Proc. Indian Acad. Sci. (Math. Sci.), Vol. 99, No. 1, April 1989, pp. 1-5. © Printed in India.

Zassenhaus conjecture for A_5

IS LUTHAR and IBS PASSI

Centre for Advanced Study in Mathematics, Panjab University, Chandigarh 160014, India

MS received 10 May 1988

Abstract. We develop a criterion for rational conjugacy of torsion units of the integral group ring $\mathbb{Z}G$ of a finite group G, as also a necessary condition for an element of $\mathbb{Z}G$ to be a torsion unit, and apply them to verify the Zassenhaus conjecture in case when $G = A_5$.

Keywords. Zassenhaus conjecture; rational conjugacy; torsion unit.

1. A criterion for rational conjugacy

Let U be a complex $n \times n$ matrix with $U^k = 1$, $k \ge 1$. Let Z be a primitive kth root of unity, and let μ_l be the multiplicity of Z^l as an eigenvalue of U. Then

$$\mu_l = \frac{1}{k} \sum_{r=0}^{k-1} \operatorname{Tr}(U^r) \mathsf{Z}^{-lr}; \quad l = 0, 1, \dots, k-1.$$
 (1)

In particular, the numbers on the right hand side of (1) are non-negative integers with sum n.

This follows at once on noting that

$$\operatorname{Tr}(U^r) = \mu_0 1 + \mu_1 Z^r + \dots + \mu_{k-1} Z^{(k-1)r}.$$

Let G be a finite group. Two torsion units u and v of $\mathbb{Z}G$ are rationally conjugate if and only if in each irreducible representation their matrices have the same characteristic polynomials. This is a consequence of Lemma 5 of [4] coupled with the fact that these matrices, being of finite order, are diagonalizable.

Let C be a conjugacy class in G. For an element $\alpha = \sum \alpha(g)g$ in $\mathbb{C}G$, we define its partial augmentation $\varepsilon_C(\alpha)$ over C by setting

$$\varepsilon_C(\alpha) = \sum_{g \in C} \alpha(g).$$

One checks immediately that $\varepsilon_C(\alpha\beta) = \varepsilon_C(\beta\alpha)$, and hence conjugate units in $\mathbb{C}G$ have the same partial augmentations.

Let u be a unit in $\mathbb{Z}G$, $u^k = 1$, $k \ge 1$. Let χ be any character of G of degree n, and let R be the corresponding representation. The multiplicity $\mu_l(u;\chi)$ of Z^l as an eigenvalue of R(u) is given by

$$\mu_l(u;\chi) = \frac{1}{k} \sum_{r=0}^{k-1} \chi(u^r) \mathbf{Z}^{-lr}; \quad l = 0, 1, \dots, k-1.$$

Collecting together those r which have the same g.c.d. with k we get

$$\mu_l(u;\chi) = \frac{1}{k} \sum_{\substack{d|k \\ r, k/d}} \sum_{\substack{r \bmod k/d \\ (r, k/d) = 1}} \chi(u^{dr}) \mathsf{Z}^{-dlr}.$$

Since $(u^d)^{k/d} = 1$, $\chi(u^d)$ is a sum of n (k/d)th roots $\varepsilon_1, \ldots, \varepsilon_n$ of unity; therefore for (r, k/d) = 1

$$\chi(u^{dr}) = \varepsilon_1^r + \cdots + \varepsilon_n^r = (\chi(u^d))^{\sigma_r},$$

where σ_r is the automorphism $Z^d \to Z^{dr}$ of $\mathbb{Q}(Z^d)$. It follows that

$$\mu_l(u;\chi) = \frac{1}{k} \sum_{d|k} \mathrm{Tr}_{\mathbb{Q}(\mathbb{Z}^d)/\mathbb{Q}}(\chi(u^d) \mathbb{Z}^{-dl}); \quad l = 0, 1, \dots, k-1.$$
 (2)

In particular, we have:

Theorem 1. Suppose that u is an element of $\mathbb{Z}G$ satisfying $u^k = 1$, $k \ge 1$. Let Z be a primitive kth root of unity. Then for every integer l and every character χ of G, the number

$$\frac{1}{k} \sum_{d|k} \mathrm{Tr}_{\mathbf{Q}(\mathbf{Z}^d)/\mathbf{Q}}(\chi(u^d) \mathbf{Z}^{-dl})$$

is a non-negative integer.

