

ON LINEAR TRANSFORMATIONS OF BOUNDED SEQUENCES-II.

BY K. S. K. IYENGAR.

(From the Department of Mathematics, University of Mysore, Bangalore.)

Received July 7, 1938.

PART II.

	PAGE
§ 7. General Remarks	20
§ 8. Six theorems on very general combinations of direct and inverse transformations (T)	20
§ 9. On combinations of inverse transformations .. .	29
§ 10. On the properties of a subclass of (T) .. .	31
§ 11. Two theorems applicable for a special subclass of (T) ..	32
§ 12. On an integral equation	35

§ 7. General Remarks.

THEOREMS II and III of Part I dealt completely with the way in which direct T's combine, and the equivalence of combinations of T's to other transformations defined by matrices. Theorem IV and its complement dealt with the simplest case of combinations of direct T's and inverse T^{-1} 's. In this part we propose to prove some very general theorems on such combinations, in (8) and (9). (10) deals with a subclass of T designated \bar{T} , whose inverses (\bar{T}^{-1}) behave very much like any direct T; so that Theorems II and III of Part I characterize completely the way in which \bar{T}^{-1} or a product $(\bar{T}_1^{-1} \cdot \bar{T}_2^{-1} \cdot \bar{T}_k^{-1})$ can combine with any T's. In (8) and (9), we will notice that in all the theorems the sequence (x_n) , on which the transformations are applied will be at least a null sequence. In (11) two theorems applicable to bounded sequences, for special subclass of T's are proved. (12) deals with the solution of an integral equation, an adaptation to the continuous variable of Theorem IV of Part I.

As in Part I the matrix defining a T will be denoted by $\|a_{m,n}\|$ where $a_{m,n}$ is characterized by the four conditions of (2.1), and the matrix defining T^{-1} by $\|\beta_{m,n}\|$. The numbering of theorems here is in continuation of the theorems of Part I.

§ 8. General Theorems.

THEOREM V: Let S be a transformation defined by $\|c_{m,n}\|$ such that $c_{m,n} = 0$ for $n < m$, and R the product of a number of direct T's, i.e., $R = (T_1 T_2 \cdots T_k)$,
20

defined by $\|d_{m,n}\| = \|a^1_{m,n}\| \cdot \|a^2_{m,n}\| \cdots \|a^k_{m,n}\|$, where $\|a^k_{m,n}\|$ defines T_p and let $\|h_{m,n}\| = \|d_{m,n}\| \cdot \|c_{m,n}\|$. If the set of series $\sum_{n=1}^{\infty} h_{m,n} y_n$ converge uniformly for all m , then

(1) $(R \cdot S)(y_n) = (R \cdot S)(y_n)$; (2) $\sum_{n=1}^{\infty} h_{m,n} y_n$ converge uniformly for all m ; (3) the sequence $S(y_n)$ is a null one.

Lemma 1. $\sum_{p=0}^{\rho} \sum_{n=1}^{\infty} |d_{n,n+p}| \leq k$ for all n ,

Proof: $|d_{n,n+p}| \leq \sum_{i=1}^k \sum_{j=1}^k a^1_{n,n+p_1} \cdot a^2_{n+p_1,n+p_2} \cdots a^k_{n+p_{k-1},n+p}$.

Hence $\sum_{p=0}^{\rho} \sum_{n=1}^{\infty} |d_{n,n+p}| \leq \sum_{p=0}^{\rho} \sum_{n=1}^{\infty} (\sum_{i=1}^k \cdots \sum_{i=1}^k |a^1_{n,n+p_1}| \cdots |a^k_{n+p_{k-1},n+p}|)$
 $\leq \sum_{p=0}^{\rho} \sum_{n=1}^{\infty} |a^1_{n,n+p_1}| \cdots \sum_{p=0}^{p_{k-1}} \sum_{n=1}^{\infty} |a^k_{n+p_{k-1},n+p}| \leq \sum_{p=0}^{\rho} \sum_{n=1}^{\infty} |a^k_{n+p_{k-1},n+p}|$.

