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§ 7. Introduction.

IN a remarkable book devoted to Cesgro’s summability method, Anderson?
has derived a number of very interesting theorems relating to transformations
corresponding to differences of any real order of a given sequence. Some
theorems of a similar nature (generalizing the notion of monotonicity) are
also given by Knopp.? It has occurred to me that, such theorems heing
special types of transformations of sequences, it would be desirable to study
properties of transformations of a general nature of subject, of course, to
suitable conditions. I have therefore considered here a class of linecar
transformations (T) given by the infinite matrix || a,,, || characterised by four
conditions, the reciprocals (T-?) of these transformations, and the products
of the T and T-%

Several very interesting results have emerged as a result of these consi-
derations. The most interesting property of the class (T) is that they all
have wnique veciprocals with regard to null sequences. The conditions under
which a set of operators, Ty, Ty, Ty-++, and Ty7%, Ty™Y, TyL, - -- may be
validly combined, and the equivalence of one combination with another
when applied to bounded or null sequences are also discussed. For example,

1 A.F. Anderson, Studier ouver Cesdro's summabilitet’s methode (Danish). Sec the
second chapter entitled “ Om differences”.
2 K. Knopp, “Mehrfach monotone Zahlen,” Math, Zs., 1923, 22, 75-85.
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if {x,;} be a null sequence, T, T, {T,~%(x,)} has, in general, no meaning, wheteas
T, T, {T,7x,)} =Ty (#,). If we denote by (G) the class of the (T),
(T-1) and products of (T) and (T-*), we can say that the G’s are, tn general,
non-commutative. These results are comprised in parts one and two.

Part three of this series deals with a sub-class of (T) which we denote
by T, their reciprocals and products such as T,U,Us: -+, U,UUs -+,
etc. Denoting this class by (G,) it is shown that, in contrast to the G's,
the G,'s are commutative. Also, the transformations corresponding to differ-
ences of any real order form a sub-class of G, itself, so that the theorems of
Anderson and Knopp veferred to above follow as particular cases of our general
theorems in parts one and two.

A type of transformation corresponding to (T) for application to
functions of the continuous real variable is given and corresponding to the
existence of a unique reciprocal for a T we have the unique solution of the
integral equation

U (t) + /oo'“ (t:) & (81, 81) diy =& (8)

under the condition # (f) —0, # & o and the Kernel K (¢, #,) being charac-
terised by conditions similar to those imposed on a4,,,.

§2. Theorem on a Class of Infinite Matrices.

We shall consider in this paper, the class of linear transformations (T)
given by the infinite matrix | a,,, || characterised by the following four condi-
tions :—

(@) aum =1

0 @p =0 (v <m)

€) <0  (n>m), 2,1
@ - ila,,,ﬁp\l

Let A =] a,, || be the defining matrix, and || §,, | the unit matrix. We
shall prove the theorem that there exists a unique matrix B such that B.A. =
| 8 1. Leet

1 ay ay L —ap —ag
O 1 (l12 . . . 0 1 —_ a12
A=lo 0o 1 . . .1=l0o o 1

Conditions (2, 1) imply a,,, > 0, and 3 Urpp S L.
p=1

I,
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Let B = || Bpn | Then the condition B-A =1 gives

o0
2 er Ay = Oy
0

r=

7

ie, 2 Py @ = O since, from (b) of (2, 1) a,, = Ofor 7 > n,
r=0 '

Casel. n<m: (8, =0).

n—1

n
X Bmk App = kz 0 )Bmé Wy + :Bmﬂ Ayn = S = (.
F=0 =

Assuming B0, Bmy *** Bm,n -1 all to b2 zero, we have
Buw Onn =0, 1.6., By = 0; since a,, = 1 from (2, 1);
but B = 0, for By = Bmo @oo = Sme = 0. Hence by induction
Bun =0,  (n<m) | 2, 2)
Case 2. n =m: (3, =1).

