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§ 7. General Remarks.

TaroreMs II and IIT of Part I dealt completely with the way in which direct
T’s combine, and the equivalence of combinations of T’s to other transforma-
tions defined by matrices. Theorem IV and its complement dealt with
the simplest case of combinations of direct I's and inverse T-''s. In this
part we propose to prove some very general theorems on such combinations,
in (8) and (9). (10) deals with a subclass of T designated T, whose inverses
(T-*) behave very much like any direct T ; sothat Theorems IT and III of Part I
characterize completely the way in which T-' or a product (T, T, '- T, 1)
can combine with any T’s. In (8) and (9), we will notice that in all the
theorems the sequence (x,), on which the transformations are applied will be
at least a null sequence. In (11) two theorems applicable to bounded
sequences, for special subclass of T’s are proved. (12) deals with the

solution of an integral equation, an adaptation to the continuous variable of
Theorem IV of Part 1.

t&s in Part I the matrix defining a T will be denoted by || A, 5 || where
@ 15 characterized by the four conditionsof (2-1),and the matrix defining

T-* by ! Bm »!. The numbering of theorems here is in continuation of the
theorems of Part I.

§ 8. General Theorems. |
TEEOREM V : Let S be a transformation defined by ¢, 2|l such that ¢, ,,
= 02 < m, and R the product of a number of direct I's, i.e., R — (T, T, - T,{)
20 ’
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p=A = Ap

4]
By (8:2) By = X :dyp (& Cpryr+ 0pe) =

?= Ag ¥ == Ag = 4o
2 dﬂz,p‘ 2 Cpr* Vr + € 2 ep'dm,z)
7 = Ay ) ,
= X (Edm,?' Cp,r)yr-l—l?'k'e. —1<80 <1~_
r= g

=2y ey, -0 Re

Hence '3 dp iy = 5 Iy - 0" 2ee — 1<0"<1 [85]
Making | A, = oo. We have

? E’oo Ao p3p = ' E’oo Rom, » ¥y or [8:6]

R (7;) = (R) [S (ya)] = (RS) (ya). [8-7]

From (8-5) and (8-6) we get 55 Bom, » 25| < 2ke proving (2) of

theorem V. e [8-8]

TeEEOREM VI: Tet S be any transformation defined by |ics,, || such
that ¢, , = 0 for » < m, and R; the product of a number of direct trans-

formations, 7.e., R, = (Tyl ng 'T.rp) defined by || dm,‘ﬂ || = |l a'slm, wll oo
| @2, |, and R, the product of number of inverse transformations, 7.e., Ry=
(T~ 1Tyt Ty~ 1) defined by || Bon |l = 1| Blm, wll ool lBé”I, » ||. where || :Bsm, 2 |l
defines (T,;~'). Let b, be the upper bound of B, ,+ » for all »

==

O
2 cﬂl. 7z _,yﬂ

77 =A

and P bp = B”. If
0

=0 (i) for all m and for all
Ba

sufficiently large A, then
(Ry Ra) [S ()] = (R4 R, S) (¥,) when the latter exists.

Proof :—Let m, be any positive integer, and A, sufficiently large and A, = m,.
Let z, =S (v,).

722 =00 7= Ay — 1 oo 7=Ay — 1 .
Then z,, = X Cp pn- Yu = P + X = > 4+ O <a,
Ag BAo
, _”:3_1 €a,
me + ¥ T Cono+ 7,22 Ym Bﬂzo+r' B. [8'93
Ao
for my +7 <A, —1 ; —1<60;, <1

Let ’i'}"mﬂ “ = ” dm 7 ” I Bm n H
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11""/\()"‘"‘1 2= A _1 . = A 1
Then ¥y 2 = b 2= 0, €
: ~ e Sy . X ) 12 €A,
o g ! Ymon Cy, 2N ) -+ B—A )
0.
2o g1

—"—’~”‘A0*"’l

2 (& 'J’wo 1 Cy, !’) Yy + 5 BA Z Vs On = B, + B,

0

e ny =n
I;n) "L Au * X B
| B, ] I, 2 ]Vm x]s and Vorgn = & dmoul Boz,, n
0 iy = myg

o ny oo n=A4q — 1 /z-—-Ao—l ni=n

00 S . :
Honed l Yargn l o2y, ", | 0 - 7y and X ”)’m n| = Z Iqu;rzl lbﬂ—ﬂl

ny - m 2=y 7=y ny=my

Ay - ')l1 -y .A() ] - ‘LL .

