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§7. Introduction.
HARrDY and Littlewood have proved the following theorem*:—

“If f (%) is O (¢), and * (x) = O () where ¢ and ¢ are non-decreasing
positive functions, then for 0 <7 <#n

1-2 =
f’(x)—'-=0<¢ n"/’”)'

In particular, if f and 7 are bounded so is f7, for 0 <7 < n.”

The object of this paper is, to go deeper into the question when f is
bounded and f7 is bounded at least on one side, and examine the extent of
the oscillation of f7 (x) (0 <7 <) ateo. ILet O, be the oscillation of
f7 (x) at eo. Then we prove the following theorems :—

b »
(1) Or < K;-’”‘ OO ”' O:,,l

where X, , are universal constants independent of f, f',-- f#, but are functions
of 7 and % only, and O,, = oscillation of f# (x) at o, and O, = oscillation of
f (%) at oo, Oy and O, being finite (0 <7 <n).

?” »

_ 1-= z
(2) O, < Kn O, . (kﬂ)ﬂ 0 <r <n,
where K, , are (as above) universal constants independent of f, f', - - -etc.,
and O, is as above, and fu (¢) = — &, as x — oo (R, > 0 and finite).

A similar theorem when f, (#) =k, as x — oo is given, follows easily ;
alsoin the interesting case when 2, = 0 it can be easily seen that the above
inequality will be still true.

(3) We deduce certain consequences like Theorems I (2) and II (a).
II (@) is more general than a theorem of Hardy and Littlewood.t

(4) We shew that the constants K,., occurring in (1) are the best possi-
ble when #» = 2, and when » = 3.

(5) 10 <a <1, and f%(x) be the a-th fractional derivative of f,
then . 0, <K, Opt-2 0, .

* Proc. Lond. Math. Soc., 11 (New Series), 1913, p. 422.
+ Ibid., p. 426.
43
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where O, = oscillation of f (x) at oo, O, = oscillation of f’ (x) at e and K,
is a universal constant independent of fandf' and is a function of a only.
' §2. Theovem I.

Let O, be the oscillation of f (x) at oo and (— &’ and &,) the functional
limits of f" (x) at oo (Ry> 0, &y > 0). Let A, and — B, be the upper and
lower functional limits of f' (x) at e. We prove J

1 1Y\ A
(& +m) > =<0

1 . 1\ B
(b, *30) 5 =0
and 0; < ¥20, 0,.
Let X be a sufficiently large number such that for all x

(1) — ke —e<f"(®) <ks + e ) f (%) —f ()]

for x,, %, 2 X.

=X
< Qg + €

Let x, be a number such that

f'(x%4) = Ay + € (€ being small)
Then for 2> 0 I (e +h) 27 (%) — (k" + €) A

and Flwe =B = (x0) = (ks + &) B
[N ote.—We take x, great enough so that x, — fl—}{]}i = X:l
9 €
Let :

Al + 6,’ h, — A1 + G’

kzl + € 2 k2 + €

then in the interval, x, — A, <x <%, + by, the curve y =f' (x) will be
above the broken line POP, indicated in Fig. 1.

hy =

o
N
A‘+€’
P
(xo‘h&) 'Io E (‘xo". h’l)
Fre. 1.
Therefore,
2
Op +e=f(xg+hy) —f(xg—hy) = ff (%o + 1) dt > area of A POP,
s ]12
(A €N 1 1
2 {k2+e+k2'+e}.
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Since e and ¢’ are arbitrarily small, we therefore haveé

1 1
002%(52 +7€;)A12]
2

(1)

Similarly, O, =1 (731 4 },_17) B
Further, : :

k

sz ikkg/ OO>A1+B1=OI‘

But kot R > 2 koky'

2 ky + ko'
Hence, 2 '\/OO ﬁ'lf%,j'z_f_?_) = 42 - 0,0, > O,. 2)

We will now show by an example that (2) cannot be improved (ie., the
value 42 for X,, cannot be replaced by anything smaller).

If non-existence of f” (x) at an enumerable set be allowed then equality in
(2) can actually occur.

