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Objectives: The resistance of clinical isolates of Leishmania donovani to sodium antimony gluconate
(SAG), the mainstay of treatment in Indian visceral leishmaniasis, has become a critical issue in India.
The present work investigates the mechanism of resistance to SAG in parasites isolated from patients
who are unresponsive to SAG.

Methods and results: Susceptibility to SAG as determined in vitro with intracellular amastigotes corre-
lated well with the clinical response. The ABC transporter gene MRPA was amplified in resistant field
isolates as part of an extrachromosomal circle. Co-amplification of the pterin reductase gene (PTRT)
and MRPA suggests amplification of the H locus in SAG-resistant isolates. Amplification of MRPA was
correlated to increased RNA as determined by real-time PCR. MRPA is an ABC-thiol transporter, and
cysteine and glutathione were increased in the resistant isolates. Ornithine decarboxylase (a rate limit-
ing enzyme in polyamine biosynthesis), and y-glutamylcysteine synthetase (a rate limiting enzyme in
glutathione biosynthesis), the two building blocks of the main cellular thiol trypanothione, were over-
expressed in some of the resistant isolates.

Conclusions: A variety of resistance mechanisms to SAG, most of them consistent with a model based
on the study of resistance in vitro, were present in clinical isolates from the same geographical region.
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Introduction

Leishmaniasis is caused by a protozoan parasite that gives rise
to a wide spectrum of diseases, ranging from the simple self-
limiting cutaneous form to the debilitating visceral form, which
is often fatal if left untreated. Although pentavalent antimonials
like sodium antimony gluconate (SAG) are the age-old conven-
tional therapy for visceral leishmaniasis (VL), in more recent
times, increasing resistance to SAG has emerged as a major
barrier in the treatment of VL." There has been an epidemic of
primary resistance to antimonial drugs in parts of India' and an
urgent need exists to define the mechanism(s) of resistance.

The precise mechanism of action of SAG remains an enigma
but it is generally agreed that pentavalent Sb(V) is reduced to
trivalent antimony Sb(III), which constitutes the active form of

the drug against the parasite.2 Reduction of the metal may take
place either in the parasites® © or in the macrophages,” or in
both. To date, work on antimony resistance in Leishmania spp.
has been mostly on laboratory mutants, in which resistance was
induced in vitro in the presence of antimony or to the related
metal arsenic.®~'® A consistent resistance mechanism deduced
from in vitro work involves multiple steps where overproduction
of ornithine decarboxylase (ODC), the rate limiting enzyme of
the polyamine biosynthetic pathway'' and +y-glutamylcysteine
synthetase (yGCS), the rate limiting enzyme of glutathione
(GSH) biosynthesis®'? leads to overproduction of trypanothione
[T(SH)Z],&10 which is the major reduced thiol of Leishmania
and composed of a N 1,N8-bisglutathione spermidine conjugate.13
Trypanothione is thought to bind to the active reduced form of
the metal'* and these metal—trypanothione conjugates are either
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sequestered into an intracellular organelle by the ABC transpor-
ter, MRPA'® (formerly known as P-glycoprotein A, PGPA) or
extruded outside the cell by an efflux pump.'® Resistance in
field isolates may also involve amplification of genes other than
the above-described metabolic pathway.17 Yet another mechan-
ism leading to down-regulation of an uptake system is the loss
of an aquaglyceroporin (AQP1) allele that has been reported to
cause an increase in resistance to SAG.'®"?

Resistance to SAG in field isolates is less well defined, and
only recently were susceptibility values, determined using in
vitro assays, found to correlate with the clinical response.zo_22
We found that several of the findings elucidated while studying
resistance in laboratory strains are also operational in field iso-
lates. The mechanism(s) of resistance to SAG varied in isolates
from the same geographical area. Understanding the mechan-
isms of antimony resistance in field isolates of Leishmania dono-
vani will aid in development of strategies to avoid or overcome
drug resistance.

