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Is small-world network disordered?

Soumen Roy∗ and Somendra M Bhattacharjee†
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We study by extensive Monte Carlo simulations, the sample-to-sample fluctuation of various
physical quantities in the critical region on ensembles of quenched Ising model on a small-world
network. The system is found to be strongly self-averaging in the critical region in spite of relevant
randomness. This is associated with the sharpening of the probability distribution of the inverse
pseudo-critical temperatures. Single realisation finite-size data of various physical quantities show
as good a data collapse(finite-size scaling) as the average.

Random long range bonds in a Euclidean Lattice(EL)
leads to a small-world (SW) behaviour where any two
points far away on the EL can be bridged by a finite num-
ber of connections[1, 2, 3] . If such bonds are introduced
with a probability p, then the small world behaviour is
obtained even for very small p if the average number of
bonds introduced is large. Such networks are charac-
terized by various statistical properties defined over the
ensemble of networks. We address the question of influ-
ence of the stochastic nature of the small-world network
on the behaviour of a physical system defined on it.

Let us think of the ferromagnetic Ising model with a
spin si = ±1 at each site i of a network based on an
Euclidean lattice of N points similar to [4, 5, 6, 7, 8, 9] .
Its Hamiltonian is taken as

H({S}) = −J
∑

〈ij〉

sisj − J
∑

(ij)

sisj , (1)

where 〈ij〉 are the nearest-neighbours on the lattice , (ij)
are the long distance neighbours along the random bonds
of {S} added for the network and J > 0. The Hamilto-
nian, being dependent on the set {S}, is random for a
given configuration of the spins {si}. Any physical prop-
erty X of the model, therefore, requires an overall av-
eraging over the ensemble of networks. It would suffice
to have a description in terms of the average [X ] where
[..] denotes averaging over networks (“sample averaging”)
provided the relative variance RX = VX/[X ]2 → 0 for
large N , where VX = [X2]− [X ]2. In such a case a single
large system is enough to represent the ensemble. Such
a quantity is called self-averaging (SA). Off criticality,
if one builds up a larger lattice from smaller ones, then
central limit theorem(CLT) implies that RX ∼ N−1 en-
suring self-averaging. In contrast, at a critical point, long
range correlations mars the additivity requirement of the
CLT. In this context, recent renormalization group and
numerical studies have shown that if randomness or dis-
order is relevant (i. e. changes the critical behaviour of
the pure system) then self-averaging property is lost and
in particular, RX at the critical point approaches a con-

stant as N → ∞. Unlike the SA case, even if the critical
point is known exactly, statistics in numerical simulations
cannot be improved by going over to larger lattices (large
N).

Several studies have shown that the SW bonds lead to
a mean field type transition. E.g. one-dimensional Ising
model has Tc = 0 but SW bonds lead to a finite Tc and
mean-field criticality. Thus the randomness introduced
by the SW bonds in Eq. (1) is undoubtedly relevant.
Therefore the particular question we would like to study
is the behaviour of RX for various X to determine if the
randomness of the SWN leads to any non self-averaging
behaviour.

The prediction of non self-averaging nature of critical
quantities is an extremely significant result coming from
general renormalization group arguments. This basic re-
sult of Ref. [10] and the hypothesis of Ref. [11] can be
summarized as follows. According to finite size scaling,
when the critical region sets in the size of the system
is comparable to the correlation length ξ that grows as
the critical point is approached. The appropriate scal-
ing variable is N/Nc where Nc = ξd is the correlation
volume in d dimensions. At the critical point of a ran-
dom system, there is an additional source of fluctuation
from the variation in the transition temperature itself.
Therefore, instead of the conventional finite size scaling
(FSS), a sample dependent scaled variable is required. A
reduced temperature is defined as t̃i = |T − Tc(i, N)|/Tc

where Tc(i, N) is a pseudo-critical temperature of sample
i of N sites with Tc as the ensemble average of critical
temperature in the N → ∞ limit. In terms of this tem-
perature, a critical quantity X is expected to show a
sample dependent finite size scaling form

Xi(T, N) = NρQ(t̃iN
1/ν̄) (2)

where ρ characterizes the behaviour of [X ] at Tc.
[††] Thus

ρ = γ/ν̄ where ν̄ = dν when X is the magnetic suscep-
tibility χ. The RG approach seems to validate this hy-
pothesis especially the absence of any extra anomalous
dimension in powers of N for RX . Incidentally, this hy-
pothesis, Eq. 2, excludes rare events of large pure type
lattices for which pure ν̄ should be used. We are not