— ) ) N < h. o
2 b E | dyn| Sk Byogo, whete 3 |y | <k by(8-1)
&0 ESNIN 72 = 114

N L Ba- -

Tence P T
Ay
) I I;:j - l f’ = Ay e 1

. AYEY - PR N

Henec ot Yogar Fgp 7 2 (2' Yoo Ca, p) Yo + O/CGAQ
P A —1
— X 1 ,
— 2" ’)/ 7)14)]5 yp + 0/\ GAQ,

where H Vo on “ - | Vo, n ” H Con,ne ”

Al
IF the sertes X by, 0 v, converges, 4.6, (RyR,S) (y,) exists, then making
Ay => o we have

R~ p == oo

2 Yugn S = 2 Youp Vg [8- 10]
e, (R Ry) [S (3] == (Ry Ry S) (v,) when the latter exists.

Tosorem VII: Tet Ry = (T, -T,, T,) defined by [[dy.l; Ry =
("L, Ty Top) defined by [] e, 5 |l

o B A I RGN P (I Bl K IR (K
aud 1 = (1, =11y =1Ly =) delined by [ B [l = | Bimn |-+ | Bl
Let S (R; TR be defined bY ymn | = 1 &mull - | Boyn |+ 1] €, |-

Let the upper bound of By ,rp be by, and X by = B,
p=0

It Y =0 (]3 1L + 5) in case B,, diverges, or y, = 0 (1) when B, con-

20 ETO0O

verges, then (1) 2 |y, vy, | converges uniformly for all m ;
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(2) the terms of the product S can be associated in any manner and the
resultants of the operations on the sequence y, are all equal to S (¥n)

[for example (T, T,, Té’rl) (Ty,, U TW) c (T T (T T
(T-"l' Tv“pl) (Tfpl—i-f T T-fp) (yn} =S (yﬂ)]

Lemma 1 : I')’m,m+pl <22ldm,m+rl' Bm-l—r,m—f—r—i—,é' I 3/)z+r+,{-,m+[5‘
» £
k=2 r=72—# _
< 2 by 2 Idm,”z-%-'r [ ) ‘ 6m+r—|-,é,m+p| [8'11']
£=0 y =

Lemma 11 : Let the terms of R, be associated in any manner.
i.e., Let Ry == (T, - -Tgrl)- (T, T, ) - (T - Ty

7141 re Fp-1+4 1
= Rll.R?‘l A Rpl.
and let R, be defined by || 4, » ||, Ro' by | @2, » || and so omn.

Let f1,,, = absolute value of dl,,,. i.e. = |d', »| etc.
If ” amn “ = Hflm,n ” “fgm,n ” ° ”fpm,n ”
oo
Then 2y, < 27 [8-12)
72=20
72 = OO
Proof :— Since by 2-1 Z N apmn | <2forallm
=0
= oo
& flm, 2 < 271
2= 0
7 = o0
- Z fgm,n<27’2'—7‘1..
77 = OO
and 2 e < 2777p-1 by 8-1.
w p—
Hence 2 Ay < 2712272771 0 ATl = 27, (8-13]
727 =0

Proof of (1): Let A > 0 bz any fixed integer and let B,, diverge ; and
let m be any positive integer. Le: |y, ]| < %‘5 by hypothesis. Comnsider

now Case I when m <A, je., m +q = A.

oo O
2 ﬂ'}’m,?x!}'ﬂ! = l?"m,m-!-?liym-l-ﬁl <
72 = A =g

2
p = oo 2 bk’zldm,m-i-r!

Kz =0
P =

'l 6m+lz+r,m+pl

1+3
7 Bm+P
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25
0 > o0
—X F5. F 14 [ | enstirmepl 5
k=0k r=01 my et E Bl+35 =K X be- b (k) ==
2=y m-p £=0
£==2A o
K\ 2 + X
A1
Py = OO
SincebyS-l pX |g”z,rlg2?=K2’ 3;0 l6m+éf17g+ﬁ| < IK—E“ = K,‘".\
r =0 =g B.’;z ‘-;—-p Bm %og B}\T °

Hence

£=A =
o0 d , - o &'-—A .
B, <K, X b, I | 4,4 | < K, K, = b;z51nce2[d,,,,m+,[ < K, bv

e 1438 1+38 <
r=0 By By (8-1)
_ KK r3.157
- 5 18-19]
BA
<O [=]
Bz = X bA-!-,é' & ld7ll,?)z+?'l' E'? |67”+7+A+}i‘m+ﬁl
, = 1 r=20 p=g¢ 1—}70
» o p
Now ¢ép, =0 n <mand m -+ ¢ = A.
Hence OEO | e+ +1A_: §’m+l’l — 5 | eomtrintimis < K,
- o 1+3§ 1+38§
p=g B?)Z+p p=r+ A+ 2 B”“:“P B”;-:WO}‘“:_A—;—-‘é
and 5 lld”g mtr] < .Kl
-0 B + Bl—ra
¥ m+t+r+ A+ £ m A+ i
(=]
Hence B, X bA+é-~TI%§I§3—— < KK, - > b‘i‘:_‘58< KII%
R
B, _, B B T
- 7 7
1 -
Hence B, + B, = 0 gé) [8-18]
A
Case II. m > A ;
proceeding exactly as above we can prove for all m.
(=3~ oo 1
2 Wil = Z lymmyal =0 (Z5).
n=0 n=um Bm
H:nce when m > A
] == .
Z N Vmn el = 2 |Vmn¥s| sinceypy, =0 n < m
n = A n=m
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3 1 1 .
and 2 Ayme¥a =0 (}—3-8—) == 0 <§) since m > -
m A

