

THEOREMS ON THE FUNCTIONAL LIMITS OF DERIVATIVES OF A FUNCTION AT INFINITY.

By K. S. K. IYENGAR.

(From the Department of Mathematics, University of Mysore, Bangalore.)

Received April 24, 1938.

§ 1. Introduction.

HARDY and Littlewood have proved the following theorem*:-

" If $f(x)$ is $O(\phi)$, and $f^n(x) = O(\psi)$ where ϕ and ψ are non-decreasing positive functions, then for $0 \leq r \leq n$

$$f^r(x) = O\left(\phi^{1-\frac{r}{n}} \cdot \psi^{\frac{r}{n}}\right).$$

In particular, if f and f^n are bounded so is f^r , for $0 \leq r \leq n$."

The object of this paper is, to go deeper into the question when f is bounded and f^n is bounded at least on one side, and examine the extent of the oscillation of $f^r(x)$ ($0 < r < n$) at ∞ . Let O_r be the oscillation of $f^r(x)$ at ∞ . Then we prove the following theorems:-

$$(1) \quad O_r \leq K_{r,n} \cdot O_0^{1-\frac{r}{n}} \cdot O_n^{\frac{r}{n}}$$

where $K_{r,n}$ are universal constants independent of $f, f', \dots f^n$, but are functions of r and n only, and O_n = oscillation of $f^n(x)$ at ∞ , and O_0 = oscillation of $f(x)$ at ∞ , O_0 and O_n being finite ($0 < r < n$).

$$(2) \quad O_r \leq \bar{K}_{r,n} O_0^{1-\frac{r}{n}} \cdot (k_n)^{\frac{r}{n}} \quad 0 < r < n,$$

where $\bar{K}_{r,n}$ are (as above) universal constants independent of f, f', \dots etc., and O_0 is as above, and $f_n(x) = -k_n$ as $x \rightarrow \infty$ ($k_n > 0$ and finite).

A similar theorem when $f_n(x) = k_n$ as $x \rightarrow \infty$ is given, follows easily; also in the interesting case when $k_n = 0$ it can be easily seen that the above inequality will be still true.

(3) We deduce certain consequences like Theorems I (a) and II (a). II (a) is more general than a theorem of Hardy and Littlewood.†

(4) We shew that the constants $K_{r,n}$ occurring in (1) are the best possible when $n = 2$, and when $n = 3$.

(5) If $0 < a < 1$, and $f^a(x)$ be the a -th fractional derivative of f , then

$$O_a \leq K_a \cdot O_0^{1-a} \cdot O_1^a$$

* Proc. Lond. Math. Soc., 11 (New Series), 1913, p. 422.

† Ibid., p. 426.

where O_0 = oscillation of $f(x)$ at ∞ , O_1 = oscillation of $f'(x)$ at ∞ and K_a is a universal constant independent of f and f' and is a function of a only.

§ 2. *Theorem I.*

Let O_0 be the oscillation of $f(x)$ at ∞ and $(-k_2'$ and $k_2)$ the functional limits of $f''(x)$ at ∞ ($k_2 > 0$, $k_2' > 0$). Let A_1 and $-B_1$ be the upper and lower functional limits of $f'(x)$ at ∞ . We prove

$$\left(\frac{1}{k_2} + \frac{1}{k_2'} \right) \cdot \frac{A_1^2}{2} \leq O_0$$

$$\left(\frac{1}{k_2} + \frac{1}{k_2'} \right) \cdot \frac{B_1^2}{2} \leq O_0$$

$$\text{and } O_1 \leq \sqrt{2O_0 O_2}.$$

Let X be a sufficiently large number such that for all $x \geq X$

$$(1) -k_2' - \epsilon \leq f''(x) \leq k_2 + \epsilon, \quad (2) |f(x_1) - f(x_2)| \leq O_0 + \epsilon$$

for $x_1, x_2 \geq X$.

Let x_0 be a number such that

$$f'(x_0) = A_1 + \epsilon' \quad (\epsilon' \text{ being small})$$

Then for $h > 0$ $f'(x_0 + h) \geq f'(x_0) - (k_2' + \epsilon) h$

and $f'(x_0 - h) \geq f'(x_0) - (k_2 + \epsilon) h$.

[Note.—We take x_0 great enough so that $x_0 - \frac{A_1 + \epsilon'}{k_2' + \epsilon} \geq X$]

Let

$$h_1 = \frac{A_1 + \epsilon'}{k_2' + \epsilon}, \quad h_2 = \frac{A_1 + \epsilon'}{k_2 + \epsilon}$$

then in the interval, $x_0 - h_2 \leq x \leq x_0 + h_1$, the curve $y = f'(x)$ will be above the broken line POP_1 indicated in Fig. 1.

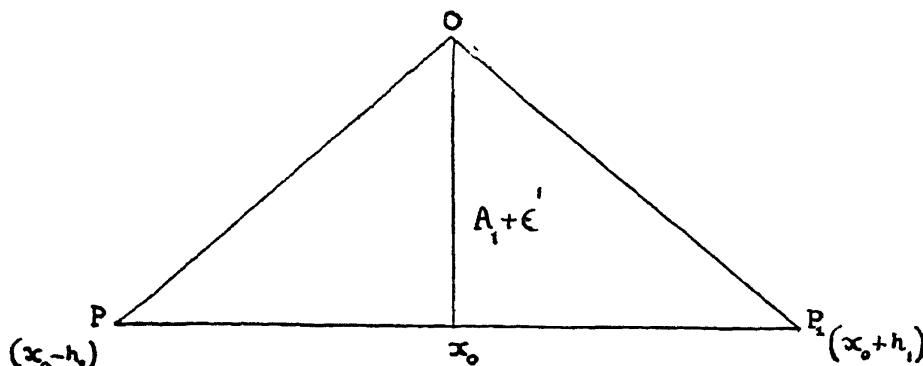


FIG. 1.