Now by condition (d) of 2.1 $\sum_{p=0}^{\rho} \sum_{n=1}^{\infty} |a^k_{n,n+p}| \leq 2$.

Hence $\sum_{p=0}^{\rho} \sum_{n=1}^{\infty} |d_{n,n+p}| \leq 2^k$. [8.1]

Proof of Theorem V: Let $\epsilon > 0$, N_0 so chosen that for all $\Lambda \in N_0$ and for all $m \geq 0$

$$\left| \sum_{n=\Lambda}^{\infty} c_{m,n} y_n \right| \leq \epsilon. \quad \text{Let } m \text{ be a fixed integer, and } \Lambda_0$$

another fixed integer such that $\Lambda_0 \in N_0$ and $\Lambda_0 \geq m$.

$$\text{Let } z_m = \sum_{p=0}^{\rho} c_{m,p} y_p = S(y_m).$$

Then

$$z_m = \sum_{n=\Lambda}^{\infty} c_{m,n} y_n = \sum_{n=\Lambda_0+1}^{\infty} \left| \sum_{n=\Lambda_0+1}^{\infty} c_{m,n} y_n \right| + \sum_{n=\Lambda_0+1}^{\infty} \theta_m \epsilon,$$

$$\text{and } z_{m+r} = \sum_{n=\Lambda}^{\infty} c_{m+r,n} y_n + \theta_{m+r} \epsilon \quad \text{for } m+r \geq \Lambda_0;$$

$$\text{and } z_{\Lambda_0+k} = \sum_{n=\Lambda_0+k}^{\infty} c_{\Lambda_0+k,n} y_n + \theta_{\Lambda_0+k} \epsilon, \quad [8.2]$$

where $-1 \leq \theta_p \leq 1$.

Hence $|z_{\Lambda_0+k}| \leq \epsilon$ for all $k \geq 0$ proving (3) of Theorem V. [8.3]

$$\text{Now } R(z_m) = \sum_{p=0}^{\rho} d_{m,p} z_p = \sum_{p=0}^{\rho} \sum_{n=\Lambda_0+1}^{\infty} c_{m,p} c_{n,p} y_n + B_1 + B_2. \quad [8.4]$$

By (8.1) and (8.3) $|B_2| \leq k\epsilon$.

$$\begin{aligned}
 \text{By (8.2)} \quad B_1 &= \sum_{p=1}^{p=A_0} d_{m,p} \cdot \left(\sum_{r=1}^{r=A_0} c_{p,r} y_r + \theta_p \epsilon \right) = \\
 &= \sum_{p=1}^{p=A_0} d_{m,p} \cdot \sum_{r=1}^{r=A_0} c_{p,r} y_r + \epsilon \sum_{p=1}^{p=A_0} \theta_p \cdot d_{m,p} \\
 &= \sum_{r=1}^{r=A_0} (d_{m,p} \cdot c_{p,r}) y_r + \theta' k \cdot \epsilon. \quad -1 \leq \theta' \leq 1. \\
 &= \sum_{r=1}^{r=A_0} h_{m,r} y_r + \theta' k \epsilon.
 \end{aligned}$$

$$\text{Hence } \sum_{p=1}^{p=\infty} d_{m,p} z_p = \sum_{r=1}^{r=A_0} h_{m,r} y_r + \theta'' \cdot 2k \cdot \epsilon \quad -1 \leq \theta'' \leq 1. \quad [8.5]$$

Making

$A_0 \rightarrow \infty$. We have

$$\sum_{p=1}^{p=\infty} d_{m,p} z_p = \sum_{r=1}^{r=\infty} h_{m,r} y_r \quad \text{or} \quad [8.6]$$

$$R(z_n) = (R)[S(y_n)] = (RS)(y_n). \quad [8.7]$$

From (8.5) and (8.6) we get $\left| \sum_{r=A_0+1}^{\infty} h_{m,r} z_r \right| \leq 2k\epsilon$ proving (2) of theorem V. [8.8]