n=imn
. 2 1
Hence in all cases 2 |ymu 3l =0 (73) .
n=A BA
Hence (1) is proved.

With regard to (2) of Theorem VII we shall prove a pa.rtictil“ !
associations, the proof being the same in all other cases.

To prove (ququTq;»l)' (Tqu PP Ty) (T~ oo T t) (Typ 2~ 5 7 7
717 e ] ” ’ » : g - ?ir R Yt
X&,I&' : L»‘pl) (T-fﬁl-i-l Tt r»’p) (yn) =(rql' 'PQr'Tl—l' Ty L. —[-.s'x, 4 : |
=8 (:},,""} b -
Let  (Ty, -+ Tyy,) be defined by [ mull, (Tp, - Ty L
(T, 1) by | Bmall, (Tpagt - Tpm ) B o

(>3

(T, -- T.rpl) . by | 6'7,;, ., (T5p1+1 .. T~"P) Ty~
and let sz, n = z ] d,m, 7y l : ld”nl, 7% { '

7y

v ot The

aif H

and E‘m,n =2 l 3’771, 7 [ | 8”772, -
Now ») Id,m, 7y |-2 l d”?ll,7lg {-'ZB,ng,ns'ZB”ng, 124'2 l elfu,7zs l -2 e ERERRRN

1 725 23 74 7t -

= (2 | d,m, 724 [ d”ﬂlﬂz D -2 an,ni‘z (Zl e’¢z4,7z5 l ! I 5”1;5 , & I ) f

7y 7iy

= OO

- - - P ; - - .
=2 (?7)2,”1'26”1,7122 €2, ]yp [ = X \22 o, 7, ‘/3”1, 725" Cre . &
P

&

Since by (8-13), 2 d, 5 <KandXe, , < K!
5=0

: . Z =
exactly as in the proof of (1) of this theorem, we prove X~
B”l, ’zz'é”;:?) kypl converges.

H . nce

AR

-

7ny =" 7o = OO g = 0O 724 = OO 75 = O £ .
’ v D’ o L4 ’
2 d m, 2y 2 d 724725 ° ) B oy 725" 2 )8 73, 724" 2 e 724, 725 >

p=oc0

= 2 (22 .2 .XXd,,-d"
t.e., (8-18) is true.

D’ D ’ " -
224, 725 B 729,724 /8 ng, s € g ns € g, ;‘r) N A

».‘i-Iﬂ‘

We will state here some of the other associations that are e« (il
S (¥, as they will be needed later.

et to
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(T, Ty o+ Ty Tym b oo T ) (Tygy™t -+ Ty Ty, .- Typ) () =
(Ty, Tgy Tg,) (Tymt - Ty Ty o Top) (ya) =

(Tgy - Ty Tyt Tty (T, - Tsp) (v,) =

(Tyy - Ty (T Ty 1)‘ (Tsl' T, ) (V) =

1

(Tgy Ty« Tgp Tyt Ty 1 T, T ) (¥2) =S (y,). [8-20]
When B, converges, then Z’ E,,, n+p < Lt By=Xforall n. [8-21]
= O p = CQ
and since 2 |d, 5] <Ky and X lens] < K

p=oo

2 |vmn+pl < kkiky =ky Let y, be upper bound of |y, | forn > A

then %’dv | v2,595| < Ry ya. Hence (1) of Theorem VII in this case is proved.

p=A -
Because of (8:21) (2) of Theorem VII in this case is obvious.
THEOREM VIIT: ILet H Bm,?z ” = ” Blm,n H “ B2721,1L H """ H B ", ;] define

(Ty* Tyt - T ).
Let b, be the upper bound of B+, foralls, and B, = X 5, as in

p=20
Theorem VII. .
Let To, Tpy Tp, be 7 direct T's and |[dpn | = || @Prynll -+ | APy g ||
define (Tp, - Tp,* Tp,).
Let T, and T~ be defined by || 4%, || and || ;80,,,, all-
LetS= (Tm Tpp =+ Tp, Tyt - T/é—- 1) be defined by || dm o | “Bﬂz 2l = Coee |
and let 8" = (ST, ~*) be defined by || ¢p,n ||| Bm, 2|l = | Yz Il