Therefore,

$$\begin{aligned} O_0 + \epsilon &\geq f(x_0 + h_1) - f(x_0 - h_2) = \int_{-h_2}^{h_1} f'(x_0 + t) dt \geq \text{area of } \triangle POP_1 \\ &= \frac{(A_1 + \epsilon')^2}{2} \cdot \left\{ \frac{1}{k_2 + \epsilon} + \frac{1}{k_2' + \epsilon} \right\}. \end{aligned}$$

Since ϵ and ϵ' are arbitrarily small, we therefore have

$$O_0 \geq \frac{1}{2} \left(\frac{1}{k_2} + \frac{1}{k_2'} \right) A_1^2 \quad (1)$$

Similarly,

$$O_0 \geq \frac{1}{2} \left(\frac{1}{k_2} + \frac{1}{k_2'} \right) B_1^2$$

Further,

$$2 \cdot \sqrt{\frac{2 k_2 k_2'}{k_2 + k_2'}} \cdot O_0 \geq A_1 + B_1 = O_1.$$

But

$$\frac{k_2 + k_2'}{2} \geq \frac{2 k_2 k_2'}{k_2 + k_2'}$$

$$\text{Hence, } 2 \sqrt{O_0 \frac{(k_2 + k_2')}{2}} = \sqrt{2 \cdot O_0 O_2} \geq O_1. \quad (2)$$

We will now show by an example that (2) cannot be improved (i.e., the value $\sqrt{2}$ for K_{12} cannot be replaced by anything smaller).

If non-existence of $f''(x)$ at an enumerable set be allowed then equality in (2) can actually occur.

Consider the function $\phi_0(t)$ defined as follows; ($A > 0, k > 0$),

$$\begin{aligned} \phi_0(t) &= Kt \quad \text{in } \left(0, \frac{A}{K}\right) \\ &= A - Kt \quad \text{in } \left(\frac{A}{K}, \frac{3A}{K}\right) \\ &= -A + Kt \quad \text{in } \left(\frac{3A}{K}, \frac{4A}{K}\right) \end{aligned}$$

and $\phi_0\left(t + \frac{4A}{K}\right) = \phi_0(t)$ at all other points.

In order to remove the discontinuity of $\phi_0'(t)$ at $P_1\left(\frac{A}{K}\right)$ and $P_3\left(\frac{3A}{K}\right)$, and at corresponding points P_5, P_7, \dots , etc., draw a circle to touch OP_1 and P_1P_2 just below the point P_1 (Fig. 2). We can draw it so that P_1P_1' and

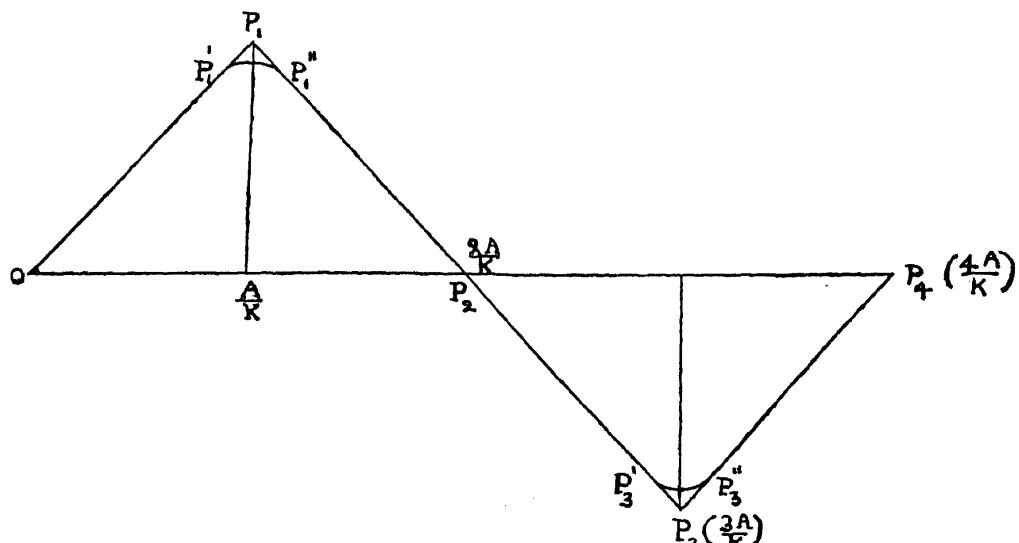


FIG. 2

$P_1 P_1''$ are very small (P_1' and P_1'' being the points of contact of the circle with OP_1 and $P_1 P_2$). Also draw equal circles near P_3 , P_5 , etc., to touch the lines $P_3 P_1$ and $P_3 P_4$ at corresponding points $P_3' P_3''$, etc. (i.e. $P_3 P_3' = P_3 P_3'' = P_1 P_1' = P_1 P_1''$, etc.).

Let the function corresponding to the curve $OP_1' P_1'' P_3' P_3'' P_5' P_5''$, etc. be $\phi(t)$. Then it is easy to see that (i) $\phi(t)$ is periodic in $\frac{4A}{K}$, and (ii) $\int_0^{\frac{4A}{K}} \phi(t) dt = 0$, (iii) since the derivative on arc $P_1' P_1''$ lies between K and $-K$, $\phi'(t)$ lies between $-K$ and K .