Materials and methods

Parasite and culture conditions

Promastigotes of Indian Leishmania donovani clones, GEI
(MHOM/IN/80/GE1F8R),”> AG83 (MHOM/IN/80/AGS3) and
four untyped clonal strains 2001, 41, NS2 and CK2 were
isolated from patients with VL and were routinely cultured at
22°C in M-199 medium (Sigma, USA) supplemented with 10%
heat-inactivated fetal bovine serum (FBS; Gibco/BRL, Life
Technologies Scotland, UK) and 0.13 mg/mL penicillin and
streptomycin.

Clinical isolates obtained prior to drug treatment from VL
patients who had responded to SAG chemotherapy were desig-
nated as SAG-S (SAG-sensitive), whereas VL patients who did
not respond to SAG were designated as SAG-R (SAG-resistant).
Accordingly, SAG-S isolates used in this study include AG83-S
and 2001-S, whereas the four SAG-R isolates were 41-R,
GE1-R, NS2-R, and CK2-R. The SAG-R isolates were main-
tained in the absence of drug pressure in vitro. The isolates have
been passaged through hamsters or BALB/c mice to retain their
virulence, and importantly, their chemosensitivity profiles have
remained unchanged as measured periodically by amastigote-
macrophage infectivity assay described below.

DNA construct and transfection

An episomal Leishmania expression vector (pGL-aNEOaLUC)
containing luciferase-encoding DNA and a neomycin phospho-
transferase selectable marker®* was used in the present study.

The construct (20 pg) was transfected into L. donovani
promastigotes by electroporation in 2 mm gap cuvettes at 450 V,
500 uF (BTX Electro Cell Manipulator 600). Transfectants
were selected for resistance to G418 (50 pg/mL) as described
previously.zs’26

Chemosensitivity profiles of SAG-S and SAG-R strains
in a macrophage model

Stationary phase Leishmania promastigotes expressing the
luciferase gene (pGL-aNEOaLUC) were used to infect J774A.1

macrophages. Macrophage cell line J774A.1 (American Type
Culture Collection) was maintained at 37°C in RPMI-1640
medium (Sigma) containing 10% heat inactivated FBS as
described previously.27 Briefly, J774A.1 murine macrophages
(1 x 10° cells/250 wL/well) were infected with 1 x 10° promas-
tigotes in M199 media with 10% FBS. After 3 h, the non-
internalized parasites were washed off and SAG was added at
different concentrations (10—100 pwg/mL). After 5 days of drug
exposure, plates containing adherent macrophages were washed
and luciferase activity was determined.”* The 50% inhibitory
concentration (ICso) was determined from the graph representing
different concentrations of SAG plotted against relative light
units (RLU) produced by luciferase-expressing parasites.

Nucleic acid isolation, PFGE and hybridization analysis

Genomic DNA was isolated from ~2 x 10° promastigotes by a
standard procedure,”® and circular DNA was isolated by
Promega Wizard miniprep kit following the manufacturer’s
instructions. Genomic DNA and circular DNA were digested
with HindIIl and subjected to electrophoresis in 1% agarose
gels. The fragments were transferred to Hybond™ — N +
membrane (Amersham Pharmacia Biotech) and subjected to
Southern-blot analysis.

Total RNA was isolated from 2 x 10® promastigotes using
TRI Reagent™ (Sigma). For northern-blot analysis, 15 pg of
total RNA was fractionated by denaturing agarose gel elec-
trophoresis and transferred onto nylon membrane following
standard procedures.

Chromosomes of the clinical isolates were separated by
PFGE in which low melting agarose blocks, containing
embedded cells (10°® log phase promastigotes per mL) were elec-
trophoresed in a contour clamped homogeneous electric field
apparatus (CHEF DRIII, Bio-Rad) in 0.5x Tris-borate-EDTA,
with buffer circulation at a constant temperature of 14°C and run
time of 24 h, using Saccharomyces cerevisiae chromosomes as
size markers.