[††] Conventional notations of critical exponents are used: C ∼ t−α,
χ ∼ t−γ , ξ ∼ t−ν where C, χ and ξ denote the specific heat,
magnetic susceptibility and correlation length of the system. t is
the temperature-like variable with the critical point at t = 0.
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considering such cases dominated by these rare events
(Griffiths’ singularity). With this scaling form the rela-
tive variance RX at the critical point or in the critical
region is given by

RX ∼ [(δTc)
2]N2/ν̄ , (3)

where [(δTc)
2] is the sample average variance of the

pseudo-critical temperature. A random system can have
several temperature scales, namely (Tc(N) − Tc) and
(T −Tc) in addition to the shift in the transition temper-
ature itself. It is plausible that for a system with relevant
disorder all these scales behave in the same way so that
typical fluctuations in the pseudo-critical temperature is
set by the correlation volume, yielding [(δTc)

2] ∼ N−2/ν̄ .
An immediate consequence of this is that RX approaches
a constant as N → ∞ indicating complete absence of
self-averaging at the critical point in a random system.
A finite size scaling form for RX is

RX(N, Nc) = NκR(N/Nc), (4)

where R(z) is a scaling function and κ = 0 for systems
with relevant disorder. For a pure type critical point
(irrelevant disorder) −1 < κ = α/ν̄ < 0 (weakly self-
averaging). Accepting that off-critical RX ∼ N−1, we
have R(z) ∼ z−1 for large z and RX

∣

∣

Tc

= R(0). These
predictions have been verified for various types relevant
and irrelevant disorders and also with canonical ensemble
of disorder (fixed concentration of disorder as opposed to
grand canonical disorder) for cases with α < 0 at the
random critical point [11, 12, 13, 14] .

With this background we set to check the behaviour of
RX for various X for SWN. One of the major differences
with respect to the previous studies of random systems is
that in this particular case, it is well established that the
shifted critical behaviour has α = 0 and therefore ν̄ = 2.

The Ising model has been studied extensively on a
Small-World network [SWN] [4, 5, 6, 7, 8, 9] using tech-
niques of disordered systems. The present work explicitly
looks into the issue of sample-to-sample fluctuations to
gauge the influence of the variations in the distribution
of the long range bonds that make it a SWN.

We start with the Ising model on a SWN in 1D. In
our model each site on the lattice with an Ising spin has
random links to two distant spins such that no two spins
are connected by more than one link. All links of equal
strength. Thus we have a “canonical” scenario since the
number of links at each site is fixed. Hence no extra
normalisation factor is needed in the long range part of
the Hamiltonian of Eq 1. In the present work we chose
J/kB = 1 where kB is the Boltzmann constant.

Data were taken at T = 2.85 (close to the esti-
mated critical temperature)and χ, C and the Binder

cumulant,Um = [< m4 >/< m2 >
2
] − 3 were calculated,

using the single histogram reweighting technique [15]. We
examined lattice sizes : N = 100, 500, 1000, 2000, 3000 in
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FIG. 1: Plot of the data-collapse of the Binder Cumulant
versus scaled temperature for various N

our Monte Carlo simulations. We studied 1535 samples
for N = 100 to 517 samples for N = 3000 using 103 equi-
libration and 106 MC steps for each N . Data were taken
at intervals of 103 MC steps .

A data-collapse of Um with finite size scaling variable
N1/ν̄(T−Tc)/Tc would give Tc (the infinite lattice critical
temperature) and ν̄. By using the data-collapse method
of Ref. [16] we obtained Tc = 2.804(1) and ν̄ = 2.00(4)
[‡‡] The value of ν̄ is consistent with previous results [6].
The resulting collapse is shown in Fig. 1. We also in-
vestigated similar plots for χ and C after averaging over
many realisations of disorder (not shown here).

Further proof of the mean-field nature of the transition
comes from the comparison of the data with the mean-
field form of Um. To evaluate the mean field form of Um

we use the mean-field form of the magnetisation per spin
m probability distribution in the critical region [17] :

PN (m) ∝ exp [−N(a1tNm2 + a2m
4)] (5)

with tN being the critical temperature of a lattice of
size N and a1, a2 being constants. By replacing m̂ =
(a2N)1/4m, we find Um where the averages are obtained
by integrating m̂ from −∞ to +∞ with the weight

PN (m̂) ∝ exp [−b1(x − b2)m̂
2 − m̂4] (6)