If v, =0 <B,) {i.e., (By |¥n]) is a null sequence}, then

(S o (3]} = (' To) (3) =S (1), when the latter exists,
Proof : Let m and p be two any positive integers and Pyt s be

= 5 | 8%, n+r| as in (5-2).
re=p o+l .
Let y,, be upper bound of |y,| for all n >n,

Let T, ( w) = Zn.
co r=p
Then z, = 2 CwmmirIm+r = Z 4+
r=0 p
r=p
k <P, Im+i = Z a m+bomtr Ym+r + Héym-!-l: m+p "m-&-p

r=Fp -
= X 440. Ymym+p Yoz +p
1

+ bag

2mtp = Im+p + Hp 77z+p,7z+pyfz+p- [8-22]
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Consider now

p r=p §=p
) Ymmtr Zmrr = ’) Yormtr® 2 a® m+romts Vmts + _}’m+p 2 9;' “Vmntr Vintrantp-
r=90
= A L B
s=p sF=p .
A=2 (Z'Ym,mn'-r aom-'rr,m+s) Ym+s = 20 Cmym+s Ym +s [8-23]
> 5=
5 8.94]
|B] < _}m-}-p 2 Iym mir |7 Ym+7r,m+p '"-'Vm-f-p -B, [8-24]
r=0
NP R . RO
Now Ym,m+7r = Cm,m+,é 18 mtplmtyr

p k=vr
Bg < 2 ( 2 lc'm,77z+/’el’180m+é,m+r) 7’77z+-r,m+p
=0

7
y =

i Con,m+i ] X )Bom+,€,m+r Vontrmtp
=0 r=4¢

Just as in the course of proof of Theorem IV in (5-4) and (56-5), by (4-6) of
Part I

Mo

we have Z’ ﬁ,,,,,,_u,;mﬂmﬂ, < 1 forallm and all p.
r=0
Y
B-‘{: PX lcmm klani(’mm+é= 2 dmm+: ﬁm+s,m+/
£=0 s=0
A=p E=p s=4
Hence Z lcﬂ1m+/€'l< z - X ldm,m+sl'Bm+s,m+l--
B A= E=p s=j .
Now lgm,m*f'fg.bf' Hexce y’ ICm,m_}.éi < 2. 2 ldm, 7n+‘rl. b,{,_s.
n=p P—n
= 2 b, X [ A——
r=10

Now by Lemma of (8-1) we have b |, m+»| < K, a constant.

r=0

Hence B, < KB, [8-25]
- K-B..«
Now |Bi< v, - pEBzg<K'Bp'ym+p= _P_M<K.€m+p,
1 Bm+p

since 4, = (E—)
T 5k 5t “
Hence = VmmirZpe, = X ¢, .y .+ OK. €m+p (8 -26]

. S =0
If the secend series X Cm.m+ s Ym+s COnVergas, then

=0 $ = co

Z Ymm+rime, = 2 Comym+sVm+s [827]

e, 3" Ty {3,)] = (& To) (¥4) =S (y,) when the latter exists [8-28]
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TruroreM IX 1 Tet S, 8" and T, be as in (8-21) and R be = (T,, Ty, Ty,
defined by )
| €mn I Then also (57 [Ty R) (V)] = (S"I'4R) (¥.)

= (SR) (y,,) if the latter exists
1

— (m\)
3/1. I;”

Proof : Tet R () - 2, and y,, == upper bound of |y, | for n > n,

= %3 - 1
then {2, | - ! 2 tupyp ‘ < ¥n 2 |enp| TKy, =0 ( ")
prin p= B,

Hence z,, =0 (é) . [8-29]
13,
Now (T'y R) (y) - Ty (5,) and
ST Gl (S"T0) (2) =8 (%)
== (R (v,)] (f the latter exists). [8-:30]
Now the series 3

- 1
l Cnp [ N | < Ya KL= 0 (B )
FAREInY I>p

R o)

since X Jen] < Kby 8-1.
Henee by Theorem VI S-R (v,)  (SR) (y,) when the latter exists.  [8-31]

A particularly interesting case of Theorem IX is when Tyt =T, - -
ST b unit transformation 5 then the theorem would be

Tuvorpm N IT S (1 1, T,) and v, a null sequence and R o=
Fro T I . 1
(Ty; Ty L)
then (ST, [(THyR) (v)] - (OSR) (). [8-32]
§ 0. On Combinations of Inverse (TV) Transformations.

Most of the theorems in this section are cither deductions from, or
particular cases of theorems of previous scction.