Following the transfer of DNA, RNA and chromosomes on
to nylon membranes, the nucleic acids were cross-linked to the
membrane with ultraviolet light in a Stratagene UV cross-linker.
The blots were hybridized with denatured [a-32P]dCTP-labelled
DNA probe. The DNA probes used in the present study included
a 400 bp MRPA fragment (released from plasmid PM12 that was
digested with BamHI and PstI), a 2.3 kb fragment GSHI probe
(derived from plasmid pspahygroo-yGCS digested with HindIII
and Xbal), a 2 kb ODC full-length probe (derived from plasmid
pspahygro-L. donovani ODC by digesting with HindlIl and
Xbal) and a 1.6kb 5'-PTRI probe (derived from plasmid
psp72-Y-hygro-5'-PTR1).

Real-time PCR

The human leukaemia cell line THP-1 was infected with pro-
mastigotes of L. donovani at a ratio of 15:1 as described
earlier’’*” and RNAs from intracellular parasites were obtained
as described by Decuypere et al.*° Quality and quantity of the
RNA were determined using the RNA 6000 NanoLabchip kit on
the Bioanalyzer 2100 (Agilent Technologies). The sequences of
the primers for MRPA are forward 5'-GCGCAGCCGTTTGT
GCTTGTGG and reverse 5-TTGCCGTACGTCGCGATGGT
GC, and for the GAPDH control forward 5'-GAAGTACACGGT

205

0T0Z ‘TE 1990100 U0 1sanb Aq Bio sjeuinolpioxo oel woly papeojumoq


http://jac.oxfordjournals.org/

Mukherjee et al.

GGAGGCTG and reverse 5'-CGCTGATCACGACCTTCTTC
primers. Complementary DNAs from intracellular Leishmania
were synthesized from 40ng of total RNA using the
SuperscriptlI™ RNase H™ Reverse Transcriptase (Invitrogen)
and Oligo (dT);,_;g primers (Invitrogen) following manufac-
turer’s instructions. Real-time PCR was performed in triplicate
in 25 pL volumes using IQ SybrGreen Super mix (Bio-Rad) for
detection in a Rotor Gene-3000 (Corbett Research). Reactions
were run using the following thermal profile: initial denaturation
at 95°C for 4 min followed by 40 cycles with denaturation at
95°C for 20 s, annealing at 62°C for 20 s and extension at 72°C
for 20 s. The PCR was followed by a melt curve analysis to
ascertain that the expected products were amplified. The relative
amount of PCR products generated from each primer set was
determined based on the threshold cycle (Ct) value and amplifi-
cation efficiencies, and was normalized by dividing the values
by the relative amount of the GAPDH gene used as a control.

Thiol analysis

Thiols were derivatized with monobromobimane and separated
by high-performance liquid chromatography (HPLC) as des-
cribed elsewhere."”

Western-blot analysis

Late log phase promastigotes (1 x 10%) were harvested and the
resultant cell pellet was resuspended in lysis buffer (20 mM
MOPS, pH 7.2; 1 mM dithiothreitol; 2 mM phenylmethylsupho-
nylfluoride; 0.5 pg/mL each of leupeptin and aprotinin).

The cell pellet was lysed by sonication and cell supernatants
were prepared by centrifugation at 20 000 g. Protein (50 pg) of
promastigotes was fractionated by SDS—PAGE, blotted on to
PVDF membranes using electrophoretic transfer cell (Bio-Rad)
and probed with ODC antibody (diluted 1 : 3000, a gift from
Dr Buddy Ullman, Oregon, USA). Western-blot analysis was
done using the ECL kit (Amersham Pharmacia Biotech) accord-
ing to the manufacturer’s protocol. The results shown are from a
single experiment typical of at least three giving identical results.

Statistical analysis

Data were statistically analysed by the Student’s 7-test. The data
represent mean + standard deviation (SD) of three determi-
nations from at least two independent experiments. A P value of
<0.05 was considered significant.