To obtain another consequence of (2), we notice that $\chi(u^d)$ depends only on the numbers $\varepsilon_C(u^d)$ and not on u as such. Therefore we obtain the following criterion for rational conjugacy of torsion units of $\mathbb{Z}G$.

Theorem 2. Let u and v be units in $\mathbb{Z}G$ with $u^k = 1 = v^k$, $k \ge 1$. Then u and v are rationally conjugate if and only if $\varepsilon_C(u^d) = \varepsilon_C(v^d)$ for every divisor d of k and every conjugacy class C of G.

In particular, for units of prime order we have

COROLLARY 1

Two units u and v in $\mathbb{Z}G$ satisfying $u^p = 1 = v^p$, p a prime, are rationally conjugate if and only if they have the same partial augmentations.

These results enable us to check the Zassenhaus conjecture in A_5 .

2. Torsion units in A_5

Theorem 3. Every normalized torsion unit in $\mathbb{Z}A_5$ is rationally conjugate to a group element.

Proof. We denote by C_1 , C_2 , C_3 , C_4 and C_5 the conjugacy classes in A_5 of 1, $S=(1\ 2)(3\ 4),\ T=(1\ 2\ 3),\ V=(1\ 2\ 3\ 4\ 5)$ and $V^2=(1\ 3\ 5\ 2\ 4)$ respectively. The

character table for A_5 is reproduced below [2, p. 319]:

Let $u = \sum u(g)g$ be a normalized torsion unit in $\mathbb{Z}A_5$ of order k > 1, and let

$$v_i = \varepsilon_{C_i}(u), \quad i = 1, 2, \ldots, 5$$

be the partial augmentations of u. By Corollary 1.3 on page 45 of [5], we have

$$v_1 = 0; (3)$$

since u is of augmentation 1,

$$v_2 + v_3 + v_4 + v_5 = 1. (3')$$

For any character χ of A_5 of degree n,

$$\chi(u) = v_2 \chi(S) + v_3 \chi(T) + v_4 \chi(V) + v_5 \chi(V^2). \tag{4}$$

The possible values of k are divisors of 60 [1]. To prove the above theorem we need to show that a normalized unit of order 2, 3 or 5 is rationally conjugate to a group element, and that there is no normalized unit of order 4, 6, 10 or 15.

By Theorem 2.7 of [3] we have

$$\begin{cases}
v_3 = v_4 = v_5 = 0, v_2 = 1, & \text{when } k = 2 \text{ or } 4 \\
v_2 = v_4 = v_5 = 0, v_3 = 1, & \text{when } k = 3 \\
v_2 = v_3 = 0 & \text{when } k = 5 \\
v_4 = v_5 = 0 & \text{when } k = 6 \\
v_3 = 0 & \text{when } k = 10 \\
v_2 = 0 & \text{when } k = 15.
\end{cases}$$
(5)

When k=2 or 3, the partial augmentations of u are the same as those of S or Trespectively; hence by Corollary 1, u is rationally conjugate to S or T. When k = 5, we have by (2), with $Z = \exp(2\pi i/5)$, $K = \mathbb{Q}(Z)$

$$\mu_{l}(u; \chi_{3}) = \frac{1}{5} [3 + \operatorname{Tr}_{K/Q}(Z^{-l}(v_{4}\chi_{3}(V) + v_{5}\chi_{3}(V^{2})))]$$

$$= \begin{cases} v_{4} & \text{if } l = 1 \\ v_{5} & \text{if } l = 2. \end{cases}$$

As the integers $\mu_1(u, \chi_3)$ are non-negative, the same is true of ν_4 and ν_5 ; since $\nu_4 + \nu_5 = 1$, we have

$$v_4 = 1$$
, $v_5 = 0$ or $v_4 = 0$, $v_5 = 1$.

Thus the partial augmentations of u are the same as those of V or V^2 ; hence u is rationally conjugate either to V or V^2 .

Since A_5 has no element of order 4, we see by Theorem 2.1 on page 177 of [5] that there are no normalized units of order 4 in $\mathbb{Z}A_5$. Thus it only remains to prove that k cannot be 6, 10 or 15.

