heat of the incommensurate phase. We show, that dilution leads
always to the destruction of long range order in this phase, which is replaced by an algebraic decay
of correlations if the disorder is weak.

PACS numbers: 64.70.Rh, 75.10.Nr, 75.30Fv, 75.40.-s

The spin-Peierls (SP) transition is the classic instabil-
ity of one dimensional quantum spin-half antiferromag-
netic chains due to the coupling of the spins with the
lattice. A rigid Heisenberg chain has a nonmagnetic uni-
form ground state with a gapless fermionic excitation
spectrum [1]. This can be seen most easily by using
the Jordan-Wigner transformation, which maps the spins
onto (strongly) interacting pseudo-fermions [2]. Due to
the coupling to the lattice the system can lower its energy
by the standard Peierls mechanism: lattice distortions
freeze in at a wave vector 2kF which leads simultane-
ously to the opening of a gap at the Fermi-level in the
fermionic spectrum such that the energies of all occu-
pied fermionic states decrease [3]. In zero magnetic field
the free-fermion band is half-filled with Fermi-wave vec-
tor kF = π

2a , which corresponds to a dimerization of the
chain. A non-zero magnetic field lowers the Fermi-level
[4], but Umklapp processes still favor the distortion at
π/a until a critical field strength HI is reached, at which
a transition to an incommensurate (I) phase with mod-
ulation vector |2kF − qs| sets in. In the I-phase a new
(empty) band appears in the middle of the gap of the
fermionic spectrum. Thus, spin excitations still exhibit a
gap which is however smaller than the gap of the dimer-
ized (D) phase. The above picture follows from theories
obtained for free or weakly interacting pseudo fermions,
in which phonon dynamics were essentially ignored [5,6].
There, the SP transition is the result of the freezing of a
(classical) phonon mode due to further downwards renor-
malization of the phonon frequency by the spin-phonon
interaction [5,6]. This scenario is supported by the ex-
perimental data of organic SP systems [7]. However, it
does not seem to apply in all respects to the transition
found recently in the inorganic SP substance CuGeO3 [8].
Though not devoid of controversy, there is now a wealth
of well-accepted results for CuGeO3, which shows two SP
transitions [9–13,15,16]. The SP transition from a disor-
dered, uniform (U) to a D phase at 14.3 K in zero field
is shifted slightly to lower T if the field increases until a
Lifshitz point at T ≈ 11.3 K and H ≈ 12.5 T is reached,
where the transition to an I phase sets in. Some exper-

imental results which are not explained by the existing
theories, are: (i) no soft phonon has been observed so far
[8,9], (ii) a (Peierls) gap in the D phase is observed in low
temperature specific heat measurements, but not in the
I phase, for which a Debye–like T 3-law has been found
with an amplitude much larger than the background (lat-
tice) contribution [10], (iii) solitons, which are supposed
to produce the modulation in the I phase are broad [11]
in comparison to the sharp Sine-Gordon like solitons pre-
dicted by mean-field like calculations [5], (iv) already a
small amount of doping leads to a strong reduction of the
SP temperature TSP [16] and a drastic suppression of the
anomalies at the UI transition [11,17].

Since the phonon energies are always large compared
with the magnetic ones, the applicability of the adiabatic
approximations has been questioned [18]. Khomskii et
al. [19] developed a soliton picture of the SP transition
in CuGeO3, which resembles somewhat structural order-
disorder transitions [20]. No soft mode phonon is ex-
pected, but the SP transition corresponds to deconfine-
ment of solitons, which are bound to pairs below TSP.
These solitons are simultaneously magnetic and struc-
tural excitations: they carry spin 1/2 and are domain
walls between the two groundstates of the dimerized lat-
tice.

It is the aim of the present paper to explain the prop-
erties (ii)–(iv) by a pure phenomenological approach,
which avoids delicate approximations in the coupled spin
phonon system: The T 3-law of the specific heat in the I
phase is explained quantitatively by phason fluctuations.
It is argued that broad solitons are fingerprints of the
type II lock-in transition which occurs in SP systems like
CuGeO3. Finally, we show that dilution leads to com-
plete destruction of long range order in the I phase.