#
)Bnn = ﬁnrz App = 2 0 ﬁnr Ay = 51”1
p o=

1.6, Byn =1 o | (2, 3)
Case3. n>m: (8,,=0). Letn =m +p, then

Yy =un

7
p) er App = 2z er Ayp

r=0 r=m

I

P
) ﬁm,m+k A + ko 4 p
b=0 :

p—1
= ﬁm,m-l-p + 20 Cm + b, m 4 p ﬁm,m+,é

p—1 A
== ﬁm.m+p - 20 Om + kom+p B, m + &
7 ]
and Z Byt =0my =0mma, =0, te
r=0
p—1
Bm.m+p_ - Lzoam+é.m+p:3m,m+lc = 0 (2, 4)

Solving for B, m+, from the set of equations (2, 4) we get at once

Bmm =1, Igm myl1 = S, m+1
a”l,m+P . » - . . . . nam‘m+p

-1 Om+1,m+2 ' " ‘Omslmtp

ﬁm.nz.;.p: 0 -1 e . (2:5)

0 : ~lamsp-1,m+p

2B S AN e 2T

A
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Expanding the determinant in terms of the first row, we get

p
ﬁm,m%—,o"" % ("Iil.m+/§fem+ﬁ.m+p=0 (2; 6)

which proves that
A'B =8, = B.A.

We denote the transformation corresponding to B as T - where A defines T.

§ 3. Ilustrative Theovems.

We give three theorems which, although quite obvious, are noted here
for the sake of completeness of the exposition of the structure of the algebra
of the transformations (T). ‘

hounded

TueoreM 1: If {x,} bea ["W

] sequence, then v, =T (x,) 1s
, [boundﬁl
: null

Let %, be the upper bound of | x,,| for # > n,, then

Lyvn |l =T (x) | =

] sequence.

0
Z Ay, n+p Xn + p
p=0

_ %
< X 1 &~ a‘n, 7 +p}
p=1

< 2%, using (d) of (2, 1). (3, 1)
Hence the theorem is proved. Denoting the matrices corresponding
to T, Ty, and (T,, T,) by A;, Ay, and A, -A, respectively, we have

bounded
null

TreoREM 2 If {x,} be a [ ] sequence then (T, Ty) (x,), and (T T,)

bounded
(x,,) are [%] sequences, and (T, To) (1) = T, [T, (%,)].
In general (T, Ty) == (T, T,).
Let A; = [|apn H: A, = H an I. If lAl Ay = | Cpa ”
Con = Tapi B, =0, ifn <m

=1, 1fm =mn, and
P

Cat,n+p = 20 Qs 4 7 lgfz+r.n+p-
y =

P
lcn.7z+p| <§|an,n+rl ‘Bﬂ+r,9z+P .
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Now  |(T, Ty (x,)] € 20 Contpl [%ns,l

p
.
< xm'Pfo : )’:0 l%,n+rl'l ﬁn+r.n+P!
_ 0 0
< Xy z la71,71+?’|' ) lﬁu-rr,u-kp"
r=0 p=r

. m w
Slnce 2 ’aﬂ, ﬂ+)'| ‘< 2: EO 'Bﬂ. Il+7'l g 2
r=

yo=
(T, To) ()| < 25, (3 2)
which proves the first portion of the theorem. Again,

Tl [T2 (17”)] = Z (l,z‘ nw+
r=0 i

P
( P Qop, gy 4 7 ﬁ;u.r,nﬂ’)' Xu+p
v

.:O

ﬁn +r,u+p an, p
o

I t48

l\:}g

—

p=0
since the latter series is absolutely convergent. - Therefore,

Tl [Tz (xﬂﬂ = 20 ConspXuyp = (Tl Tz) (xn + p)-
p==

This could be easily generalised to the product of any finite number of
transformations. Also since the multiple series concerned are all absolutely
convergent, we have

TreorEM 3@ T, {Ty [Ty ()]} =(Ty Ty) [Ts ()] =T, [(To Ty (#)] =
(T, Ty Ty) (x), where (T, T, Ty) is defined by A,-A,-A,. (Proof being very
similar to that of Theorem II).