TororiMm XL et Ry« (T, 1,.°,) defined by [|d,,,,]] == [|a?1,, || - + +[|a2r,, 4]

Ry (T, gy e+ Ty) oo em.aell == (@51l < = @32
Lo (T B ) o Bl = 18l 1Bl
and S = (IRy) defined by |lepull= [1Bunl *lennl-
i ”)J ooc,,,, x Yn converges uniformly for all mm, then
(Ry)-[S ()] == (RyS) (y)- [9-1]

I'his is a particular case of Lheorem V and result follows from (8-7).
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TmeorEM XII: Let S = (I Tz defined by || B, = -
=00 .

I X Bm, nYyn CODVEIZES uniformly for all me, then ]
m, YR i i \ <k
1) (T T~ STy (Tt - T Y (ya) = (Tr+1 Lo T () 0
1T (V) =Y
(2) (TpTp-1 Ty (Tt - L o
(3) (Tt Tyt - Teh) () = (T (T B (T - - (Tppa™ L) ()
= (Tl_ N (T e (T/E_ 1) (yn)'

Proof : ‘ .
(1) is a particular case of (8-33) o O)v_l
(2) is a particular case of (1) whenl = k. [9-3]

7 = o0

(3) Let z,, = ) an Y then by (1) (TZ T;-1 -Ty) (Zm) = . ‘.
(Tre™t o Ty ) (o) = S

Since Z B,y » ¥ is uniformly convergent by (3) of theorem Vit isa nuu sequence.
By repe‘ate’d application of Theorem IV of Part I as in corollary to 1t

Zm =7-1 EOO Blm,m-l-rl * : _j Bzm +r,mtry T X ﬁzm s PR A e 'C:p = ‘ |
= (Tx)—l teT (Tl)_l (‘Snz) = (Tl)—l (Tz)—l ‘(T/)'_l (T[+1ml °e TL'—' 1) (yu) LS) 4]
and in particular when I =Fk z, = (T)" (T - (Teh) ()
o 7= co #q = 0O p = oo
= 12 Blm, mtry’ z ﬁzm+r1,7;z+r2 cee X ﬁ/",m drk—amelop Ve
P =02 ) ‘
= X Bm,m-!—gﬁyp {_95_]

A particularly interesting case of Theorem VI is the following :
THEOREM XIII: Let Ry = (T, T, T, -Ty,), be defined by || dy |
and R, = (Ty=*-- T; %) | Boz 22 Il
and S = (Tp,~* ---Tpt Ty, Tg,'2 .-+ T,,) defined by || ¢y, 5 II-

*® 1
It 2 CoponVn ’ =0 (—— for all m
== A | BA

then (R,Ry) [S (3,)] (R1R:S) (v,) when the latter exists. [9-6]

THEOREM XIV: Let (T,! Ty~ Tz 1) be defined by ||By, |l then if
Z Bun, | ¥n |l converges for all m, then the terms of the product (T,-? T

can be associated in any arbitrary manner, and the resultant of all the asso-
ciations on y, 1s equal to (T;7! Ty Ty 1Y) (Vn)-

We shall take a particular association and prove it, the proof for all
other associations being the same. P
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Let (T, - T,=1-Ty %) be defined by || §s |l

(Tll + 1"1 te le-I) e H B”ﬂl,ﬂ H

(Tlg + 1——1 T/é_ 1) Tt H B,”m,ﬂ ”
' ' ; n1=oo'_’ ny =0 p= p=00
,TO prove X B, . X Blapm 2 B mp¥s = 2 Bupys
Now all the B, , >0, and || B'o, o 11 B s s 1N B s | = |l B2 |
Since Z By | y, | converges
p=oco p=oo )
2 B Yo = 2 (ZZB”ZP],.B "t 00 B 80 2) V8

= By =10 p=oo

1 00—_ Al ALt
=2 Bun 2 Blas 2 Bsp s
1.e., (T1—1T2~1 T[l_l) (T[l+1“1 . Tlg_l) (Tlg.;-l_l'Tl:“l) (yﬂ)
= (Ty =% - Tamh) (V) (8-7]

THEOREM XV : [ B, || defines (T;=1--T,~Y). I 2By, | yn]| con-
verges uniformly for all m then (1), (2), (3) of Theorem XII and the
conclusion of XIV are all true in this case.

-3

This is obvious. An interesting case of this is Wheﬁ Yy = (g—lﬁ—a)

for by Theorem VII 2 B, , | ¥, | converges uniformly if y, =0 (B 11 " 5)
-[9-8
§70. On the Properties of a Particular Subclass of (T).