Results

Characterization of the resistance phenotype
in clinical isolates

PFGE of the chromosomes of L. donovani clinical isolates
derived from patients responding or not to standard SAG treat-
ment indicated a similar karyotype, as no major differences were
observed in chromosome number and sizes (results not shown).
The sensitivity of these related clinical isolates to SAG was tested
in intracellular amastigotes. The Leishmania expression vector
(pGL-aNEOaLUC) containing the luciferase gene was trans-
fected into the field isolates and the resulting transfectants were
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Figure 1. Susceptibility of sensitive (AG83-S and 2001-S) and resistant
(41-R, GEI-R, NS2-R and CK2-R) field isolates to sodium antimony
gluconate (SAG) as intracellular amastigotes. Intracellular survival of
Leishmania donovani amastigotes, infecting J774A.1 macrophages in the
presence of SAG. All the isolates were transfected with pGL-aNEOaLUC
before infecting the macrophages as described in the Materials and Methods
section. Each data point represents the mean + SD of triplicates from three
independent experiments.

used for susceptibility assays (Figure 1). The ICsy values of
AG83-S and 2001-S coming from SAG-responsive patients were
9+ 0.5 pug/mL and 13 + 1.5 pg/mL, respectively, whereas the
field isolates 41-R, GEI-R, NS2-R and CK2-R coming from
SAG-unresponsive patients had ICsps of 65 + 3.4 pg/mL,
>100 pg/mL, 24 + 1.4 pg/mL and 55 + 2.5 pg/mL, respecti-
vely, as extrapolated from the predicted graphs.

Role of ABC transporter MRPA in antimony-resistant
L. donovani clinical isolates

Gene amplification is a hallmark for drug resistance in
Leishmania, at least when resistance is induced in vitro.*' =%
Gene amplification has also been noted in field isolates.
Previous reports on antimonial resistance have shown an
increased expression of an ABC transporter MRPA.3%3% To test
whether MRPA was amplified in our field isolates, we prepared
total DNA of field strains and hybridized the DNA to an
MRPA-specific probe. Amplification of the MRPA gene was
observed in three resistant isolates, GE1-R, NS2-R and CK2-R
(Figure 2a). However, 41-R, another SAG-R isolate did not
show any MRPA amplification (Figure 2a). The amplicons
present in the resistant isolates were further analysed by PFGE.
Amplicons found in the resistant isolates GE1-R, NS2-R and
CK2-R were circular, as indicated by their characteristic
migration in PFGE (Figure 2b) with the smears possibly corre-
sponding to various topoisomers of the circles. The circular
nature of amplicons in resistant Leishmania isolates was further
confirmed by isolating them by standard plasmid alkaline lysis
preparation and migration in agarose gel. Comparison of DNAs
derived from sensitive and resistant field isolates revealed circu-
lar amplified band in the resistant isolates GE1-R, NS2-R and
CK2-R that were absent in the sensitive 2001-S and AGS83-S
and also in the 41-R isolates (Figure 3a). These circular ampli-
cons from GEI-R, NS2-R and CK2-R were isolated and digested
with HindIIl. A similar digestion pattern was observed on the
ethidium-bromide-stained gel (Figure 3b). Southern-blot analysis