Let $f(t) = \int_0^t \phi(t) dt$. Then $f(t)$ is periodic in $\frac{4A}{K}$ because of (ii) and maximum value of $f(t) = \int_0^{\frac{2A}{K}} \phi(t) dt = \text{area of } \triangle OP_1 P_2 - \epsilon$, where ϵ is very small.

$$= \frac{A^2}{K} - \epsilon \quad (\text{in } 0 \leq x \leq \infty).$$

Minimum value of $f(t) = 0 \quad (\text{in } 0 \leq x \leq \infty)$.

Therefore,

$$O_0 = \frac{A^2}{K} - \epsilon = \frac{A^2}{K} (1 - \epsilon_1).$$

It is easy to see that $O_1 = 2A - \epsilon' = 2A (1 - \epsilon_2)$

and $O_2 = 2K$.

Now,

$$\frac{O_1^2}{O_0 O_2} = \frac{4A^2 (1 - \epsilon_2)^2}{\frac{A^2}{K} (1 - \epsilon_1) \cdot 2K} = 2 (1 - \epsilon_3)$$

since the ϵ 's are arbitrarily small we therefore see that the value $\sqrt{2}$ for K_{12} cannot be replaced by anything smaller.

Note.—If $f''(x)$ is bounded on one side only, i.e., $\overline{f''(x)} = k_2$, in our procedure for proving Theorem I we make use of the interval $(x_0 - h_2, x_0)$ only, and obtain

$$A_1 \leq \sqrt{2O_1 k_2} \text{ and, similarly } B_1 \leq \sqrt{2O_1 k_2}$$

and, $A_1 + B_1 = O_1 \leq 2 \cdot \sqrt{2} \sqrt{O_1 k_2}$.

We can easily devise an example somewhat similar to the one above to show that the above result is the best possible, i.e., $2^{\frac{3}{2}}$ is the best value for \overline{K}_{12} .

* Cor. I.—Assuming Hardy and Littlewood's theorem that if f and f^n are bounded so is f' for $0 \leq r \leq n$, we get by repeated use of (2)

$$\frac{O_0}{O_1} \geq \frac{1}{2} \cdot \frac{O_1}{O_2} \geq \frac{1}{2^2} \frac{O_2}{O_3} \dots \geq \frac{1}{2^r} \frac{O_r}{O_{r+1}} \dots \geq \frac{1}{2^{n-1}} \frac{O_{n-1}}{O_n}.$$

Let $d_r = \frac{O_r}{O_{r+1}}$; the above becomes $d_0 \geq \frac{d_1}{2} \dots \geq \frac{d_r}{2^r} \dots \geq \frac{d_{n-1}}{2^{n-1}}$.

Then $d_0 d_1 \dots d_{r-1} = \frac{O_0}{O_r}$ and $d_r d_{r+1} \dots d_{n-1} = \frac{O_r}{O_n}$.

Then,

$$\frac{O_0}{O_r} \geq \frac{(d_{r-1})^r}{\frac{(r-1)r}{2}}$$

and

$$\frac{O_r}{O_n} \leq 2^{\frac{(n-r)(n-r+1)}{2}} \cdot (d_{r-1})^{n-r}$$

$$\frac{O_0^{n-r} O_n^r}{O_r^n} = \left(\frac{O_0}{O_r} \right)^{n-r} \left(\frac{O_r}{O_n} \right)^r \geq \frac{1}{\frac{r(n-r)}{2}^2}.$$

$$\text{Hence, } O_r \leq 2^{\frac{r(n-r)}{2}} O_0^{1-\frac{r}{n}} O_n^{\frac{r}{n}}.$$

The values for K_{rn} obtained here are of orders ranging between $e^{a \cdot n}$ and $e^{a' \cdot n^2}$.

They are too high values for K_{rn} ; even for $n = 3$ they give as will be obvious from what follows too high values.

We will presently prove two theorems in which we can obtain values for K_{rn} , much smaller than the ones given by this corollary.

§ 3. A Theorem of Hardy on Cesàro Summability.

We will here shew that a theorem in Cesàro summability due to Hardy can be easily deduced from Theorem I.

Let $\phi_0(x)$ be such that $\left| x \frac{d\phi_0}{dx} \right| \leq k$.

Let $\phi_r(x) = \frac{r}{x^r} \int_0^x \phi_0(t) (x-t)^{r-1} dt$ (r being integral positive)

and let us define D by $D = x \frac{d}{dx}$.

Then $D\phi_r = r(\phi_{r-1} - \phi_r)$

and $D^2\phi_r = r(D\phi_{r-1} - D\phi_r)$.

It is easy to prove

$$(i) \quad D\phi_r = \frac{r}{x^r} \int_0^x D\phi_0 \cdot (x-t)^{r-1} dt$$

$$(ii) \quad r(D\phi_{r-1} - D\phi_r) = \frac{r(r-1)}{x^2} \cdot \int_0^x (D\phi_0 - D\phi_1) t (x-t)^{r-2} dt.$$

Since $D\phi_1 = \frac{1}{x} \int_0^x D\phi_0 dx$ and since $|D\phi_0| \leq k$

$$|D\phi_0 - D\phi_1| \leq 2k.$$

By (ii) $|D^2\phi_r| \leq 2k. \quad (r \geq 1).$

Let O_r be oscillation $\phi_r(x)$ at ∞ . Then by (1) in Theorem I, we have

$$\text{upper limit of } |D\phi_r| \leq \sqrt{2kO_r}.$$

Hence if ϕ_r converges, $O_r = 0$

$$\text{i.e.,} \quad |D\phi_r| \rightarrow 0$$

$$\text{i.e.,} \quad \phi_{r-1} - \phi_r \rightarrow 0 \quad \text{as } x \rightarrow \infty$$

i.e., ϕ_{r-1} converges to a finite limit.