Let k = 6, ω a primitive cube root of unity, and $Z = -\omega$. We have, by the foregoing results, for any character χ of degree n,

$$\mu_l(u;\chi) = \frac{1}{6} [n + \chi(S)Z^{-3l} + \mathrm{Tr}_{Q(\omega)/Q}(\chi(T)Z^{-2l} + \chi(u)Z^{-l})].$$

It is clear from the character table of A_5 that $\chi(S)$, $\chi(T)$ and hence $\chi(u) = v_2 \chi(S) + v_3 \chi(T)$ are integers. Thus

$$\mu_l(u,\chi) = \frac{1}{6} \left[n + (-1)^l \chi(S) + \chi(T) \operatorname{Tr}_{\mathbf{Q}(\omega)/\mathbf{Q}} \omega^l + (-1)^l \chi(u) \operatorname{Tr}_{\mathbf{Q}(\omega)/\mathbf{Q}} \omega^{-1} \right]. \tag{6}$$

Taking $\chi = \chi_3$, we obtain

$$\mu_{l}(u;\chi_{3}) = \frac{1}{6} [3 + (-1)^{l+1} + (-1)^{l+1} \nu_{2} \operatorname{Tr}_{\mathbf{Q}(\omega)/\mathbf{Q}} \omega^{-l}].$$

These being non-negative integers, we obtain on taking l=0, 1 and 2 that $v_2=-2$ and hence $v_3 = 3$. Now take $\chi = \chi_5$ in (6) to obtain

$$\mu_l(u; \chi_5) = \frac{1}{6} [5 + (-1)^l - \text{Tr}_{\mathbf{Q}(\omega)/\mathbf{Q}}(\omega^l + 5(-1)^l \omega^{-l})]$$

giving $\mu_0(u,\chi_5) = -1$ which is impossible. Thus there are no units of order 6.

Now let k = 10; then u^2 is rationally conjugate to either V or V^2 . Replacing u by u^3 , if necessary, we may assume that u^2 is rationally conjugate to V. Let $\zeta = \exp(2\pi i/5)$ and $Z = -\zeta$. We have for a character χ of degree n

$$\mu_{l}(u,\chi) = \frac{1}{10} \left[n + (-1)^{l} \chi(S) + \operatorname{Tr}_{\mathbf{Q}(\zeta)/\mathbf{Q}}(\zeta^{3l} \chi(V)) + \operatorname{Tr}_{\mathbf{Q}(\zeta)/\mathbf{Q}}((-1)^{l} \zeta^{4l} \chi(u)) \right].$$

Taking $\chi = \chi_5$, we find that for every l

$$\frac{1}{10} \left[5 + (-1)^{l} + (-1)^{l} v_2 \operatorname{Tr}_{\mathbf{Q}(\zeta)/\mathbf{Q}}(\zeta^{4l}) \right]$$

is a non-negative integer. One easily checks on taking l = 0, 1 and 5 that this is

Finally let k = 15; then u^3 is rationally conjugate to V or V^2 . Replacing u by u^2 , if necessary, we may assume that u^3 is conjugate to V. Let $\zeta = \exp(2\pi i/5)$, $\omega = \exp(2\pi i/3)$ and $Z = \omega \zeta$.

We have, for a character χ of degree n

$$\mu_l(u;\chi) = \frac{1}{15} \left[n + \operatorname{Tr}_{\mathbf{Q}(\omega)/\mathbf{Q}}(\chi(T)\omega^l) + \operatorname{Tr}_{\mathbf{Q}(\zeta)/\mathbf{Q}}(\chi(V)\zeta^{2l}) + \operatorname{Tr}_{\mathbf{Q}(\mathbf{Z})/\mathbf{Q}}(\chi(u)\mathsf{Z}^{-l}) \right].$$

Taking $\chi = \chi_5$ and l = 0, 3 we see that

$$\frac{3-8v_3}{15}$$
 and $\frac{3+2v_3}{15}$

are non-negative integers. This being obviously impossible, we conclude that there is no normalized unit of order 15. This completes the proof of the theorem.

References

- [1] Berman S D, On the equation $X^m = 1$ in an integral group ring, Ukr. Math. Z. 7 (1955) 253-261
- [2] Burnside W, Theory of groups of finite order (Cambridge: Dover Publications) (1955)
- [3] Marciniak Z, Ritter J, Sehgal S K and Weiss A, Torsion units in integral group rings of some metabelian groups, II. J. Number Theory 25 (1987) 340-352
- [4] Polcino C Milies and Sehgal S K, Torsion units in integral group rings of metacyclic groups, J. Number Theory 19 (1984) 103-114
- [5] Sehgal S K, Topics in group rings (New York: Dekker) (1978)