17,33

206

0T0Z ‘TE 1990100 U0 1sanb Aq Bio sjeuinolpioxo oel woly papeojumoq


http://jac.oxfordjournals.org/

Biomarkers for detecting antimony resistance in Leishmania donovani

@
1 23 4 5

6
-—— =P 1k

- = a» a» = e [«— 0 tubulin

(b)
12 3 4 56
>
1L
.
» - ® ..n 4+— 800 kb

Figure 2. Amplification of MRPA gene in SAG-R isolates NS2-R and
GEI-R. (a) Total genomic DNA of isolates was digested with HindIII,
electrophoresed, blotted and hybridized with an MRPA-specific probe of
400 bp, derived from the Leishmania tarentolae MRPA gene. The sizes of
the hybridizing bands were determined using HindlII-digested lambda DNA.
The blot was rehybridized with an a-tubulin probe to monitor the amount of
digested DNA layered on the gel. (b) CHEF blot hybridized with an MRPA
probe. Chromosomes of SAG-S and SAG-R isolates were separated by
PFGE and the Southern blot was hybridized with the same MRPA probe as
above. The 800 kb chromosome showing the chromosomal localization of
MRPA gene is present in all of the strains. Lane 1, AG83-S; lane 2, 2001-S;
lane 3, 41-R; lane 4, GE1-R; lane 5, NS2-R; lane 6, CK2-R.

of the ethidium-bromide-stained gel with an MRPA-specific
probe showed the presence of MRPA on the circular amplicon
(Figure 3b). MRPA is part of the H locus, a region that also con-
tains the pterin reductase gene (PTRI1).***” The PTRI gene was
indeed found to be co-amplified with MRPA as determined by
Southern-blot analysis (Figure 3b).

(@ (b)
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Figure 3. Circular DNA amplification and presence of MRPA and PTRI on
the circles. (a) Ethidium-bromide-stained agarose gel showing circular DNA
in SAG-R isolates. Alkaline lysed DNAs of SAG-S and SAG-R isolates were
run on the agarose gel. (b) Isolated circles from GE1-R, NS2-R and CK2-R
were digested with HindIII and the gel was stained with ethidium bromide.
HindlIll-digested circular DNA was hybridized with MRPA- and
PTRI-specific probes. Lane 1, Leishmania donovani AGS83-S; lane 2,
2001-S; lane 3, 41-R; lane 4, GE1-R; lane 5, NS2-R; lane 6, CK2-R.

Customized DNA microarrays containing all ABC protein
genes of Leishmania were hybridized to GE1-R and 2001-S
labelled cDNAs. MRPA was also found to be consistently
overexpressed in  GEl-R (P <0.01) (A. Mukherjee,
M. Ouellette and R. Madhubala, unpublished observations).
Clinical resistance is found in the intracellular parasites while
the molecular mutations described here were studied with the
promastigotes. While it is unlikely that genes amplified in pro-
mastigotes would not lead to increase RNA in intracellular para-
sites, we carried out a real time RT-PCR assay of MRPA using
intracellular amastigotes infecting the THP-1 cell line. An
example of real time RT-PCR is shown in Figure 4(a). Increased
expression of MRPA was indeed noted in GE1-R, NS2-R, and
CK2-R but not in 41-R or the sensitive 2001-S lines (Figure 4b).

Role of y-glutamylcysteine synthetase and ornithine
decarboxylase in antimony resistance in the clinical isolates

In addition to MRPA, several loci have been reported to be ampli-
fied in antimony-resistant isolates, one being the GSHI gene
coding for the heavy subunit of yGCS, the rate limiting enzyme
for GSH synthesis.'> Overexpression of ODC, the rate-limiting
enzyme in polyamine biosynthesis, has also been reported in
metal-resistant mutants.'' The parasite-specific spermidine—GSH
conjugate, trypanothione [T(SH),],"? is known to bind to antimony,
and it is proposed that the Sb-T(SH), complex is either extruded
outside the cell by an ATP-dependent efflux system'® or seques-
tered within a vacuole by MRPA.'” This prompted us to test
whether ODC or GSHI was overexpressed in our field isolates
resistant to SAG. Southern-blot analysis showed no gene amplifica-
tion of GSHI (Figure 5a) although in the resistant strain 41-R,
northern-blot hybridization with GSHI showed an increased
expression of two transcripts of 2.4 and 3.4 kb in size when com-
pared with the other isolates (Figure 5b). Southern-blot analysis of
total genomic DNA digested with HindIIl and hybridized with a
full-length ODC probe showed an amplification of the ODC gene
in 41-R, GEI-R, NS2-R and CK2-R as compared with the sensitive
strains AG83-S and 2001-S (Figure 5c). Western-blot analysis
further showed an increased expression of ODC protein (Figure 5d).