It is easy now to deduce that $\phi_0(x)$ converges to a definite limit if ϕ_r converges to a definite limit.

§ 4. Theorem II.

Let oscillation of $f(x)$ at ∞ be O_0 (finite) and lower limit of $f^n(x) = -k_n$ at ∞ ($k_n > 0$) and (k_n finite).

If A_{n-1} and $-B_{n-1}$ are the upper and lower functional limits of $f^{n-1}(x)$ at ∞ then

$$A_{n-1} \leq \frac{n}{\frac{1}{2^n}} \cdot O_0^{\frac{1}{n}} \cdot k_n^{1-\frac{1}{n}}$$

$$B_{n-1} \leq \frac{n}{\frac{1}{2^n}} O_0^{\frac{1}{n}} \cdot k_n^{1-\frac{1}{n}}.$$

Let $\Delta_{h_1} = f(x+h_1) - f(x)$ and $\Delta^2_{h_1, h_2} = \Delta_{h_2} \{f(x+h_1) - f(x)\}$, etc.

$$\text{Then } \Delta_{h_1, h_2, h_{n-1}}^{n-1} = \int_0^{h_1} \int_0^{h_2} \cdots \int_0^{h_{n-1}} f^{n-1}(x+u_1+u_2+\cdots+u_{n-1}).$$

$$du_1, du_2, \dots, du_{n-1}$$

As in Theorem I choose x_0 sufficiently large such that

$$f^{n-1}(x_0) = A_{n-1} + \epsilon' \quad \text{and } f^n(x) \geq - (k_n + \epsilon)$$

(assuming $\sum h_r \leq$ a constant; all the $h_r < 0$).

Then $f^{n-1}(x_0 + \sum u_r) \geq (A_{n-1} + \epsilon') - (k_n + \epsilon) \cdot (\sum u_r)$.

Hence, $\Delta_{h_1 \dots h_{n-1}}^{n-1} \geq \int_0^{h_1} \dots \int_0^{h_{n-1}} [A_{n-1} + \epsilon' - (k_n + \epsilon) \cdot (\sum u_r)]$.

$$du_1 du_2 \dots du_{n-1}.$$

The right-hand side

$$= h_1, h_2, h_{n-1} \left\{ A_{n-1} + \epsilon' - \frac{(k_n + \epsilon)}{2} (\sum h_r) \right\} = F(h_1, h_2, h_{n-1}).$$

It is easy to prove that F is a maximum when

$$h_1 = h_2 = \dots = h_{n-1} = \frac{2 \cdot (A_{n-1} + \epsilon')}{n \cdot (k_n + \epsilon)} = h.$$

and

$$F(h, \dots, h) = \left(\frac{2}{k_n + \epsilon} \right)^{n-1} \cdot \left(\frac{A_{n-1} + \epsilon'}{n} \right)^n.$$

Now $\Delta_h^{n-1} f = \Delta_h^{n-2} \cdot \{f(x+h) - f(x)\} \leq 2^{n-2} (O_0 + \epsilon'')$ [since x_0 is very large].

Therefore

$$2^{n-2} (O_0 + \epsilon'') \geq \left(\frac{2}{k_n + \epsilon} \right)^{n-1} \left(\frac{A_{n-1} + \epsilon'}{n} \right)^n$$

since the ϵ 's are arbitrarily small, we have

$$O_0 \geq \frac{2 \cdot A_{n-1}^n}{n^n \cdot k_n^{n-1}}$$

i.e.,

$$A_{n-1} \leq \left(\frac{n}{\frac{1}{2^n} \cdot n} \right)^{\frac{1}{n}} \cdot O_0^{\frac{1}{n}} k_n^{1 - \frac{1}{n}}. \quad (3)$$

a similar inequality of B_{n-1} can be established.

Therefore, $O_{n-1} \leq 2^{1 - \frac{1}{n}} \cdot n \cdot O_0^{\frac{1}{n}} \cdot k_n^{1 - \frac{1}{n}}$, and step by step calculation leads to the inequality for O_r , and the value for K_m is given in the note below.

In case O_n is finite it can be easily deduced from above that

$$O_{n-1} \leq n \cdot O_0^{\frac{1}{n}} \cdot O_n^{1 - \frac{1}{n}}.$$

§ 5. Generalization of a Theorem of Hardy-Littlewood.

(i) In case f is bounded and $f^n(x)$ is bounded on one side (at least) then all the intermediate derivatives $f^r(x)$ are bounded. This is at once obvious from Theorem II ($0 \leq r < n$).

(ii) In case $O_0 = 0$, i.e., f is convergent and f^n is bounded on one side at least then all the intermediate derivatives $f^r(x)$ converge to zero as $x \rightarrow \infty$ ($0 \leq r < n$). This is also obvious from Theorem II.

(iii) In case O_0 is finite and either lower functional limit of $f^n(x) = 0$ or upper functional limit of $f^n(x) = 0$ at ∞ then also, all the intermediate derivatives $f^r(x)$ ($0 < r < n$) tend to zero. This needs a slight argument to prove it.

Suppose the lower function limit of $f^n(x) = 0$ at ∞ ; then for all large x , $f^n(x) \geq -\epsilon$ (ϵ being small) and, we have as in Theorem II,

$$A_{n-1} \leq 2^{1-\frac{1}{n}} \cdot n O_0^{\frac{1}{n}} \cdot \epsilon^{1-\frac{1}{n}}$$

$$\text{and } B_{n-1} \leq 2^{1-\frac{1}{n}} \cdot n O_0^{\frac{1}{n}} \cdot \epsilon^{1-\frac{1}{n}}.$$

Since ϵ is arbitrarily small $A_{n-1} = B_{n-1} = 0$,

and now we can deduce easily $A_{n-2} = B_{n-2} = 0 \dots$, etc.