Consider the function ¢, () defined as follows; (A> 0, k> 0),
. A
950 (t) = KIJ, mn (0, "I‘”{')

= A —-Ki¢ m(A 34
3A 4A
=—A +Xf 1in ' T

and ¢, (t + -——) $o (¢) at all other points,

3A
In order to remove the discontinuity of ¢,’ (t) at P, (—AK—> and P, (—K‘)’

and at corresponding points Py, P,, - - +, etc., draw a circle to touch OP, and
P,P, just below the point P, (Fig. 2). We can draw it so that P,P,’ and
[
ARG
¥ B (45

ENB
B,(3)

T e O
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P,P,” are very small (P,” and P,” being the points of contact of the circle
with OP; and P,P,). Also draw equal circles near P;, Pj;, etc., to touch
the lines P,P, and P,P, at corresponding points P;'P;", etc. (t.e. PP’ =
P,P,” =P, P,/ =P,P,", etc.).

Let the function corresponding to the curve OP,'P,"P,'P;"P,'P,”, etc.
be ¢ (f). Then it is easy to see that (i) ¢ (¢) is periodic in % » and (1i)

4A

X
f ¢ (t) dt =0, (iii) since the derivative on arc P,'P,” lies between K and
0

— K, ¢’ () lies between — K and K.

¢
Let f(¢) = f é (f) dt. Then f (f) is periodic in % because of (i1) and
¢

2a

K
maximum value of f(f) = / ¢ () dt =area of A OP,P, — ¢, where € 1is
0

very small.
=%——e (in 0 < x < oo)
Minimum value of f (f) =0 (in 0 < x < o0).
Therefore,
A2 A2
O, = ¢ X (1— )
It is easy to see that O; =2A — & =2A (1 — ¢,)
and 0, =2 K.
Now,
0,2 A% (1 — ¢,)?
i T TR
02 —IZ (]."— El). 2K

since the ¢’s are arbitrarily small we therefore see that the value 43 for
K, cannot be replaced by anything smaller.

Note.—If f" (x) is bounded on onme side only, i.., 7 (#) = %,, in our

) X —> o0
procedure for proving Theorem I we make use of the interval (v, — A,, %)

only, and obtain
A, < 420k, and, similarly B; < 420,%,
and, Ay + B; =0, <2.v2 40,k..
We can easily devise an example somewhat similar to the one above to

. 3
show that the above result is the best possible, 7.e., 2% is the best value
for K,».
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o Cor. I.—Assuming Hardy and Littlewood’s theorem that if fand f* are
bounded so is f~ for 0 <7 <n, we get by repeated use of (2)

Op 1 01 1 O, 1 O, 1 O
=0 5 > =2 ... L — 271,
0, ~ 2 Oz = 22 O, > 270, 41 > -1 671
_ o, ) d d i
Let d, = 5, the above becomes d, > —22 Ce > z; N 2%_:1
"\ O
Then dodl' : .d7_1=6§ and drd9'+1"dn-1““’gz
Then,
Oy  (dr-y)”
6; = (r — 1)#
9 2
and
(22— ») (2 —r+1)
0O, 2
5 <2 (dyo
91‘"’21{ — 99),,_..7 (El’)’ > .__.___1_______.
O,” O, o,/ = rn=r)n’
9 2
rr—2) 7 z
Hence, o,<2 2 0, 7 0/

The values for K,, obtained here are of orders ranging between
e and s’ 72,

They are too high values for K,,,;; even for # = 3 they give as will be obvious
from what follows too high values.

We will presently prove two theorems in which we can obtain values
for K,,, much smaller than the ones given by this corollary.
§ 3. A Theovem of Hardy on Cesaro Summability.

We will here shew that a theorem in Cesaro summability due to Hardy
can be easily deduced from Theorem I.

Let ¢, (x) be such that |x ‘fﬂﬁol <k

Let ¢, (x f b (8) (x — )71 dt (r being integral positive)
and let us define D by D =« c_ZdZ .
Then Do, =7 (¢y-1 — é,)

and D2¢, =7 (D¢, -1 — D).
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It is easy to prove

i) Dg, = 5 ofanso- (v — o= dt

x

(ii) 7 (Dgy—, — D$,) = —* 0/ (Do — Depy) ¢ (x — #)7~2 dL.
Since D¢, = %c /x D¢, @x and since | Ddy| < &

| D¢y — D¢, | < 2k.
By (ii) | D2, | < 24. (r = 1).
Let O, be oscillation ¢, (x) at ee. Then by (1) in Theorem I, we have
upper limit of | Dé¢,| < ¥2k0,.
Hence if ¢, converges, O, = 0
i.e., | Dé,.| = O
1.€., ¢r—1 — b, —0 as ¥ —» oo
1.6., ¢,_; converges to a finite limit. |
It is easy now to deduce that ¢, (x) converges to a definite limit if ¢,
converges to a definite limit.

§4. Theorem II.