[‡‡] It is striking that the value of Tc for the Ising model on a small
world network (with q−2 extra bonds) is nearly the same as that
from the Bethe Approximation (BA) for a lattice of co-ordination
number q, Tc = 2

ln[q/(q−2)]
. This is valid not only for our case

with q = 4 but also for other q. For q = 3, from Ref. [6],
Tc = 1.82(2) which is to be compared with Tc = 1.8204 by BA.
We have also verified that for an SWN with q = 6, Tc = 4.92(1)
whereas the corresponding BA value is Tc = 4.9326 .
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where b1 = a1/a2
1/2 , x is the finite size scaling variable

[(T − Tc)/Tc]N
1/ν̄ with b1b2 taking care of the finite size

shift of the critical temperature. The solid curve in Fig.
1 is obtained with b1 = 1.7, b2 = 0.72.

We find good data collapse by using t̃ = T − Tc

even though FSS is supposedly better with the use of
t̃ = T −Tc(N) after finding out the Tc(N) for every sam-
ple size[18]. This is because our system is SA and this
method should be more pertinent for non SA or weakly
SA systems.

To investigate the distribution of pseudo-critical tem-
perature, βc(i, N) (the temperature at which the specific
heat of sample i of size N is a maximum), data were
taken at T = 2.85 and βc(i, N) for various N were calcu-
lated using the histogram method [15]. The distribution
of βc(i, N) for N = 10, 50, 100 is constructed.We studied
3291 lattice samples for N = 10, 1645 lattice samples for
N = 50 and 1535 lattice samples for N = 100. As in
earlier works [11] we find that the inverse critical tem-
perature βc(i, N), scales as

[βc(i, N) − βc(N)]2 ∼ N−2/ν̄ , (7)

but one also needs a scale factor N−1/2 for the proba-
bility distribution P (βc(i, N)). Fig. 2 shows the data
collapse of this distribution. The data-collapse is best
achieved with ν̄ = 2.00(3) which is consistent with the
value of ν̄ obtained in the data collapse shown in fig.
1. This is in marked contrast to the other cases of ran-
dom systems studied so far[11, 12]. The fact that the
peak scales inversely as the width shows that despite the
fluctuation in pseudo-critical temperatures, the distribu-
tion approaches a δ−function. As a result the critical
temperature of a large N network can be thought of as
the average of pseudo-critical temperatures of the small
sub-networks. This averaging out is tantamount to self-
averaging .

Whilst in the present work we have used a “canonical”
ensemble with a fixed number of bonds it would be in-
teresting to test the Ising model on a SWN in a “grand
canonical” ensemble where the number of bonds can vary.

We then studied RM , Rχ and VC at T∞
c for the above

lattice sizes. About 56440 lattice samples for N=10 to
1000 lattice samples for N=3000 were studied. For each
sample we used 103 equilibration and 105 MC steps. Data
were taken at intervals of 103 MC steps. The data is
fitted to the form RX = AXN ρX where RX is the relative
variance for M and χ. The values obtained are ρM =
−0.96(9), and ρχ = −0.94(8). Thus χ and M are strongly

self-averaging . The singular part of energy cannot be
filtered out and hence the behaviour of VE can not be
predicted decisively. We see in fig. 3 that VC is a constant
as expected and hence C is also strongly self-averaging .

In case of a strongly self-averaging system, a typical
sample should be a representative of the average. We
observe good data collapse with even a single realisation
of disorder (as shown in Fig. 4). Thus in such situations
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annealed averaging as done in ref [4] should work well.
Consequently no extra order parameter (as required in
replica approach) should be needed for networks.

It is not clear if this feature of strong self-averaging is a
consequence of α = 0, in which case it should be true for
all relevant disorder problems with mean-field behaviour.
An extension of the RG argument that predicted non self-
averaging [10] to encompass situations with sharp limit
of Tc distribution may shed light on this. Whether this
result on the disorder aspect of a network is important
in other real life situations like the railway network [19]
needs further study.

To conclude, we investigated the self-averaging be-
haviour of the Ising model on a small world network
in 1D. The distribution of βc(i, N) is found to become
sharper as N → ∞ with the fluctuation decaying as
[δβc(i, N)]2 ∼ N−2/ν̄ . The data collapse of various
physical quantities both for a single realisation of disor-
der and after averaging over many disorder realisations
showed no significant difference. At T∞

c , the relative
fluctuations RM , Rχ for magnetization and susceptibil-
ity are found to behave as RM , Rχ ∼ N−1 while the
variance VC for the specific heat approaches a constant
for large N . This shows that the system is strongly SA
in the critical region in spite of relevant randomness.
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