- We notice that in the theorems proved till now, in order that a combi-
nation of inverse and direct transformations on a sequence {¥,} may be valid,
there must be some strict restriction on y, (for e.g., in Theorem IV, y, —0
as #n —»oo). ' In general, when a combination involves an inverse, the restric-
tion on y, is greater than when the combination is purely of direct T's in
which latter case the only restriction being y, be bounded. In § 10 we deal
‘with a subclass of (T) designated by T,. The algebra of combinations
involving' any number of Ts and (T)-! is very 51mp1e and exactly like that
of direct (I) transformation combinations.

The matrix || @y, || of a T is characterised by the following :

(@) G =1 () amn =0, % <m(c)apn,<0, n>mand

() — E’o ﬁm mtp <R <1 for all m ; Where the ﬁrst ‘chree “condi-
oo p=1

tions are the same as in (2-1) for a T and (d) is' a greater restriction than
(@) of (2-1) 10y
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. oo 1
From (4-7) if || By || defines a (T) ~ 1 then Z'O Brom+p < {3
p =

ILet us designate the matrix of any T, T or (T)=1 by | bpma |l-

[10-2]
Then from

(10-1), and (10-2) and condition (d) of (2-1) we have X | bmmepl <K

p=0
(a constant) for all . [10-3]

If V stands for any T, T, or (T)~! the most general theorem involving
T, T and (T)~! will be the following :

T bounded
TaeorEM XVI: If {x,} be {W

(VJL Vo Vé) (-T'n) = (Vl V2 ot Vp) ot (Vpi 1 °° VZ) ° T (V1+ 1° Vk) (x;z)- Proof is
immediate because it means that all (T)! behave exactly like the direct
transformation T. (10 -4]

In particular it is interesting to notice the form which Theorem IV and
its complement take in the case of T and T

} sequence so is (Vy, V,- - Vy) (%), and

THEOREM XVII : {x,} being a bounded sequence, if T (x,) = y», then

(1) % = (D)~ (yn) ;
(2) Given {y,,} the infinite set of equations T (x,,) = Z @m,p %p= Yo, M =0,
1, 2, - .- n,—under the restriction x,, be bounded, has utmost one solution.

(3) The necessary and sufficient condition that the infinite set of equations
X @, » X, = )m has one solution {x,} under the restriction that x,, be bounded
is that v, be bounded.

The proofs of (1), (2) and (3) follow very simply from Theorem XI. [10 -5]

§ 11. Two theorems applicable for a special subclass of (T).

Let Ty be defined by [ 4%, ,, || and T,=* by || B%:, = |-

Let S be any transformation denoted by |s,, ,|| where s, ,= 0, n < m ;

THEOREM XVIII : If (1) {x,} be a bounded sequence and (2) gg-‘m+ 2. >0
m, mt P

as p —> oo for every m and (3) | s, ,, | < K’ for all m, #,

then S [T, (x,)] = (S T,) (x,), when the latter exists.

Preof :
Let|x,| < K. Let b5 1a%, 4+, = _ 5 a0 -
p=s+1 P p=pr1 PPTP T Yunep P =1

and let Ty (x,) = 3.




On Lizear Transformations of Bounded Sequences—71/ 33

o0 ? oo p=12
Then N = 2 -ZO”I 7n+p x,,+p = X -} 2 = X -~ GK'77z, 72+ pr
p=0 p=0 2+1
p=
Similatly v+ p= 2 “Oyz+k,1z+p Intp T Op Kevutpnss [11-1]
fork=0,1,2,p. and — 1< 0, < L
Then 2 SuutpVusp = 2 Swn+p 2 utpnyp Xuvrp T
p=0
K2 9;) sn.n+p'7n+p. n+p
= A + B. [11-2]
p=p p=p
A= 2 (2 Suuip@atpn+r p’)'xn-l- p’
p’=0 p=0
2 £—1 ?
IB! < K- 2 |51z,n+p| Yntvpun+p = K ( Z + )f) =K (}91 -+ Bz) )
p=20 ,
choose % sufficiently large such that forp > %, LS%'——”J—”J €
ﬁ 72,72+ p
p=2 p=2
B, < e z Boaz,n+p'7n+ pontp s € ») /Boﬂ,u-i—p_"’n+p,n+p-
p==£ p=20
%) = p=p
Now Ya,n+p = ) '_aon,7z+p = X - X < R?L,7L+?Of (4'6“)
p+1 p=1
and by (46a) 2 B n+p Ry pntp =1, HenceB, < e [11-3]
4 p=~4—1 .
Now B, <X X 7w+ pn+p DYhypotheis (3).
p=0
Now each of the sequences 7, .+ 4 "a+ t,n+p " Tu+k—1,2+2 tends to
zero by condition (d) of 2-1; choosing p sufficiently large, By < e
Hence for sufficiently large p |B]| < € (p) and we have (11 -4]
p=17 p=p