Thiol analysis in the clinical isolates

We also quantified thiol levels in the SAG-S and SAG-R isolates
(Figure 6). Surprisingly, there were no differences in the T(SH),
levels between the SAG-S and SAG-R isolates (Figure 6c¢).
However, the levels of cysteine were increased by 2-fold in the
SAG-resistant strains GE1-R, NS2-R, and 2.8-fold in CK2-R
when compared with the 2001-S isolate. The increase in cysteine
level in 41-R was 3.5-fold when compared with 2001-S
(Figure 6a). Similarly GSH levels showed 2.8-, 1.8-, 2.0- and
1.75-fold increases in 41-R, GE1-R, NS2-R and CK2-R, respect-
ively, compared with 2001-S (Figure 6b). The levels of thiols were
not significantly different between 2001-S and AGS83-S.

Discussion

SAG is the drug of choice against Leishmania and resistance to
this drug is a major problem in the field not only in the Indian
subcontinent, but also throughout the world, !19~21:38-40
This increase in resistance to SAG has led to an upsurge in
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Figure 4. Real time RT-PCR expression analysis of MRPA in Leishmania donovani intracellular amastigotes. (a) Real-time RT-PCR fluorescence curves
representing triplicates of the MRPA expression in intracellular amastigotes of 2001-S (dotted lines) and of GE1-R (continuous lines). The amplification curve of
the GAPDH gene used for normalization is shown in the inset. (b) MRPA RNA expression ratios of sodium antimony stibogluconate (SAG)-resistant isolates
relative to the SAG-sensitive isolate in intracellular amastigotes. Mean of three independent experiments performed from three different RNA preparations.

therapeutic failure, and with the limited chemotherapeutic alterna-
tives, it is extremely relevant that mechanisms of resistance be
evaluated in field isolates."

Gene amplification, at least in strains made resistant under
laboratory conditions, is a frequent mechanism by which
Leishmania resists the action of cytotoxic drugs.”' ~***! The first
amplified gene in Leishmania promastigotes selected for arsenite
resistance® or Sb(III) resistance® is the ABC transporter gene
MRPA, which causes drug sequestration. Amplification of the
ABC transporter gene MRPA has also been reported in an Sb(V)
mutant of a Leishmania guyanensis cell line** or in axenic
amastigotes of Leishmania infantum selected for resistance to
Sb(ID).”* However, to date it remains an open-ended and
unanswered question as to whether similar mechanisms exist in
clinical isolates. To address this question we have characterized
clinical isolates from India and report that linked but diverse
mechanisms of resistance are operative in these isolates.

The ABC transporter MRPA has been shown to confer resist-
ance to antimonials in promastigotes of L. tarentolae by

sequestration of the metal thiol conjugates in an intracellular
organelle located close to the flagellar pocket.'® This model also
appears to be applicable to the amastigotes.29 For the first time
we show that MRPA gene amplification is also taking place in
some field isolates (Figure 2). MRPA is part of an extrachromo-
somal circle in GE-1-R, NS2-R, and CK2-R. This circular
amplicon also encodes the pterin reductase gene (PTRI). Pterins
are essential co-factors for Leishmania growth,43 44 and
co-amplification of PTRI may provide a growth advantage to
resistant isolates under a number of conditions.