Therefore the theorem follows. Similar argument when upper functional limit of $f^n(x) = 0$ is sufficient to prove the theorem.

This theorem is, as already noticed in the introduction, more general than one of Hardy and Littlewood (*ibid.*, p. 423) and is proved under more general conditions than there.

Note.—From (3), we can, by easy calculation, shew that for $0 < r < n$

$$\begin{aligned} \log O_r - \left(1 - \frac{r}{n}\right) \log O_0 - \frac{r}{n} \cdot \log O_n &\leq \log K_{rn} \\ &= r \left\{ \frac{\log r + 1}{r} + \frac{\log r + 2}{r + 1} + \dots + \frac{\log n}{n - 1} \right\}. \end{aligned}$$

We obtained in Corollary I to Theorem I, for $\log K_{rn}$ the value

$$\frac{r(n-r)}{2} \cdot \log 2.$$

$$\begin{aligned} \frac{\log K_{rn} \text{ (in Theorem II)}}{r \frac{(n-r)}{2} \cdot \log 2} &= K \text{ (a constant)} \cdot \frac{\frac{\log r + 1}{r} + \dots + \dots + \frac{\log n}{n-1}}{n-r} \\ &= \text{utmost of order} \left(\frac{\log^2 n}{n} \right) \end{aligned}$$

Therefore (3) gives us much finer values for K_{rn} than Corollary I of Theorem I.

§ 6. Theorem III.

If $f^n(x)$ is bounded both ways we can, by the device of the following theorem, get much better values for $K_{r,n}$ than in Theorem II, if $n \geq 3$.

Theorem.—Let O_0 and O_n be the oscillations of $f(x)$ and $f^n(x)$ at ∞ (both being finite). If O_{n-2} be the oscillation of $f^{n-2}(x)$ at ∞ , then

$$O_{n-2} \leq \frac{n}{\frac{n-2}{2+3^n}} \cdot O_0^{\frac{2}{n}} O_n^{\frac{n-2}{n}}$$

$$\text{and } O_{n-1} \leq \frac{\frac{1}{n^{\frac{1}{2}}}}{\frac{n-2}{2n}} \cdot O_0^{\frac{1}{n}} \cdot O_n^{1-\frac{1}{n}}.$$

Let $\Delta_{h_1} = f(x + h_1) - f(x - h_1)$ and $\Delta^2_{h_1, h_2} = \Delta_{h_1}\{\Delta_{h_2}\}$, etc.

$$\text{Then } \Delta_{h_1 h_2 \dots h_{n-2}}^{n-2} = \int_{-h_1}^{h_1} \int_{-h_2}^{h_2} \dots \int_{-h_{n-2}}^{h_{n-2}} f^{n-2} (x + u_1 + u_2 + \dots + u_{n-2}).$$

Let A_{n-2} and $-B_{n-2}$ be the upper and lower functional limits of $f^{n-2}(x)$ at ∞ , and let k_n and $-k_n'$ be the upper and lower limits of $f^n(x)$ at ∞ . Then, there will be an infinity of values of x (as large as you like) for which $f^{n-2}(x) = A_{n-2} + \epsilon$ (where ϵ is arbitrarily small) and $f^{n-2}(x)$ will be a maximum at that point. (This will not necessarily happen when $A_{n-2} = 0 = -B_{n-2}$ in which case Theorem III is self-evident. So we may assume $O_{n-2} \neq 0$.) Let x_0 be such a value. Assuming Σh_r to be bounded, since for large values of x , $-(k_n' + \epsilon) \leq f^n(x) \leq (k_n + \epsilon)$, we have $f^{n-2}(x_0 + \Sigma u_r) \geq f^{n-2}(x_0)$

$$-(k_n' + \epsilon) \underbrace{(\Sigma u_r)^2}_{\frac{1}{2}} = (A_{n-2} + \epsilon') - \frac{(k' + \epsilon)}{\frac{1}{2}} (\Sigma u_r)^2 \quad (\text{since } x_0 \text{ is a maximum point, } f^{n-1}(x_0) = 0).$$

Then

$$\Delta_{h_1 h_2 \dots h_{n-2}}^{n-2} f(x_0) \geq \int_{-h_1}^{h_1} \dots \int_{-h_{n-2}}^{h_{n-2}} \left[(A_{n-2} + \epsilon') - \frac{(k_n' + \epsilon)}{2} (\Sigma u_r)^2 \right] du_1 du_2 \dots du_{n-2}.$$

The right-hand side = $F(h_1, h_2, \dots, h_{n-2})$

$$= 2^{n-2} \cdot h_1 \cdot h_2 \cdot \dots \cdot h_{n-2} \left\{ (A_{n-2} + \epsilon') - \frac{(k_n' + \epsilon)}{3} (\sum h_r^2) \right\}.$$

Now F is a maximum when $h_1 = h_2 = h_{n-2} = \sqrt{\frac{6(A_{n-2} + \epsilon')}{n(k_n' + \epsilon)}} = h$.