Both the theorems 2 and 3 could be generalised to a finite number of T's.
Since in general 2 a, 44+, By troutp T ) /Bft,n+r' Optron+p
we have (T, Ty) == (T, T,). But if all the terms in any line parallel to the
diagonal of A, have the same value; z.e.,

aol'za12z-'=ann+l=“’} (313)

Qg2 = Qyg = = Oy gt &= * °,

and a similar condition holds for A,, then (T, Ty) = (T, T)).

§4. Preliminary Lemmas.

Before we proceed to Theorem 4 about the existence of a unique reci-
procal, we shall prove here a set of lemmas to be used later on.

Let T, correspond to |4,/ By definition 4,, =1.
We will define —a,,, = ap,, so that a,, >0, for n2m 4 1.

N s S
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We shall prove later, in § 5, that || B,,, || defines Ty=% For the present we
shall collect together the following characterisations of the elements of

I By Il

By (2-2) B =0(n<m) (4, 1)
By (2-3) B =1 (4,9
Since all the a,, , +, are > 0, we have
Brntp 2 0(P 20) by (2:5). (4, 3)
Let us assume B, ,4, < Lforall mand p =0, 1, 2,--- p,. Then by (2, 6)
- r=1+po 14 po
Buntpot1 = ril Ot 7 Bt ot pot1 S )_il I .

Hence by induction for all » and all p, 8, ,, +, <1,since for p=10 B, =1. (4, 4)

Let || By || and || B2, || correspond to Ty~ and T ~1: then we define the
transformation (T,~*T,~?) by

I Bl | Bomall = |l ﬁmn [ (4, 5)
Since By = %‘ B+ By, Dproperties (4, 1) — (4,3) also hold good for B,,.

Corresponding to (4, 4) we have

Bn,n+p = 2 Bnn+rﬁn+7 ntp

r =20
Bﬂ-ﬂ“‘P < +1) B (4, 5a)
If || By | corresponds to the product of & such transformations
then B, .+, < (p + 1)#-L (4, 5b)
Writing the system of equations (2, 4) at length, we have |
Brn =1 ]

ﬁn,n+1 = an.n+1J81m
ﬁn, %+ 2 """'ﬁmz Ay, n+ 2 + Bn,n—}- 1%+ 1,2+ 2

Bn,n-k‘g =Bmz “n,n+p +Bn,n+ 1%+ Lz+p + ot —Hg” n+p-1 an+p~ Lu+p)
Adding we get

(1— Elann+f)+ﬁnn+l(1_ ) a12+1?2+7‘)+"'

r=2
. +Bnn+p()—'1' " (4’6)
Let Ry, n+p =1 - Z Oy, 9+ 79 (fOTP > 1) and R;z',vn = 1,

r=1
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Then (4, 6) can be written as

p .
x Bn, ntr Rn+ ratp T L. (4» 6“)

»=0

It is to be noted that R, ,., > 0since by (d) of 9.1 Uy ptr < L.
1

If in condition (d) of (2-1) we have b Oy utp <k < 1, for all #, then
p=1

from (4, 6) we get
p
20 ;Bu, n+7 Rﬂ-f- rnutp = 1»

’
and Rﬂ’n—i-p = l - Zl dn ntr 1 - k ;
p
hence (1 — &) E Bn wtr
o0 1
Hence ? 1312 ntr S l"“’:"]s ' (4‘1 7)

Again if in condition (d) of (2-1)

Let z 0y »+r =1, forall#, then it can be shown that

y=1

b3 By n+ » diverges. (4, 8)
r=0

Suppose that'it converges; then choose % such that 2 B, ,., <e.
n=_/

p k-1 B
Z Bn nir Rutvrnsp = z 4+ 2 =A+4 B;
=0 l—-—O 7’-"’1&

”n
B OZ'O B w+rsince R, 4, <1 for all n and p ; sinca by hypothesis
k

E’oaﬂ'”w =1, Rypsp >0 as p —>oo (for every #). Now, A <
0
k=1 . .

2 R,, +rn+p Choosing p sufficiently large

o
suchthat R,y ,y, < z, forr =0,1,-+,%~—L

A < ¢ for p = Py.

Hence, ZByntr Rytronip<2e which contradicts 46
Hence, by Bun+p diverges. o (4, 8)

p=0
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§5. Theovem of Umique Reciprocal Transformation for Null
Sequences.