Incommensurate phases are classified according to the
existence of an inversion symmetry for the structural
transition in question [21]. In case there is an inver-
sion symmetry for the Hamiltonian, as for CuGeO3,
first derivatives of the order parameter (Lifshitz invari-
ants) do not exist. Indeed, for CuGeO3 the uniform
high temperature orthorhombic structure, space group
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Pbmm, changes below TSP to a dimerized structure,
space group Bbcm, with distortion wave vector (1

2
1
2
0)

(established from X-ray and neutron diffraction experi-
ments [9]). Standard group theoretic arguments based
on the symmetries and the invariant group of the dis-
tortion vector in the Brillouin zone [22] show, that the
transition is described by four non-equivalent, one dimen-
sional irreducible representations [23]. It is very likely,
that only one of these four representations corresponds
to the primary order parameter, which is real and can
be considered to be proportional to the displacement of
the copper ions. The other three may occur as secondary
order parameters. In fact, neutron scattering data indi-
cates that at least two normal modes are necessary to
explain the displacement pattern of the D phase [9]. A
simple transformation of reversing the displacements on
one sublattice helps us in getting an ordered state with
zero wavevector for the D phase. We take this trans-
formed and coarse grained displacements to be propor-
tional to the order parameter field ψ(x). In general, ψ(x)
will also include contributions from the magnetic degrees
of freedom.

The Landau Hamiltonian is that of an anisotropic Ising
model [24,21] H{ψ} =

∫

ddxh{ψ(x)} , where the Hamil-
tonian density is (for i = x, y, z)

h{ψ} =
r

2
ψ2 +

∑

i

ci
2

(∂iψ)2 +
u

4
ψ4 +

+
d

4
(∂2

zψ)2 +
w

6
ψ6 +

e

2
ψ2 (∂zψ)

2
(1)

Terms involving ∂zψ ∂
3
zψ, though not shown explicitly,

may also appear [21]. We have included higher order
terms in order to stabilize the system for the case when
one of the ci coefficients (here cz) or u becomes nega-
tive for sufficiently strong magnetic field. A negative ci
signals the transition to the I phase. The parameters r
and ci are taken as analytic functions of T and H with
r = r0 (T − TSP(H)), and cz(T,H) = c0 (HI(T ) − H).
Microscopic treatments [5] and experiments suggest [10],
that u also decreases considerably with increasing mag-
netic field.

A mean field analysis (MFA) of the phase diagram re-
quires treating the Hamiltonian Eq. (1) as a free energy
minimized with respect to ψ. Let us first assume, that
u and d remain positive everywhere in the H–T –plane.
Then, we can ignore the last two terms in (1). If ci > 0 for
all i, the minimum of the free energy occurs for wave vec-
tor k = 0, while a nonzero k vector is possible if cz < 0.
The mean field phase boundaries are given for UD: r = 0,
cz > 0, UI: r = c2z/2d and DI: r = 1

4
(
√

3/2 − 1)−1c2z/d
[24]. The spontaneous wave vector in the I phase is given
by q2s = −cz/d. The DI transition is first order while
the other two are second order, in agreement with exper-
iments.

Fluctuations do make subtle changes in the phase di-
agram but the overall features remain the same. The

critical behavior of the UD transition is Ising–like but
the UI transition is XY–like. This difference originates
from the fact, that in the I phase the order parameter
condenses at k = ±qs and has consequently two compo-
nents ∆(x) = (∆1(x),∆2(x)). These are related to ψ(x)
by ψ(x) =

√
2 [∆1(x) cos(qsx) + ∆2(x) sin(qsx)]. In the

I phase, the Landau functional thus can be written as

h{∆} = 1
2
(r − c2z/2d)∆

2 + 2|cz|(∂z∆)2

+ cx(∂x∆)2+ cy(∂y∆)2+ 3
2
u(∆2)2 (2)

Since the number of degrees of freedom of the system
cannot change when going from the D to the I phase, it
is clear that Eq. (2) is valid only for fluctuations of ∆(x)
with wavelength long compared to q−1

s , i.e. as long as we
are away from the Lifshitz point.

If one approaches the ordered phase along the line
cz(T,H) = 0, one observes so called Lifshitz critical be-

haviour, which follows from a change of the dispersion
relation to Ak = r + cxk

2
x + cyk

2
y + dk4

z . Note that at
the Lifshitz critical point the conventional hyperscaling is
changed to ν‖+(d−1)ν⊥ = 2−α where ν‖ = ν⊥/2 = 0.31
are the correlation length exponents parallel and perpen-
dicular to the z-direction [24]. Approaching the D or I
phase, respectively, from the U phase on a line parallel
to that given by cz(T,H) = 0, at first Lifshitz type criti-
cal behaviour will be observed before the region of Ising–
or XY–type critical, respectively, behaviour is asymptot-
ically reached.