3 Spatp Ynip =2 ESunip @nipyntp) Xuvp T e (D).
p=0 p=0 p1

n+pxﬁ+p+9€ (Ib) [115}

dy,
p=0
whete || dp. » | = | Sm,n -1l @, 1 |I-

If the latter seres X d,, %, converges then in the limit making p — oo

Il DM

k)

p:OO o0
2 S+ pVYurp = zodfz,n+pxn+p or
. o=

S [To (%)) = (S To) (¥,) when the latter exists. [11-6]
A3 F
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THEOREM XIX. Let T, and T and (T,T,) be defined bY | @y, 2o ||, || Zrrey |l
and || Comn || = a mon ||l D wy || '

(o)

Let (1) Z , Az, 112 + p’ = 7/37;7, m+ P
p=p+1
w .
(2) & Icm, m + Pl = Tcm, m 4P
P=p+1

and T,~* be defined by | Bz, 2 |-

Then  if (1) :—;’;’i—:ﬁ —0as p — 0 uniformly for all m (2) Buwsp —> O
as p — oo,
and (3) |x,| < K, then

(T2=%) ((T1T2) ()] = Ty (). , [11-7]

Proof: Let (T,T,) (#,) =y, and p a positive integer

p=oco p=7p oo p=7p '
and Ve = 2 c7z,7z+pxn+p = 2 4+ ¥ = X + K.¢ Y, n +p
2+ 1 :
. A p=p .
Similarly VYut+p = X Cribmip Tnip,+ K. 6, T [11-8]
for 2 =0, l,pand — 1 < O, < 1.
pP=p p=27 s=p
20 .B;z,n+pyn.+p = X ﬁ7z,7z+p' 2 Crzp, 72+s x;z+.r+KZep‘,gn,'7z+p'7"57z+p,n+p
p=
=A 4 B.
Vi 5 s=2
A= 2 . (2 Bﬂ,fz+p69z+p,7z+s)'xn+: = X baz,7z+sxfz+:
s=0 p=0 '
£— £ Vi ‘
IB|< K- ( 20’ Brttsp nsponsps + 5 ) = K (B, + B,) [11-9]
' p= p— k-1

. 4
Choosing % large enough such that 7;” 232 L e forall w and p =k

7,72 + p
P=p—F
Bl< €- 20 ﬁ?l,ﬂ-{-p 7an+p,7z+p
p=
pP=p
< e- 20/87:,7:+p'7"1n+p,n+p< € Just asin (12.3). [11-10]
p=7z p=27p
and B, = Z B;z,n+p7£yz+p,7z+p< Ky Z B 72+ p
P=p—k+1 P=p—k+1

since by condition (4) of (2-1) for T, and T,, up < K, for all # and .
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Choosing p sufficiently large, by condition (2) of Theorem XIX, we have

p=12 - ’
> ﬁn,n+ p S €, 1.8, B, < € (p)
p=p—4+1
Hen-ze _ [ B < € (p) [11-11]
P5? P57 ”
Aand >3 Bﬂ,7l+p VYus+p = 2 b;z,ﬂ.{-p X+ p + e (P)
p = o0 p == o0
and in the limit E Buntp¥nap = & OunypXysp OF
(L) [(T4Ts) (%4)] = Ta (%2). [11-12]

§ 72. On an Integral Equation.

Corresponding to a T for a sequence, we define the following transforma-
tion for the continuous variable.

Let (DK (x,8)>0forallx>0,{>0; 2) K (x, 1) =0,{<x;
(8) X (x, £) being continuous in (¥, #), for all x >0, ¢ > 0.

(4) f K (v, %) dt < 1 for all . [12-1]
0

Let u (f) be a given continuous function defined for :> 0, then the trans-
formation T will be T (4) =« (£) — [ K (¢, 7) w () dr = v (£). [12-2]
0 .

We discuss here only the existence of the inverse of this‘transform and
show that under certain conditions # (f) =T - {v (¢)}. The main point of
interest in the solution of the integral equation in % of (12 -2) is that the range
is infinite. We shall show that the solution can be given in terms of Volterra’s
reciprocal of K (x, #) just as in the ordinary case of ﬁmte range when v (2)
satisfies a certain condition.

TEEOREM XX : (1) If # (x) - 0 as x = oo and

T (1) = u (x) _me (v, ) w () & = (x),

then =T ((v@E)]=0v x) + [ K (x 2. v (@) dt.

where (K (%, 1) =K (x,t) + XK, (x,2) + -- K, (%, 8) + --
' z

where X, (x 0] = _/ K, -1 (%, u) K (%, t) dt

(2) Given v (x), the equation T (#) = v will have utmost one solutlo
under the restriction # (x) — 0 as x — oo. :
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(3) Given v (x) the necessary and sufficient condition that the equatior
' (1) = v has one solution under the restriction # (x) = Oasx —> o° is that

(==

f K (x, 1) v (f) dt converges uniformly for all x = 0.