We will now show that every transformation (T,) has a unique reci-
procal (Ty~1) given by || B, |l [as defined in (4,1)], when applied to null
sequences, 1.¢.,

TeEOREM 4: If {x,} be a null sequence, and y, =T, (x,) =

(o) o0
Z Gty Xntp then %, =Ty 1 (y,) = 20 Bii, s+ 7 Yo+, and if the sequence
p = O r =

{v,} be given, under the restriction that {x,} be a null sequence, the infinite set

o
of equations X @y i, X%ysp = Yy (0 =0,1, «-+) has utmost one solution.
p=0 '
Proof - —Defining a,, , asin § 4,

o
To (xn) =Xy — Z Uy pu+rXp+r = Yy (5: 1)
1

Le’c?n0 be the upper bound of | x,, | for all » > n,, and let

o0

Yo,n+p = 2 Qs 92+ 7 (3, 2)
r=p+1
Then,
p _ )
TO (xn) = Xy — ) Qp, 2+ 7 Xppt v + 0:'}’71, n+ p Xy + P =V l
1
Similarly . t
o
Ty (xn-I-k) =Xptk— & Guutr¥pirs T 0. Yutdoutp Eu+p =Y+ kb I
k41 J
fork =0,1, ---pwith —1<6,<L1.
P P
. .
The sum X Bn. 2+ '10 (xn-l- 7') =2 )Blz, nw+r (xn +r 2 Oy, 3142 X +,,é)

r=0 k=r+1

+ (2 8 ﬁ7z,n+,é'}’n+f€’,u+p) Tt p

p
=A + BE?Z-(—p = 20 ﬁ;z,1z+r Yot r (5:3)
y =

p r—1
Now, A= Bmz Xy + 2z Xip+r (Bn,n-!-r - .Bn, nykOuyp 7z+r)
r=1 £F=0
= X bY (2: 4)
0
lB[<é20Bn.n+é7’n+k,ﬂ+P (5» 4)
From condition (4) of 2-1 and 5-2 we have
o) _ P P
Yo, n+p = z Cp,n+r — z O 47 S 1 - 2z
r=1 r=1 r=1
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Hence y,, ,+, <R, 5+ pfor all # and p > 0. Therefore using (4, 6a) we derive
from (5, 4) that

P
) :Bn, n+kYn+hatp < 1and l Bl < 1. Thus (5, 3) gives

{

k=0 ;

C . _ P » 2

X+ Bxﬂ*'P ::Zo"Bﬂ. nwtrYu+r (" 10 1)- (5, 5) ,

Since {x,} is a null sequence, %,,, — 0 asp —» oo : therefore ;
1
oo . i

Xy = 2 B, ntrYn+r (5, 6) *

r=>0 ! »;;
e, % =Ty ) =Ty, (5, i

To prove the uniqueness of the solution when it exists under the condition Bl
that {x,} be a null sequence, we proceed as follows :— i»
. it

Let {x,3 and {r,%} be two null sequences which are solutions of the set 8

of equations

(oo . U

Ty — ) lan,fﬁ-r Xnvr = Yo, (71 =0,1,.. ) o

= ¥

Y, being given. Let Z, =x,! — %2 then by hypothesis, {z,} is a null

sequence, and

(o] I

Y= 2 Gty Zya, = 0. it
r=1
Applying the result (5, 5), we have

Zy + 02,4, =0, where —1 <6<
Therefore 2, = 0, and hence the uniqueness of the solution.

Note.—(1) Let us take a (T) for which

sty Sarey

e
R g

OEO ay ntr=1; (foralln). 5
r=1 3
Then if {x,} be a solution of T (x,) =3y, so is the sequence {I, + x,} also
a solution, for if L, be a constant T (I) = 0. This shows the need for restrict-
ing {x,} to be a null sequence for the existence of a unique solution.

(2) For the same (I) as in note (1) it follows, by using (4, 8),

that by B, n+r diverges. We can find a null sequence {y,} such that X' 8, .+,
0

9.+ diverges for one particular value #,. Hence T~ (yy) will, in general,
have no meaning.