$$\begin{aligned}
 \text{Therefore, } \Delta h^{n-2} &\geq 2^{n-2} h^{n-2} \left\{ (A_{n-2} + \epsilon') - \frac{(k_n' + \epsilon)}{3} \cdot (n-2) h^2 \right\} = \\
 &= 2^{n-2} \left\{ \frac{6 (A_{n-2} + \epsilon')}{n \cdot (k_n' + \epsilon)} \right\}^{\frac{n}{2}-1} \cdot 2 \cdot \left(\frac{A_{n-2} + \epsilon'}{n} \right) \\
 &= \frac{2^{\frac{3n}{2}-2} \cdot 3^{\frac{n}{2}-1}}{n^{\frac{n}{2}}} \cdot \frac{(A_{n-2} + \epsilon')^{\frac{n}{2}}}{(k_n' + \epsilon)^{\frac{n}{2}-1}}.
 \end{aligned}$$

$$\text{Now } \Delta h^{n-2} f(x_0) = \Delta h^{n-3} \cdot \{f(x_0 + h) - f(x_0 - h)\} \leq 2^{n-3} (O_0 + \epsilon'').$$

$$\text{Hence, } O_0 + \epsilon'' \geq \frac{2^{\frac{n}{2}+1} \cdot 3^{\frac{n}{2}-1}}{n^{\frac{n}{2}}} \cdot \frac{(A_{n-3} + \epsilon')^{\frac{n}{2}}}{(k_n' + \epsilon)^{\frac{n}{2}-1}}.$$

Since the ϵ 's are arbitrarily small we have

$$O_0 \geq \frac{2^{\frac{n}{2}+1} \cdot 3^{\frac{n}{2}-1}}{n^{\frac{n}{2}}} \cdot \frac{A_{n-2}^{\frac{n}{2}}}{(k_n')^{\frac{n}{2}-1}}$$

$$\text{i.e., } A_{n-2} \leq \frac{n}{1 + \frac{2}{n} \cdot \frac{n-2}{3^n}} \cdot O_0^{\frac{2}{n}} (k_n')^{1 - \frac{2}{n}}. \quad (4, a)$$

Similarly, we get

$$B_{n-2} \leq \frac{n}{1 + \frac{2}{n} \cdot \frac{n-2}{3^n}} \cdot O_0^{\frac{2}{n}} (k_n')^{1 - \frac{2}{n}}. \quad (4, b)$$

Thus,

$$\begin{aligned}
 A_{n-2} + B_{n-2} = O_{n-2} &\leq \frac{n}{2 \cdot 3^{\frac{n}{2}}} \cdot O_0^{\frac{2}{n}} \cdot \left\{ \frac{k_n^{1 - \frac{2}{n}} + k_n'^{1 - \frac{2}{n}}}{2^{\frac{n}{2}}} \right\} \\
 &\leq \frac{n}{2 \cdot 3^{\frac{n}{2}}} \cdot O_0^{\frac{2}{n}} (k_n + k_n')^{1 - \frac{2}{n}}. \\
 &\leq \frac{n}{2 \cdot 3^{\frac{n}{2}}} \cdot O_0^{\frac{2}{n}} \cdot O_n^{1 - \frac{2}{n}}. \quad (4, c)
 \end{aligned}$$

Now $\frac{k_n^{1-\frac{2}{n}} + k_n'{}^{1-\frac{2}{n}}}{2} \leq \left(\frac{k_n + k_n'}{2}\right)^{1-\frac{2}{n}} = \frac{O_n^{1-\frac{2}{n}}}{2}$. Hence the inequality.

Since by Theorem I, $O_{n-1} \leq \sqrt{2}O_{n-2}O_n$, substituting for O_{n-1} in (4, c)

$$\text{we obtain } O_{n-1} \leq \left(n^{\frac{1}{2}}/3^{\frac{n-2}{2n}}\right) \cdot O_0^{\frac{1}{n}} \cdot O_n^{1-\frac{1}{n}}. \quad (5)$$

§ 7. Constants for $n = 3$.

In case $n = 3$, we have from (4, c) and (5)

$$O_1 \leq \frac{3^{\frac{2}{3}}}{2} O_0^{\frac{2}{3}} \cdot O_3^{\frac{1}{3}}; \quad O_2 \leq 3^{\frac{1}{3}} O_0^{\frac{1}{3}} O_3^{\frac{2}{3}}.$$

We will give an example to shew that the constants K_{13} , K_{23} , given here are the best possible. If non-existence of $f'''(x)$ at an enumerable number of points be allowed then equality can actually occur in the above inequalities. Let $\phi(t)$ be defined as in the example under Theorem I and let

$$\phi_1(t) = \phi\left(t + \frac{A}{K}\right).$$

Then $\phi_1(t)$ will correspond to the graph (Fig. 3).

$$Q_1P_1'P_3'P_3''P_5'Q_5 \text{ in } 0 \leq t \leq \frac{4A}{K}.$$

The arcs Q_1P_1' , $P_3'P_3''$, $P_5'Q_5$ being circular just as in the example under Theorem I.