Let oscillation of f (x) at oo be Oy (finite) and lower limit of f* (x) =— &,
at oo (k, > 0) and (%, finite).

If A,-; and — B, arve the upper and lower functional limits of 17-1(x)
at oo then

1 1 1
n ” 7
An—l <’—1'00 Ry
o
1
11
. n 4 7
B,-1< 5 0y -k,
7

Let  Ap =f@& +h) —f (%) and A%z = Ay, {f (x4 by) —f (x)}, ete.

ki g1

Then A;,lﬁzk,,_ —f f of S (e Fuy Uy -+ Uy ).

Auy, dus + + - dth, —
As in Theorem I choose x, suﬂiciently large such that

A (%) =Ap—1 + € and 7 (%) > — (k, + €
(assuming 24, < a constant ; all the %, < 0).




f
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Then Pt (w +2u) = (BAu-y +€) — (ke + €) - (Zu).
iy hyp <1
Hence, /,1 /ln ) = / _/ [Aﬂ-l + e — (kn + e) '(Zur)]-
duy Ay -+« du,, _ .
The right-hand side

v (R
::hl: hZJ hn—l {An—l + € ( : ; ) ( )} = F (kl’,hz: hn-l)'

It is easy to prove that F is a maximum when

2:(A,-; +¢€)
n-(k, + ¢

F (h’ ‘ h’ tt .) = (kﬂ ?l_";)” B 1. ézz,;;,i__i)n.

Now Ap-1f= Ap-2-{f(x+h) —f(x)} <22-2 (Op + €") [since x,is

very large].
Therefore

= .

hlzhzx T :]7/n~1=

: and

w0003 () ()

since the €'s are arbitrarily small, we have

2. An, _
00> ipiia
Nn* - fy
1.e.,

' 1 1

‘ = 1=
(/]

Apy <<ﬁ> + 00"k (3)
21!

a similar inequality of B,, -, can be established.
-1 1 21
Therefore, O,-; <2 "*w-0,%k, ", and step by step calculation
leads to the inqeuality for O,, and the value for X,, is given in the note
below.
In case O, is finite it can be easily deduced from above that
1 1

Oﬂ 1 'n OO" Oﬂ ”‘
§5. Generalization of a Theorem of Hardy-Littlewood.

(i) In case f is bounded and f* (x) is bounded on one side (at least)
then all the intermediate derivatives f” (x) are bounded. This is at once
obvious from Theorem II (0 <7 < ).
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(i1) In case Oy =0, z.e., f is convergent and f” is bounded on one side
at least then all the intermediate derivatives f7(x) converge to zero as
% —>o0 (0 <7 <m). This is also obvious from Theorem II.

(iii) In case O, is finite and either lower functional limit of f* (x) =0
or upper functional limit of f () = O at =
then also, all the intermediate derivatives f” (x) (0 <7 <#) tend to zero.
This needs a slight argument to prove it.

Suppose the lower function limit of f# () =0 at e

then for all large x, f7”(x) = — € (e being small) and, we have as in
Theorem II, '

~1 Lyt
A,_, <2 2.y 0072. c 7
1-—-l L 1—-!*

and B,_; <2 *.10,% ¢ ~
Since e is arbitrarily small A,, ., =B,,-; =0,
and now we can deduce easily 4,, , =B,,-, =0 - - -, etc.

Therefore the theorem follows. Similar argument when upper functional
limit of f# () = 0 is sufficient to prove the theorem.

This theorem is, as already noticed in the introduction, more general
than one of Hardy and Littlewood (¢bid., p. 423) and is proved under more
general conditions than there.

Note.—From (3), we can, by easy calculation, shew that for 0 <7 <#

Log O, — (1 - %)Log 0y —~- Log O, < Log K,

_ . (Logr+1 | Logr 42 Log n}
= SR T a e
We obtained in Corollary I to Theorem I, for Log K,,, the value
w_‘z_—,—_.ﬁ . Log 2.
Togr +1 Log n
e e on .= 2L B
Log K,,, (in Theorem II) — X (a constant). ¥ n — 1
(n —7) c n —v
T Log 2
= utmost of order (Log; %)

Therefore (3) gives us much finer values for K,, than Corollary I of
Theorem I,




|
i
i
g
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§6. Theovem II].

If f* (x) is bounded both ways we can, by the device of the following
theorem, get much better values for K, than in Theorem II, if > 3.

