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§ 1. Introduction.
A. NARASINGA Rao! has raised the question, ““ The areas of the four faces
of a tetrahedron are a, B, y, 8. Is the volume determinate ? If not, be-
tween what limits does it lie?

It may be mentioned at once that an upper bound must exist as is evi-
dent from Schwarz’s isoperimetric inequality?

08 —367V2 =0
for convex surfaces; or again from Steinitz’s inequality® relating to the.
volume of a tetrahedron of given surface area. Narasinga Rao’s problem,
however, is quite distinct from these isoperimetric problems since what is
given here is not the total surface area, but that of the individual faces.

In the first place, I notice that the problem could be easily generalised
to n-dimensions, and would then become,

““ Given (m 4+ 1) positive numbers, does a simplex in #-dimensions exist
having for the (n — 1)-dimensional volumes of its (n 4 1) faces, the (n 4+ 1)
given numbers ? If so what are the limits between which the nth-dimen-
sional volume of the simplex lies ?"’

The analysis for #-dimensions is so similar to that in 3 dimensions that
I have given here in most places the solutions for 3 dimensions, and, wherever
necessary, mentioned the corresponding analysis and result for n#-dimensions.

The principal results obtained are as follows for 3 dimensions :—

Let A< A, < A;< Ay

(1) The necessary and sufficient condition for the existence of one tetra-
hedron at least is that the sum of the lowest three areas must be greater
than the greatest area, 1.e,

A1+Ag “‘l’ A3> A4.

1 The Mathematics Student, June 1937, 5, (No. 2), 90.
2 Blaschke, Integral geometrie, Bd. 2.
8 Steinitz, Ency. Math. Wiss., Bd. 3, Teil 1, 2, S. 139.
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270 K. S. K. Iyengar

(2) The lower bound of the volumes of all the tetrahedra having for its
areas the given numbers is zero.
(3) The tetrahedron having the maximumn volume under the given condi-

tions is an orthogonal one* (i.e., having opposite edges orthogonal) and is
unique.

(4) The upper bound of the volume is given by

V< (2/9 AlA.gAs)i {1 3 (AZAR Af:mz +’”’z_\?‘A?}'

where
C20=A2— A2 — A — A% the equality holding if 2 =0,
For n-dimensions, (1) and (2) can be generalised in a straightforward
way. (3) also holds, but I have not been able to prove, by the methods
given in this paper, that the tetrahedron is unique, although it is likely to
be so. (4) can be replaced by

1
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§ 2. Fundamental Formule.

Two formule easy to obtain are the most 1mportant in the following
analysis and we will give them in the beginning.

1etO - - P, - - Py - - P,bethen 4 1 pointsof asimplex, O being the origin.
Let the Vector OP; =R, (l;; + - lyg + - I35 - - 1y,) where [,, are the direction
cosines of the linec OP,, etc. Let the n — 1 dimensional volume of the face
(O, PP, -+ -P,y) be A,. If we call OP, the vector A;. Then A, will
be proportional to the absolute value of the vector product
[AyAp- - ~A ), de, In—1-A, =|[A, A, -~ -A,,]|, etec.

Let the direction cosines of the vector [A; Ay - - A,_ i be I, Lo ¢ i
We will, for the sake of convenience, put A, =[A; - A, - - cA,_]1, ete.
Then if V be the volume of the simplex

F T4 ('___)” LlluLl" Lln 4
Then V#-1 ==} — A A A,
: . @)” 1 g L‘1 Lzz e

I—nl : Lnn
where Ay A, --- are the n — 1 dimensional volumes of the faces at O.
Indicating the angle between the vectors A;and A, by Z,,,

_ * This theorem is due to Mr. K. V. Iyehgar. See his paper elsewhere in this issue.

~ . .
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The formula (I) could be written as:

Vr-1 = (|n o ) ALALA, 1_ cos £y O3 —é__ls‘ ~cos £, ff
(Ifn) ceséyy 1 oSy crv e - T

-----------------

o8 Enl """""" 1

Let A, be the n — 1 dimensional volume of the face opposite O, z.e., of
the points (P;, Py, * -+ + Py). Then by projection or otherwise it is easy to
prove

SAFHSZE2A, A, cosE, = A%yy (I1)
1 11

So that the problem becomes (1) does there exist a solution of (II) atall in
n-dimensions and what are the bounds of the determinant in (I') under
condition (II). We will hereafter restrict our analysis to 3 dimensions.