§6. Complement to Theovem 4 and a Corollary.

The question raised by the note in § 5 leads us to examine the necessary
and sufficient conditions that the sequence {y,} must satisfy in order that the
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set of equations in x |
T (xn) =Vn
has one solution {r,} which is a null sequence, We shall now prove

The sole condition (C) 1s that the set of sertes b By V» be uniformly conver-
gent with vegard to m for all m > 0.

(@) Proof that (C) is mecessary : Suppose that {r,} a null sequence 1s a
solution of the set of equations T (,) =y,. Then from (5, 5) — (5, 6)

A
Xm + g Xy = z :an Vau

n=0
o0 0
=22 - 2 forall m < A
= A1
oo
=Xm — z.
' n=A+1
m —
Z Bm,n,’}’n :exA -1 <0«<1
A1 .

(For all m > A + 1).

o0 o0
2 Bun Vi =2 Bmp Y = %y, since B, = 0 for n < m.
0

A+1
Therefore,
oo . ‘
Z Bmﬂ Va S EA, fOI all m = 0
n=A1+1
m —
and 2 BunYn | < Fu < %y, forallmg > A,
n =g

since %,,, being the upper bound of %, for n > n,, is easily seen to be a mono-
tonic sequence tending to zero.

Hence the condition (C) is necessary.

(B) To prove that (C) is sufficient : Tet € > 0, and Ay be so chosen that for
all A > A, we have '

z an Vu , < €. (6, ]:)
A+1

Let x, be defined by

. [e o] .
%, = X ﬁfzp.yﬁ

T e
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pP=A o
vhen n < A, Xp = & B?z’p Yo T >}
‘ A1
p=a
= 2 4 fe
p=4a
Xpptr= & Brz+r.P_'}’p_+ 0,¢, n+r<A
p=A ' o
nd, Xpyp= 2 BA+k,pyp + 2
' ' A+1
w -
= 2 =0s14¢, sinceB,, =0 (n<m).
A-1
v A A A A
[herefore, x, — 2 Upp Xp = X ﬁup Vo — X ay,d ﬁmp Yo
p=un-1 p=un m=qn-+1
+ a remainder (R). (8, 2)
A . 0
\Iso, |IR| <e 4+ X azp € < 2e. since X q,, < 1.
p=n-1 n—+1

‘he first two terms on the right-hand side of (6, 2)

A
= Bun Yu + 2 (Bnp — & aum Bmp) Yo

p=un-+1
= Vue by 2.6
. A .
Tence, «x, — 2 oyp %, = ¥n + 20, and since
n -1
| %4 +2] < e forall 2>1

o0 oo

pX App Xp [ < € & App K €. Therefore
p=A4-1 A+1

co x ’
X, — X Uup Xp =Yy + 20 — X Unp %p = ¥, + 30'¢
p=mn-1 p=aA-+1

e, | T (4,) —9,] <3e.

since e is arbitrary, and also |x4.;| <€, %, — 0as #n — oo, we have
[ (x,,) =y, which proves that (C) is sufficient. We may thus enunciate the
[BELOREM :  Under Condition (C)

Ty [Tt (Yu)] =Yn- (6, 3)
Cor. 1 :—If{x,} be a null sequence, and (T{ T,) (x,) =1y, then
Xy =2 ﬁ2n, P 22 Blp, rYr
ohere || Byt || defines T1=1 and || By,? || defines Tp~1 as in (4, 5).
AA

- i e
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Proof :—Let Ty (x,) = 2,, then Ty (2,) =y,. Since {x,}is a null sequence,
it follows from Theorem 1 that {z,} is also a null sequence. Hence

Zn =2 Blrzg Ve

and Xy =2 B p 2y =2 B, Z By v, by Theorem IV
or Ky = T2~— ! [Tl— 1 (yn)]
In general

2 Bt - 2 Bt Vr =2 By, Wwith [[Ba, |l defined as in (4, 5),

except under special conditions, ¢.e., in general

Tyt (T Y == (TP T ).
We shall discuss in Part II the set of conditions under which the equality

can be true, as well as other related questions as to the validity of several
types of combinations of the transformations.