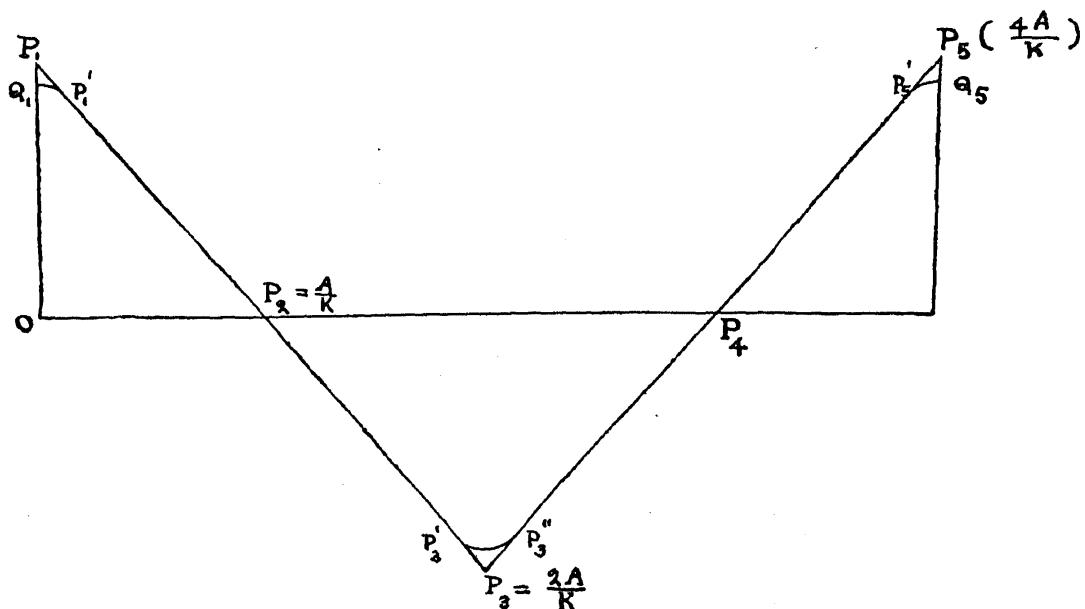


FIG. 3.

Then (i) $\phi_1(t)$ is periodic in $\frac{4A}{K}$ and (ii) $\int_0^{\frac{4A}{K}} \phi_1 dt = 0$; (iii) oscillation of $\phi_1(t) = 2(A - \epsilon)$.

Let $\phi_2(t)$ be defined as $\int_0^t \phi_1 dt$. Then the graph of $\phi_2(t)$ will be slightly deformed parabolas as shown here (Fig. 4).

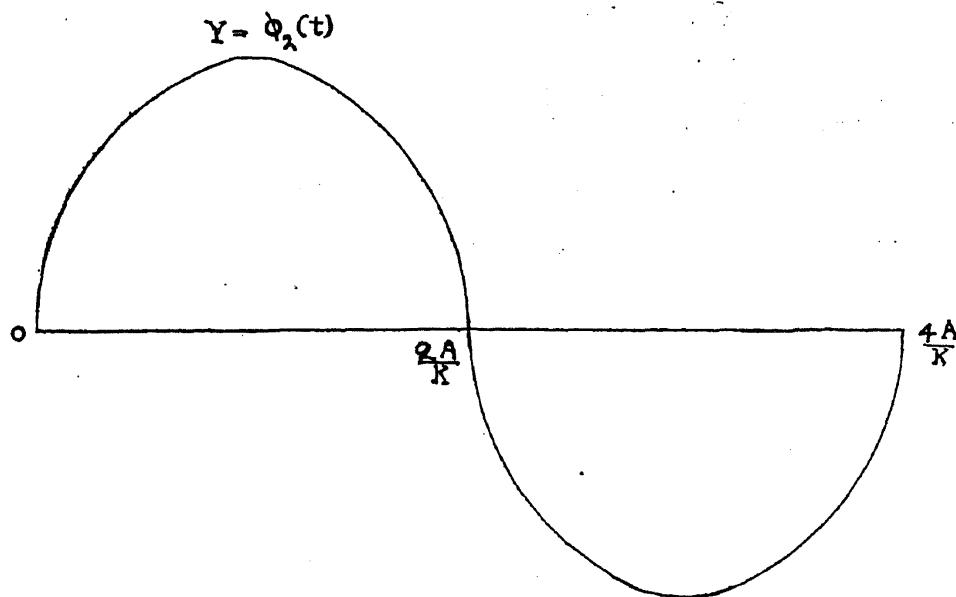


FIG. 4.

ϕ_2 is periodic in $\frac{4A}{K}$ because of (ii) and further as is obvious.

$$\phi_2\left(t + \frac{2A}{K}\right) = -\phi_2(t); \text{ therefore } \int_0^{\frac{4A}{K}} \phi_2 dt = 0.$$

Therefore the function $f(t) = \int_0^t \phi_2(t) dt$ is periodic in $\frac{4A}{K}$

and maximum of $f(t) = \int_0^{\frac{2A}{K}} \phi_2 dt = \frac{2}{3} \frac{A^3}{K^2} - \epsilon'' = \frac{2}{3} \frac{A^3}{K^2} (1 - \epsilon_3)$; minimum of $f(t) = 0$.

Similarly,

$$\text{maximum of } f'(t) = \int_0^{\frac{A}{K}} \phi_1(t) dt = \frac{A^2}{2K} - \epsilon' = \frac{A^2}{2K} (1 - \epsilon_2)$$

$$\text{minimum of } f'(t) = - \int_0^{\frac{A}{K}} \phi_1(t) dt = - \left(\frac{A^2}{2K} - \epsilon' \right) = - \frac{A^2}{2K} (1 - \epsilon_2)$$

$$\text{oscillation of } f''(t) = 2(A - \epsilon) = 2A(1 - \epsilon_1)$$

$$\text{oscillation of } f'''(t) = 2K.$$

Therefore,

$$O_0 = \frac{2}{3} \frac{A^3}{K^2} (1 - \epsilon_3); \quad O_1 = \frac{A^2}{K} (1 - \epsilon_2); \quad O_2 = 2A (1 - \epsilon_1) \text{ and } O_3 = 2K.$$

Now

$$\frac{O_1}{O_0^{\frac{2}{3}} O_0^{\frac{1}{3}}} = \frac{\frac{A^2}{K} (1 - \epsilon_2)}{\left\{ \frac{2}{3} \frac{A^3}{K^2} (1 - \epsilon_3) \right\}^{\frac{2}{3}} (2K)^{\frac{1}{3}}} = \frac{3^{\frac{2}{3}}}{2} (1 - \epsilon_4)$$

and,

$$\frac{O_2}{O_0^{\frac{1}{3}} O_2^{\frac{2}{3}}} = \frac{2A (1 - \epsilon_1)}{\left\{ \frac{2}{3} \frac{A^3}{K^2} (1 - \epsilon_3) \right\}^{\frac{1}{3}} (2K)^{\frac{2}{3}}} = 3^{\frac{1}{3}} (1 - \epsilon_5).$$

We therefore see that $K_{13} = \frac{3^{\frac{2}{3}}}{2}$ and $K_{23} = 3^{\frac{1}{3}}$ are the best possible values (when $n = 3$). We have shown the same to be true of K_{12} in § 2.