§ 3. Question of Existence.

Equation (II) becomes
A+ A2+ A2 +2A,A;Cos Ear + 2A3A, Cos &,
4-2A A, Cos &y = A2 (11
We will so choose the vertex O such that A < A, < A; < Ay (v,
opposite the largest area).
We will call &y =%, &5, =9, &2 =2 In order that a real tetra-
hedron may exist, we must have solution (IT') so that
(1) oK< o<y, 0Kz l
(2) x+y+z2<2n R (region).
@) y4+2>x 242>y +Yy>7

Tet L =231 A2 2 2A,A; cos 2.
1
The maximum value of E in R 1s (37 AP
1
C) .- A r > A, equality cannot occur because then the only
solution, then willbe ¥ =0 =1y =z, which will not be a tetrahedron.
Therefore condition (C) is necessary.
At x=my=m 2=
E=(A,+ Ay, — Ay Incase Ay + Ay> A,
then, since A; < A, < As.
E<AL . <Ap
Incase Ag> Ay 4 A, .
E< A2 .. <A |
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If A, -+ A, + Ag> A, there are always solution of (II') in the
interior of R. [C|

The region R is as a matter of fact a tetrahedron. We can join the point
(000) to the point (m, o, 0) by a space curve L, lying entirely in R. Except for
end points. Since X (000) > A2 > E (7, m, 0).

Since E is continuous there exists at least one solution on I, in the
interior of R. Since we can draw infinity of such curves I, there are infinity
of such tetrahedra. An entirely similar discussion holds for #n-dimensions.

§ 4. The Lower Bound. |
The points (000) and (=, 7, 0) are on the plane z +x — v =0 in R,
E (000) = ( A)andE(ﬂrf-rO) (AL 4+ Ay — Ay

.*. There are infinity of solutions of (I11') in the plane z 4-x — y = 0in R.
Consider the portion of the plane 2 + x — y==a in R, where a is a very small
positive number. (We will call this a plane.) The maximum and minimum
of E on this plane in the region R will be nearly the same as in the

planez +x —y = 0.
Since E (000) > A2 > E (=, m, 0).

We easily see that there will be infinity of solutions of (II’) on this plane
in the region R.

Now the determinant in I’ for this case is
1 cosx cosy

. X+yV+2 —X . z — J— 2
cosx 1 coszl=4sin (—i—:;i—) .sin y+7~——) sin ( ks V) .sin (9—6:'73% —~)
cosy cosz 1

< 4«1n(z+4“ —J

rs

We therefore see that for all tetrahedra corresponding to solution in the plane

(a) the (volume)? < 2/9 A;-As- Ay- 424,  Therefore the lower bound of
the volumes of the tetrahedra will be zero.

§ 5. The Upper Bound.

Coming now to the upper bound, we will take up the n-dimensional case.

It is obvious that by the foregoing discussion, if (C) is satisfied there will be
solutions for equation (II) in #-dimensions.

We therefore have to find the maximum of i

cos 1 - - - 1
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under f’ AP +20,A;c08 & = Ayyy Using the theory of Lagrangian
Multipliers we get, ’
cos &, cos €,y cos E,, -
cos €5 1 cos €44

cos £ Cis €,y 1o
oS gnl 1

A 1° A 9
there being #C, such terms.

Now let us designate the vector L;;, Lyy- - I, by L. “Then it is easy
to prove

= similar terms,

cos €3O8 £gp +o-
o3 &5 1
[ Ly Lo L] and (L, Loy L) - cqual to= [Ly Ly - L)Ly Lo - -L, .
Ay B [ByAg - R = -
=R A R
where [A| indicates the absolute value of the vector A.
Let us call Dy = the determinant |A,, A,,- - ‘A, | and D, =|A,- - A,

= scalar product of the two vector products given by

Then the vector [A,-Ay-A,.- A, =D"-2 4,
and [A2 .AS * ¢ .] == D’z _2 &A.l-
€O &12 COS §py - -+
2 -4 .
cos ;1 D2t 4 ’AZ[ ©(Ay-Ay)