Theorem.—Let Oy and O, be the oscillations of f (x) and f* (%) at o (both
being finite). If O, -, be the oscillation of f2=2 (x) at co, then

2 n—2
O -~ " ; n
7""2\&\ 72__’2. OO Oﬂ
9.3 *
1
3 1 1
n - —_"
and O, _,; < — 0,*- 0, *
3 27

Let Ap =f(x+h) —f(x —h,)and Ao, = Dp {Ay,}, etc.
hy ho Ryt = 2

r — 2
Then Ai/lvl/‘z/m-z = / _/ tee f JP2 (g + vy 1ty ).

—hy =k ~hp-o
dul L d1’{1£-2.

Iet Ay, and — B, -, be the upper and-lower functional limits of /%2 (x) at
oo, and let &y and — %, - - -~ - o oo oo 7 (%) at .
Then, there will be an infinity of values of x (as large as you like) for which
f7=2 (%) = A, -, + € (where e is arbitrarily small) and f#-? (x) will be a maxi-
mum at that point. (This will not necessarily happen when A, =0 =— B,,—,
in which case Theorem III is self-evident. So we may assume O, ==0.)
Iet x, be such a value. Assuming 2%, to be bounded, since for large values
of x, — (R, + €) <f*(x) < (k, + €), we have f7~2 (%, + 2Zu,) > =2 (x,)
— (A»k”»»lgf- €) (Zu,)? = (A, -9 + €) — ﬁ@,_lj"f) (Zu,)? (since %, is a maximum

point, f#-1(x,) =0).

bDO§

Then
- H A (B + )
A/u lo hgp =2 f ('xo) = _{ ot _// [(Aﬂ—z + 6’) - ”Iz (2%,.)2]'
AL = Ap-2 -

du, Aty « « - Ay~ o
The right-hand side = F (hy, ks, - - - hy—o)

(B
=27y y s { (Baea 4 €) i——g—e—)—whf)}-

6 (Aﬂ-—z + 5’) =h.

Now F is a maximum when s, = hy =hy-o = \/ d
n (R, + €
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-2 01 —2 Jyrz—~2 "N __ (kn' + €) _ 2
Therefore, A2 > 2#-th {(An —g + €') e (n — 2) B¢ =
" .
= 9n—2 {6 (Ap-p + Gl)}i_l ) .(A”"z‘ii’)
n(k, + € n
S, 7 _ ”
_2? -3 (Ap-s + &)’
= . . o
n? (kn, + 6)2
Now A2 fxg) = A2 {f (%o +h) — f(xg — A)} <2773 (Op + €").
n 3 n
241 - — 1 ot
2 Y n2
Hence, Oo -+ " > 2 n" (Aﬂ-‘3 :6)
z Z -1
n’ (k' + €)®
Since the €’s are arbitrarily small we have
7 ”n 7
241 Z-1 2
2 2 2
0, > 2 ;23 A ,,7;2 :
%2 (k”l)2
2 ] 2
. n 2 ne
1.€., Aﬂ— 2 < 3 7 —9 OOn (kﬂ) . (4’ 61)
21 + -7:. 3 7
Similarly, we get
” 2 1 -2
B,-2 < % 7 —9 OOn (kn) 7. (4; b)
1+ 2
2 "3 7
Thus,
7 2 i : ’-’2‘ + R ' ‘—’—2‘ ]Iu
A”—g + Bﬂ—z — Oﬂ—z < ~— 2. Ooll 4‘ 72 > "9 !}_
2.3 { 2" ]
" 2 12
< 77— 9 00” (kn + knl) .
2.3 71
2 2
n PP
< 7 — O Oo * On . (4’ YC)




Functional Limits of Derivatives of @ Function at Infinity 353

12 _ 2 _2 ]2
72 ’ n ’ 7 7
Now %, 'j)‘ Ry < (kﬂ ‘_g 2 ) = ————-—O” > Hence the
9 7
inequality.
Since by Theorem I, Op-1 < V20, On, Substltutmg for O, —,in (4, ¢)
/ ”w — 2 1
we Obtain ” 1 \'~ ( 3 2” ) O[]” : 75 * : (5)

§ 7. Constants for n = 3,
In case n = 3, we have from (4, ¢) and (5)

PN I I
Oy “ﬁgoo'ozﬂ 0, < 30y Oy

We will give an example to shew that the constants K,,, K,,, given here

are the best possible. If non-existence of /" (x¥) at an enumerable number

of points be allowed then equality can actually occur in the above inequalities.
Let ¢ (t) be defined as in the example under Theorem I and let

) =3 (1 +3)-
Then ¢, (f) will correspond to the graph (Fig. 3).
QP P;'P;"P5’Qsin 0 < £ < 4A

The arcs Q,P,’, P3'Py", P;'Q; being circular just as in the example under
Theorem I.