Previous studies using in vitro laboratory-generated
drug-resistant Leishmania have shown that resistance to metals
in Leishmania is multifactorial, with contributions by several
independent mechanisms as mentioned earlier. In our study the
ODC gene was amplified in the resistant isolates, 41-R, GE1-R,
NS2-R and CK2-R. However, the ODC gene was not amplified
on the extrachromosomal circles (data not shown). Western-blot
analysis showed an increased expression of ODC protein in all
the resistant isolates studied. Overexpression of ODC and GSHI
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Figure 5. Characterization of vy-glutamylcysteine synthetase and ornithine
decarboxylase in SAG-S and SAG-R isolates. (a) Genomic DNAs were
isolated and digested with HindIIl and hybridized to a GSHI probe. The
sizes of the hybridizing bands were determined using Hindlll-digested
lambda DNA. The blot was rehybridized with an a-tubulin probe to monitor
the amount of digested DNA layered on the gel. (b) The level of expression
of GSHI gene was determined by northern-blot analysis of total RNA
hybridized with a GSHI probe. An a-tubulin probe was used to monitor the
amount of RNA layered on the gel. Sizes were derived from an RNA ladder.
(c) Amplification of the ODC gene in L. donovani field isolates. Total
genomic DNA of isolates was digested with HindlIIl, electrophoresed, blotted
and hybridized with a full-length ODC-specific probe, derived from the
L. donovani ODC gene. The blot was rehybridized with an a-tubulin probe
to monitor the amount of digested DNA layered on the gel. (d)
Overexpression of the ODC protein in the resistant isolates. Cell lysates of
promastigotes were used for western-blot analysis for monitoring the
expression of the 77 kDa ODC in the isolates. The same blot was reacted
with antibody against a-tubulin protein to normalize the loading on to each
lane of the gel. Lane 1, AG83-S; lane 2, 2001-S; lane 3, 41-R; lane 4,
GEI-R; lane 5, NS2-R; lane 6, CK2-R.

is usually linked to an increase, respectively, of polyamine or
thiol levels, which can favour an increase in T(SH), levels.'! An
increase in cysteine and GSH levels was observed (Figure 6) but
we did not find any increase in trypanothione levels in any of
the resistant isolates. This was also the case in L. infantum
resistant to Sb(II).?° This is possibly because the levels of
T(SH), in the L. tarentolae strain studied are much lower than
in other cells. An alternative, non-exclusive, explanation is that
the mode of action of Sb(V) was suggested to deplete T(SH), by
efflux of Sb-trypanothione conjugate.'* Possibly this efflux
system is increased in the resistant field strain, hence leading to
increased trypanothione efflux and thus explaining a relatively
constant level of trypanothione, despite that two biosynthetic
steps are increased.

GSHI was not amplified in any mutants but RNA overexpres-
sion was detected in 41-R. Overexpression without gene amplifi-
cation has been observed in Leishmania-resistant cells'" and it is
possible that an increased RNA stability is responsible for the
augmented levels of RNA. The increase in cysteine or GSH
could possibly have a role in SAG resistance by binding either
directly or indirectly to the metal compound. In our study we
also observed that 41-R, the only strain that overexpressed
GSH1, had much higher levels of cysteine and GSH when com-
pared with GE1-R, NS2-R and CK2-R. It remains to be deter-
mined how cysteine and GSH are increased in field isolates that
do not overexpress GSHI. It is possible that other thiol biosyn-

thesis genes, as shown for in vitro resistant isolates,>>? are
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Figure 6. Intracellular levels of the thiols cysteine, glutathione (GSH) and
trypanothione[T(SH),] in SAG-S and SAG-R clinical isolates. Thiols were
derivatized with monobromobimane and separated by HPLC) Each value is a
mean =+ SD of triplicates from two independent experiments. (a) *P < 0.04—
0.016; **P =10.006. (b) *P=0.01; **P = 0.007-0.005; ***P = 0.001.
(c) Not significantly different.

increased. However, the results of this study differ from a recent
finding from studies on strains derived from Nepal,30 raising the
possibility that different resistance mechanisms are operating in
neighbouring countries.

This is the first demonstration that resistance mechanisms
found in laboratory strains can also be found in clinical kala
azar L. donovani isolates. Increased thiols and MRPA over-
expression are shown here to be also important resistance factors
in the field. As clearly shown from the limited strains studied,
the expression of a number of different genes appears to be
implicated in SAG resistance. Further work is warranted in a
larger number of isolates to test the frequency of the mutations
detected and find possibly other resistance determinants.
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