{,AIHA"I o |A,,]}2

=Rk A A, (AL-A).
Therefore the equations now become
RiRp(ialoy +holyg + -+ o1y vlyy + -+ 7)
=Ry R, (T 1 1,) - (IID)
Itis easy now to verify that opposite sides of the simplex are orthogonal.
Take OP, and any side opposite P, P. (r 5= 15 == 1.) The direction cosines
of P, P, are proportional to
(Rylyy — Roly), (R, Ly — Ry 1), etc.
Then for orthogonahty we must have .
bin Rplyy = Relgy) + 10 (Rr Ly — Ry L) + =0

ie, 2 R, (s =5 R, (Iul,), whichis verified by cquation (IT).
=1
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Before we go to the discussion of the uniqueness of the orthogonal
simplex having the specified volumes for its faces (the discussion being only

for 3 dimensions), I should like here to obtain an expression for the upper
bound of all the volumies of simplexes in #-dimensions,

Lemma :

1 cos &y, cos £, + ++ cos &y,
Let A, =|cos§, 1
oS &,y 1
We will call the minor of 1st term in the 1st row of A,, A,-; which is
1 cos &3 - cO3 &y,
= | cos £,5 1 of order (n — 1).

We will cail the minor of the last term in the last row of A, as A, -1

1 €os €1y ++ €08 £t
which is = | cos £, of order n — 1.
cos E1p-y - - 1
We will call the minor of the 1st term in the first row of A, —; as A s
A, -
1 — 2271 cos &, -+ COS N
Tl]en Aﬂ ponend Aﬂ"2 §1~ E]ﬂ + é”—vl__éﬂﬂ-l.
AR
cos £,
COS gnl 1
Now in the first expression the minor of the last term in the last row is
zero and hence it is easy to prove that it is = — (square of an expression).
A,-1 A, -
A 7t—=1 n—1,
72 < A”—z

We wish to prove that
Ay <(l —cos?é,) A,y

This is obviously true when # =2, we will therefore assume to be true
for n — 1 for such determinants and prove for # by induction.

Then _A—”—l < (] - COSz ij) Aﬂ_z.

A, < (1 —Cos? £15) A,y by the above inequality.
We therefore obtain A, <sin*£;, - - - -sin? &y, - - - sin? &, ;..

There are nC, such terms. By suitably combining the terms by repeated
operation of the above inequality, we get

A, < (msin? )2,
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By (I) we have

—_— k 1 cos fl, R
...... 1l
3
=k- A,.
#(n—1) f ”
V ' o=k AL

] 1 # n~1)
! < B-i{msin? g} °

*' Since the geometric mean is less than the arithmetic mean

V < pici {2 sin® ‘fﬂ‘}, N = ﬁ(l@ai-.}.) .
1 2
i.e. < kn-1 {1 —E-EPNS——EE-Q}-
Atyer— 2 A
Now 2 A,A cos &, =~ 5 t = 2 by equation (II).
The smallest value of X cos%,, satisfying equation (II) is given by

1

(|n _ 1)n n-1 QZ
VST Al Bep TN AP 'Z.\f?}

and in 3 dimensions we have

(A12+A22+A32— A42 2 l
velaaalt ) 2 )
> {5 WBolaf - LSRR T AAS  A2AF).
In case A2, == A2+ A2 + A2 we can easily prove that the
upper bound is actually
1

{(,lg_z_:_l.)” A, ... An}rfx.

(=

§ 6. Uniqueness of the Orthogonal Tetrahedron.

Now we will prove the uniqueness of the orthogonal tetrahedron
in 3 dimensions (satisfying the given condition of having for the areas
of its faces the given numbers).
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Iet us call the angle between OP, and OP, as A, OP, and OFP; as p and

OP, and OP, as v. Then the orthogonality condition will reduce to the
following by easy calculation,

tan A tanpu  tan v

A, T A, = A, = p (IV)
and the equation (II) can be put as
_ .2
AjAscos £y + -0 _Q—A — Ay 5 Ay® — AV

Now £,, is the angle between the normals to the plane OP,P3 and OP,P.
Therefore the actual dihedral angle will be 7 — &,,.

Let us call m—§=C, 7 =&y =A, 7 — &,; = B.