P P, ( £2)
CYaN s
Q
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4A

Then (i) ¢, (f) is periodic 111‘—1132 and (i1) fgbl at =0 ; (111) oscillaticn  ¢f

gb (t) "'"...‘(A"‘G).
Z

Let ¢, (£) be defined as f $.dt. Then the graph of ¢, (f) will be slightly-
0

deformed parabolas as shown here (Fig. 4).
Y=~ 8,0t

Fic. 4.

¢ 1s periodic in 4—% because of (ii) and further as is obvious.

44

7?52 (t ) = — ¢, (!); therefore J-qsz dt = 0.

¢
Therefore the function f (¢) = f &, (f) dt 1s periodic in %
0

_2_A.

: 2 A3 » 2 A3 .
and maximum of f () = f b, dt = 3 T ¢ = 3 (1 — €3); minimum
of f () =0. C
Similarly, . |
A ;
. S A, A
maximum of f' (f) = D/-qSl (¢) dt = &~ € =g (1 — €,)
A
minimum of f (f) = — fK by (8) df = — f*i ) — — (1)
0

oscillation of f” () = 2
oscillation off”” () = 2 K.
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Therefore, .
2 A3 A2 h ‘
O ZEK“"(]-"—G:;) O]—K(l—'Ez), O2=2A(1—-—€1)a1’1d03=2K
Now
. A | o
0, g (I — el !
ST EE e e
0y 0p’ {—3 21— 53\} (2K)}
and,
0O, 2A (1 — :
~ 5 2 A3 ( 63}) e 3% (1 =€)
Op® Oq {q 7 (b 63)} (2K)°
3%

We therefore see that K,; =, and Ky, = 3% are the best possible values

)
(when n = 3). We have shown the same to be true of K, in § 2,
8. On Fractional Dertvatives.
Iet O, and O, be oscillations of f (x) and f (x) at e
Tet | | “

Right-hand side =
L (SO, = 0 ).
|1——a{ x° +/ x = 1)
0

Since we are interested in the asymptotic behaviour of f¢ (x) at oo the first
term may be omitted. We will next shew that from our pomt of view, it
is matter of indifference what origin we take, for

' 4 = fO 4 1 { f (a) x SO dt},

O e A e LR s wer L Y N
a
As before the first term is of no importance and
a
[0 a-] 18 dt_/..._:o(!_),
A%

a x-t t“ 1

/

- dt as defining f* (x).

X
Hence we W111 con51der e / x
. ) -

Now

1 —a f*(x -{—.a) ~ éf ;()/f;?:_t___j'._t.)"‘.z. dt =a/ [ (a ‘ft‘ax — 1) .

e o i e e e 2

o s 2

e L o

nsie
e =
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=/ + [ =141, (0 <x; < #).
S0 2y ,
I, :Jf' (@ +x — 8x,) %}1::1 and I, == -}-G—L / f’ (cl 4+ x — Zf) dat.
—a Xty P

Let A; and — B, be the upper and lower functional limits of f’ (x) at eo.
Taking ‘ @’ fairly large we have

]

1-a
I, +1, <(A, + ¢ %61 + Dot =F (x,).

L — X%
. . . . O, + €
- = q - =2 .
F {x) is a minimum when ¥ =a A, e
Taking for x, the value x; = «- Oo e,
1 1 ‘A.]- _}_ €
We get, [T —ajfe (%) =1; +1, <
Sl e el e B
l —a A, + € a’ Oy +¢/ (1 —a)-a®
Hence if A, and — B, are the functional limits of f¢ (x) at
we have,
A« Q70 Ay
¢ ‘Z — a. a®
1- a
B, < 2o *B.*
l 2 — a a%
Since
Ae* 4+ B < 2 (é" _)F B]:)“ = 21-% (A, + By)*
we have
_ Il—-a
0, =A, +B, < ===+ O = O~ (6)
|2 —a-a®
‘Since
1 1
21-a pe é : B
——— << 2¢° wehave O, < 2:¢- Q~% O*- 0 <<a<1.
| 2—a-a® :
An immediate corollary is that when either f or f’ converges and the other
remains bounded, all the intermediate derivatives f* (x) tend to zero

as x — oo,

Note.—We could equally well define by f¢ (x) by ____1_.. f SO ?dt.
|1 —a = (x — a)e
(for large x), the latter integral being convergent since f is bounded and e

get the same result as (6) for this definition of f* (x).