0

Lemmas :

(1) X, (x,5) =0 1<% (proof by mathematical induction and (2) ©
(12-1) 123

(2) K, (x, £) > 0 for x and ¢, obvious from definition. [12 -4

(3) By definition K, (¥, ) = f K,-1 (x,u). X (u,t) du. To prove

K, (¥, 9) ==f K, -, (u, 1). K (%, ) du, (12 -5
0

suppose this is true for 1, 2,--- #» — 1, then we will prove it is true for 7
and hence for all # > 1 since it is true for n > 1.

z
By definition K, (x,%) = / K (u,1)-K,_; (v, u) du
0
and by hypothesis K, (xu) = f K, _s (%, 1) K (xu) du.
0
4 z
Hence K, (x,t) = _/ K (u, ¢) -du-f K (xv) K- 5 (v, #) dv
0 0
4 z
=/ K(@mo)dv [ K (u,§) Ky-s (v0) du
v

z z
= [R@xv)dv [ K (u,t) K,_, (v, u) dus
0 0
since K, (v, u) =0u < v

==fK(x, v) K, 1 (vf) dt (12-5

for n = 1. (12-5) is obvious since K, (x, £) = K (x, .2).

Hence (12-5) is tru
for n > 1.

(4) bl K, (n, f) converges.
0
>0,i>

This follows from continuity of XK (x, £) i

[12-€
(3) K (x t) is continuous ; this follows from uniform convergence of X X
and continuity of K,,. [12 -4
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(6) (1) K (x,¢) >0forallx, ¢; (2) K (x4 =0 ¢< . (1) is obvious, (2)
follows from (12 -3). _
(7) The reciprocal function K (x, £) satisfies two integral equations.

K (, fou utdf—-fKut ) ‘K (%, u) du.
This follows immediately from definition of K,, and (12-5), and term by term
integration of 2 X, (x). [12 8]
A
(8) Let R (x, A) =1 — f X (x,%) dt. To prove
0
A
fK (v, 4) R (, A) du =1 — R (x, A). [12-9]
A A } A
Proof : /K (, o) { _/ t) di / (x, ) du
0 0
/ fau -
/szu{ X (u, b) dt a — B.
0

A
K (x, u) dufK (u,8) dt, since K (u,8) =0 t<u

i

t A
t fﬂxu (u, t) du :f{K(x,t)—K(x,t)}dtby(l‘l-S)

Tb
°'\.>

Y

y

Hencea—ﬁ:fK(x,t)dtz1—R(x,A)
0

(=]

f (x, u) R (u, A) [12.9]

(12-9) corresponds to formula (4-7) in Part I.
Proof (1) of Theorem XX :—

/AI_((xt) v () dt = K (xt)u () dt ~0]K (x, ?) dtjf{ (t, 2) u (2) dz by (12 -2)
0 _3B, B, (1210

Let# (z) be the upper bound of |u (2) | for z >z,
o) A ) A
then [ R () u (@) dz = [+ =/ +07 A (&),  [12:11]
0 0 A 0

where 7 (£,A) =/'°°K tz)dzand —1< < 1
A
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' A A A '

Hence B, =fK (%, ?) dt_/ K (f2) dz +u - f 7 (t, A) dt

0 0 0

=C; +C, [12-12)
(o] A
Now 7 (£, A) fK(t,zdz——fKtz 1-f=R(t:A)~
- A

Hence | ¢, [ < % f A)di=u (A) {1 — R (x, A)} by (12-9)

and ¢, = ofA K (x, 1) dt tf K (tz)-u () dzsince K (f2) =0, z < ¢
= ju(z)dz~/f§(x,t)K(t,z)dt
= 0j(i“ (%, 2) — K (x, 2)-u (2) dz [12-13]
Hence B; — B, =0/A K(x,2)u () +0 u(A){l —R (x, A)} [12-14]
=0f°°K (x, 2) % (2) +6" R (v, A) u (A)+0'-{1—R (v, A)} u (A)
= 6/ooz?: %, 2) u (2) dz + 0" % (A) [12-15]

Hence/K ) v (f) dt = fK (%,2) % (2) dz + 6" & (A)

—u(x) —o0 (%) + 07 @ (A). (12-16]
Since # (A) = 0, A — oo by hypothesis, we have

u (x) = v (%) +_7°K (x,28) v (f) dt =T-1{v (x)}. [12-17]

Proofs of (2) and (3) of Theorem XX follow almost exactly by the same

way as the corresponding portion of the Theorem IV of Part I and comple-
ment of Theorem IV of Part I.