Then the spherical A with sides A, g, v will have angles A, B, C.
Equation (II) becomes

cosA+cosB _}_cosC____’___.Q. '
Al AZ A3 - AlAgAa
Now cos A = <98 A — CcOs p COS v
- sin p sin »
Tan A =p Ay .. cos A = ! sin A = ZAS!

«/T‘?ﬁf&‘z’ sin . Vaps A =, ,ete.

the radical having the same sign for the 3 angles by equation (IV). Subqhtut ing
for cos A, etc., we have

1 1 | -
s NI+PAE VITpPAE VITPAE . — 2
pzAzAgA]_ A1A2A3
V1 +pA2- VT LA

; 1+ 2240 (14424
z.e., 2’{ T 4_:b2A215 }

=3 — 20

E+PAY L +2AIE = (3 —pQR T (1 p2A 2.

We will now call 2'3:' A=A,
1
3
X

A2 A2 AR =
LHS. = (3 +2A,p2 1A,

RHES. = (9 — 6020 142 Q%) (1 + 22 A, L p1A, + pOA,).
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After simplification and putting 42 = ¢ and removing the root # = $2=0,
we have R.H.S. — L.H.S. =
Ag 8 4 (A —6Q A, — AP + (A, 2 ~6QA, +
9Ay — 4 Ay A} P 4 (2 —6A, Q L3A, —4A7 — A)¢
= ‘ - (624 34,)
= a4t Lo, a4+ ot bay

0= B8Af— AP~ AF_ Af - A
- = B A

< y4

e~ (3 (AS —A) HIA) = A,
ag =2 438, — AP =B3A (A2 —A) =@ — A2 13(A, —A AL
Now, A} <Ay KA <A <AL+ A, +A,.
AZ<B(AS+ASHAY

Af = AP — AP = A
9

Incase A2 <A, Then |2 < A
Incase A2 > A, Then by ahove | Q] < A,
o2 —ALK0

Since Ay 2z Ay 2 Ay > A,

A, <AL AL

as1s also < 0
ap = A, Q0 194, — 4 ALA, —'6A, 0.
Case [ —Tet Q<0 e, AP<AZ L A2 A2
Then ag == A, 2° 4 94; — 444, —3A, (A, —~ A2

= A, (2~ A) +3 (34, — A, A Q). |

Since A, 2 A; =2 A, 2 AI, 3A, <A, A2
and  4(Q—A) = (A2 AR AL — A2 ——42?A22A3‘-’
STAS+ A+ Af = AZ(AR + AP + A

3
TAS (AL — A= A = Af) =22 AL A

SA AR A=A

Now

Since A, =2 A2 A, > A, and since 2 <0, each of the expressions
on the R.H.S. is negative.
as < 0,
Case I1.—Q > 0

3 AN (. 9A3} 9A

T S

T P R
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We notice that 3A, A, > 9A,. (Fasily provable.)
Since £ > 0

If o, is to be > 0.

Then Qs 9A2

A
+ A + (38 - 5

)

Consider a; == A, % — 6A3 Q — A;

3A3)2_ _9A32)
Ay =

_ 38 _ 944 _ Aa 9A 2}
__Ag{Q o \/A+A2}{ +\/A‘,~I—A2
?.‘é‘\.g 9A22 ! _ 9A'3
NOW Al '!_ J'—;{;—‘ + A2 T (3"&2 Akl)

3A2 + \/A‘, . 9A2

: A,
Since =2 > =% and much more so =3
A, ~ A, A,

(easily provable)

3A2 A, 2A, 9A ;2
+’JA’+A2 Ag +\/A2+ Az.

Whenever under Case II (2 > 0)

= A,

ay =0
thena, >0
ao being > 0. The coefficients ag, aj, a,, a3, a, will have the following
signs Case I 4+ ? — — —. Whatever be the sign

of a;, by Descartes’ rule the equation will have exactly one positive root.

Case II.—oa, > 0. Then the coefficients aq a; a,

a3 a, will have
the following signs + + 4+

We therefore see that the equation has in this case also one and only
one positive root.

We have therefore established that in all cases the equation will have
one positive root only. Hence the uniqueness of the orthogonal tetrahedron

having the maximum volume and the given numbers for the areas of its faces
is proved.

The same method of investigation for proving the uniqueness or other-

wise of the maximum orthogonal tetrahedron cannot be followed for the
n-dimensional case.