Considering the DI transition, fluctuation effects are
expected to be less important, because it is first order
in MFA. A refined MFA has been worked out by Bruce,
Cowley and Murray [21] for this case, who found that
in the I phase the order parameter can be described by
a multiplane-wave Ansatz ψ(x) =

∑

am cos (mqzz) with
m = 1, 3, 5..., which is rapidly converging. For example,
the ratio |a3/a1| ≈ 0.035 close to the transition [21]. In
this sense the system shows broad domain walls. Also in
this refined theory the transition remains first order.

Above we assumed u to be positive even for large field
values. In the opposite case, the transition to the U phase
might become first order. Some mean-field theories [5]
predict very special relations between the coefficients of
the Landau-expansion, i.e.

u/cz = const. , w = 3du2/4c2z , e = 5du/2cz . (3)

If these are fulfilled, the DI transition may become con-

tinuous, at least close to the Lifshitz point [25]. In-
deed, for this very particular relation of the coefficients of
the Landau-expansion (1), the ground state solutions are
the Jacobian elliptic functions ψs(z) ≡ sin(φs(z)/2) =
ψ0 sn(z/kξs, k), where ξs is a bare correlation length (ex-
pressed by cz, d and r) and k is the modulus of this
function [5,26]. Note, that φs(z), which is related to the
spin-density, obeys the Sine-Gordon equation. In this
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case solitons are sharp in the sense that the separation of
domain walls diverges by approaching the D phase. How-
ever, from a symmetry point of view, which we adopt
here, we do not see a deeper reason, why the relations
(3) should be fulfilled in general by an exact microscopic
theory. In fact, these relations were obtained using the
adiabatic approximation. Consequently one has to ex-
pect, that in general the w- and e-terms in (1) do exist,
but violate the relations (3). These terms will change the
modulation amplitude ratio |a3/a1| to larger values, but
without reaching the sharp soliton limit. Thus the DI
transition is expected to remain first order, as found also
experimentally for CuGeO3 [8,11].

Although the validity of Landau-theory is essentially
restricted to the region close to the transition, one should
expect that it can be used to understand at least qual-
itatively the low temperature specific heat data. For
this purpose, we have to determine the low-lying exci-
tations of the ordered structure. These can be found by
adding the kinetic energy term

∫

ddxρ
2
ψ̇2(x) to the GL-

Hamiltonian, where the mass density ρ will have contri-
butions both from the magnetic and the lattice degrees
of freedom. We will further assume, that ψ obeys Bose-
statistics. Using the saddle point approximation to de-
termine the equilibrium value of ψ, one obtains in the
D phase ω2(k) = 1

ρ(2|r| + cik
2
i ) for the frequency of the

harmonic excitations of the order parameter field. In
the D phase, were the order parameter is real, we iden-
tify Eg = ~(2|r|/ρ)1/2 with the gap which is found in
the low-T specific heat. In the I phase in addition to the
massive amplitude mode a gapless phason mode with fre-
quency ω2(k) = 1

ρ

(

cxk
2
x + cyk

2
y + 2|cz|k2

z

)

appears [21],
which will dominate the specific heat

Cphason ≈
√

2π2

15
kB

(

kBT

Egξ0

)3

≡ βphasonT
3. (4)

Here we have introduced ξ0 = (ξ0xξ0yξ0z)
1/3 where

ξ20i = ci/r0T0 and used T ≈ T0/2 to express ρ by Eg.
Thus, the phason mode delivers a T 3–contribution to the
low–temperature specific heat, in addition to that from
acoustic phonons [27].

Next we extend our analysis to the quenched disor-

dered case, e. g. random substitutions of Cu by Zn or Ni
and/or Ge by Si in CuGeO3. Such substitutions change
the various interactions locally but do not break the sym-
metry of the displacements in favor of a particular dimer-
ization. Therefore, the effects of these random substitu-
tions can be modeled by randomness in the coefficients of
the original Landau Hamiltonian without any symmetry
breaking term. Little reflection shows, that the main ef-
fect will come from a randomness δr(x) in r [28]. In the
D phase, this leads to a decrease of TSP, as was shown
microscopically by Khomskii et al. [19]. Moreover, the
critical behaviour will be changed to that of the diluted
Ising model [29].