8. On Fractional Derivatives.

Let O_0 and O_1 be oscillations of $f(x)$ and $f'(x)$ at ∞

Let

$$f_0^a(x) = \frac{1}{|1-a|} \cdot \frac{d}{dx} \int_0^x \frac{f(t)}{(x-t)^a} dt \quad (0 < a < 1).$$

Right-hand side =

$$\frac{1}{|1-a|} \left\{ \frac{f(0)}{x^a} + \int_0^x \frac{f'(t)}{(x-t)^a} dt \right\}.$$

Since we are interested in the asymptotic behaviour of $f^a(x)$ at ∞ the first term may be omitted. We will next shew that from our point of view, it is matter of indifference what origin we take, for

$$f_a^a(x) = \frac{1}{|1-a|} \frac{d}{dx} \int_a^x \frac{f(t)}{(x-t)^a} dt = \frac{1}{|1-a|} \left\{ \frac{f(a)}{(x-a)^a} + \int_a^x \frac{f'(t)}{(x-t)^a} dt \right\}.$$

As before the first term is of no importance and

$$\int_a^x \frac{f'(t)}{(x-t)^a} dt - \int_a^x \frac{f'(t)}{(x-t)^a} dt = \int_0^a \dots = O\left(\frac{1}{x^a}\right).$$

Hence we will consider $\frac{1}{|1-a|} \int_a^x \frac{f'(t)}{(x-t)^a} dt$ as defining $f^a(x)$.

Now

$$\frac{1}{|1-a|} \cdot f_a^a(x+a) \sim \int_a^{x+a} \frac{f'(t+a)}{(x-t)^a} dt = \int_0^x \frac{f'(a+x-t)}{t^a} dt.$$

$$= \int_0^{x_1} + \int_{x_1}^x = I_1 + I_2 \quad (0 < x_1 < x).$$

$$I_1 = f'(a + x - \theta x_1) \frac{x_1^{1-\alpha}}{1-\alpha} \quad \text{and} \quad I_2 = \frac{1}{x_1^\alpha} \int_{x_1}^{\xi} f'(a + x - t) dt.$$

Let A_1 and $-B_1$ be the upper and lower functional limits of $f'(x)$ at ∞ .
Taking 'a' fairly large we have

$$I_1 + I_2 \leq (A_1 + \epsilon) \frac{x_1^{1-\alpha}}{1-\alpha} + \frac{O_0 + \epsilon}{x_1^\alpha} = F(x_1).$$

$F(x)$ is a minimum when $x = a \cdot \frac{O_0 + \epsilon}{A_1 + \epsilon}$.

Taking for x_1 the value $x_1 = a \cdot \frac{O_0 + \epsilon}{A_1 + \epsilon}$.

We get, $\sqrt{1-\alpha} f^\alpha(x) = I_1 + I_2 \leq$

$$\frac{(A_1 + \epsilon)}{1-\alpha} \cdot \left(a \cdot \frac{O_0 + \epsilon}{A_1 + \epsilon} \right)^{1-\alpha} + \frac{O_0 + \epsilon}{a^\alpha} \left(\frac{A_1 + \epsilon}{O_0 + \epsilon} \right)^\alpha \leq \frac{(A_1 + \epsilon)^\alpha \cdot (O_0 + \epsilon)^{1-\alpha}}{(1-\alpha) \cdot a^\alpha}$$

Hence if A_α and $-B_\alpha$ are the functional limits of $f^\alpha(x)$ at ∞
we have,

$$A_\alpha \leq \frac{O_0^{1-\alpha} A_1^\alpha}{|2-\alpha| \cdot a^\alpha}.$$

$$B_\alpha \leq \frac{O_0^{1-\alpha} B_1^\alpha}{|2-\alpha| \cdot a^\alpha}.$$

Since

$$A_1^\alpha + B_1^\alpha \leq 2 \cdot \left(\frac{A_1 + B_1}{2} \right)^\alpha = 2^{1-\alpha} (A_1 + B_1)^\alpha$$

we have

$$O_\alpha = A_\alpha + B_\alpha \leq \frac{2^{1-\alpha}}{|2-\alpha| \cdot a^\alpha} \cdot O_0^{1-\alpha} O_1^\alpha. \quad (6)$$

Since

$$\frac{2^{1-\alpha}}{|2-\alpha| \cdot a^\alpha} \leq 2e^{\frac{1}{\alpha}} \quad \text{we have} \quad O_\alpha \leq 2 \cdot e^{\frac{1}{\alpha}} \cdot O_0^{1-\alpha} \cdot O_1^\alpha. \quad 0 < \alpha < 1.$$

An immediate corollary is that when either f or f' converges and the other remains bounded, all the intermediate derivatives $f^\alpha(x)$ tend to zero as $x \rightarrow \infty$.

Note. — We could equally well define by $f^\alpha(x)$ by $\frac{1}{|1-\alpha|} \int_x^\infty \frac{f'(t)}{(x-t)^\alpha} dt$.

(for large x), the latter integral being convergent since f is bounded and we get the same result as (6) for this definition of $f^\alpha(x)$.