The effect of disorder is even more severe in the I phase.
This can be seen easily by rewriting ψ(x) as ψ(x) =√

2∆(x) cos (qsx + θ(x)). With δr(x) = κ
∑

i δ(x − xi)
the disorder term can now be written as

κ

2

∑

i

∆2(xi) cos [2 (θ(xi) + qsxi)] (5)

The random impurity positions xi lead to a random
phase αi ≡ α(xi) = 2qsxi (mod 2π) which is equally dis-
tributed between 0 and 2π. It is well known that such a
random anisotropy term destroys the translational long
range order of the I phase [30]. However, the phase–
phase correlation function diverges only logarithmically

[31] 〈(θ(x) − θ(0))2〉 = π2

18
ln(x/LL). Here the overbar

denotes the disorder average. The Larkin–length LL is
related to the strength of the disorder, a rough estimate
is

LL ≈ 2π3
[

ξ̄20/(d lnTSP/dnimp)
]2
n−1

imp (6)

where nimp denotes the concentration of the impurities.
Because of the logarithmic divergence of the phase fluc-
tuations, there is however quasi–long range order of the
order parameter correlation function

〈∆(x)∆(0)〉 ≈
(

ξ̄0

√

∑

i(xi/ξ0,i)2/LL

)−π2/36

(7)

Despite of the loss of true long range order, the system
will however still show Bragg peaks of finite width, as
follows from the Fourier transform of (7). In deriving
these results we have neglected vortex-ring excitations.
It has been argued recently, that these can indeed be
neglected for sufficiently weak disorder and low temper-
atures [32]. At elevated temperatures or larger dilution
their condensation triggers the transition to the disor-
dered phase. The type of this transition is presently un-
known.

We briefly apply the results obtained so far to CuGeO3.
Fixing the T = 0 value of the order parameter at
ψ0 = 1, we have r0T0 = u0. From the mean–field jump
of the specific heat ∆CMFA = r20T0/2u = u0/2T0 ≈
22.7 mJ

K cm3 in zero magnetic field [10], we get u0 =

650 mJ
cm3 which gives the correct size of the critical re-

gion. Since ∆CMFA decreases for increasing field and
is reduced approximately by a factor 4.6 when reach-
ing the Lifshitz point, u is reduced correspondingly to
about uL = 112 mJ

cm3 , but still positive. Defining the
Ginzburg critical region τG ≡ |TG − T0|/T0 as the re-
gion, in which the first fluctuation correction to the spe-
cific heat becomes larger than ∆CMFA, this gives for
zero field, ξ0,x = 0.12 nm, ξ0,y = 0.36 nm and ξ0,z =
0.69 nm [14], with geometric mean ξ0 = 0.31 nm, τG,I ≈
(kBT0/8πuξ

3
0)

2 ≈ 0.16 – larger ∆CMFA diminishes τG
correspondingly. For the XY-transition far from the Lif-
shitz point we get τG,XY ≈ 0.32 at a magnetic field where
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ξz(H,T = TSP) ≈ ξ0,z. At the Lifshitz point the critical
region is given by τG,L ≈ τ2/3

G (ξ0,zu0/
√

2ζuL)4/3 ≈ 0.7
where ζ0 = (d/2r0T0)

1/4 ≈ 1.2 nm. The critical exponent
β changes from βI ≃ 0.325 forH < HL to βL ≃ 0.15..0.18
for H ≈ HL and then to βXY ≃ 0.346 for H > HL, in
agreement with the experimental observation [13].

From the low–temperature specific heat in the D phase
one finds Eg ≈ 23 K [10,14], which gives with Eq. (4)
for the phason specific heat βphason ≈ 1.3 mJ

K4mol
in the I

phase, which has to be compared with the experimental
value of 1.4 mJ

K4mol
[10]. This good agreement is possibly

to some degree accidental, since the magnetic field de-
pendences of the various parameters have not been taken
into account carefully. But at least the order of magni-
tude should be right.

For the Larkin length we obtain with x = nimpvuc/2
for the concentration of the Zn-atoms (vuc denotes the
volume per unit cell) and assuming a linear dependence
of TSP(x) on x with d lnTSP(x)/dx ≈ 14 [19], for x ≈
0.04 : LL ≈ 1.2 nm and for x ≈ 0.07 : LL ≈ 0.7 nm. The
data of Kiryukhin et al. [11] was fitted with an exponen-
tial decay of correlations with an anisotropic correlation
length ξ of order 10 nm. It would be interesting to check,
whether their data can also be fitted by a power law (7).
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