THEOREM VI: Let S be any transformation defined by $\|c_{m,n}\|$ such that $c_{m,n} = 0$ for $n < m$, and R_1 the product of a number of direct transformations, i.e., $R_1 = (T_{s_1} T_{s_2} \cdots T_{s_p})$ defined by $\|d_{m,n}\| = \|\alpha^{s_1} \alpha^{s_2} \cdots \alpha^{s_p} \alpha^m\|$, and R_2 the product of number of inverse transformations, i.e., $R_2 = (T_1^{-1} T_2^{-1} \cdots T_k^{-1})$ defined by $\|\bar{\beta}_{mn}\| = \|\beta_1^m \beta_2^m \cdots \beta_k^m\|$. where $\|\beta^s_m\|$ defines (T_s^{-1}) . Let b_p be the upper bound of $\bar{\beta}_{n,n+p}$ for all n

and $\sum_0^{p=n} b_p = B_n$. If $\left| \sum_{n=A}^{\infty} c_{m,n} y_n \right| = 0 \left(\frac{1}{B_A} \right)$ for all m and for all sufficiently large A , then

$$(R_1 R_2)[S(y_n)] = (R_1 R_2 S)(y_n) \text{ when the latter exists.}$$

Proof:—Let m_0 be any positive integer, and A_0 sufficiently large and $A_0 > m_0$.

Let $z_n = S(y_n)$.

$$\begin{aligned}
 \text{Then } z_{m_0} &= \sum_{n=1}^{n=\infty} c_{m_0,n} y_n = \sum_{n=A_0+1}^{n=A_0-1} + \sum_{n=A_0}^{\infty} = \sum_{n=A_0+1}^{n=A_0-1} + \theta_{m_0} \cdot \frac{\epsilon_{A_0}}{B_{A_0}} \\
 z_{m_0+r} &= \sum_{n=A_0+1}^{n=A_0-1} c_{m_0+r,n} y_n + \theta_{m_0+r} \cdot \frac{\epsilon_{A_0}}{B_{A_0}}
 \end{aligned} \quad [8.9]$$

for $m_0 + r \leq A_0 - 1$; $-1 \leq \theta_p \leq 1$.

Let $\|\gamma_{mn}\| = \|d_{m,n}\| \cdot \|\bar{\beta}_{m,n}\|$.

$$\text{Then } \sum_{n=m_0}^{n=A_0-1} \gamma_{m_0, n} z_n = \sum_{n=m_0}^{n=A_0-1} \gamma_{m_0 n} \cdot \left(\sum_{p=0}^{p=A_0-1} c_{n, p} y_p + \theta_n \frac{\epsilon_{A_0}}{B_{A_0}} \right)$$

$$= \sum_{p=0}^{p=A_0-1} \left(\sum_{n=m_0}^{n=A_0-1} \gamma_{m_0, n} c_{n, p} \right) y_p + \frac{\epsilon_{A_0}}{B_{A_0}} \sum_{n=m_0}^{n=A_0-1} \gamma_{m_0 n} \theta_n = B_1 + B_2$$

$$|B_2| \leq \frac{\epsilon_{A_0}}{B_{A_0}} \cdot \sum_{n=m_0}^{n=A_0-1} |\gamma_{m_0 n}|, \text{ and } \gamma_{m_0 n} = \sum_{n_1=m_0}^{n_1=n} d_{m_0 n_1} \bar{\beta}_{n_1, n}$$

$$\text{Hence } |\gamma_{m_0 n}| \leq \sum_{n_1=m}^{n_1=n} |d_{m_0 n_1}| b_{n-n_1} \text{ and } \sum_{n=m_0}^{n=A_0-1} |\gamma_{m_0 n}| = \sum_{n=m_0}^{n=A_0-1} \sum_{n_1=m_0}^{n_1=n} |d_{m_0 n_1}| b_{n-n_1}$$

$$= \sum_{k=0}^{A_0-1-m_0} b_k \sum_{n=m_0}^{A_0-1-\mu} |d_{m_0 n}| \leq k \cdot B_{A_0-1-m_0} \text{ where } \sum_{n=m_0}^{\infty} |d_{m_0 n}| \leq k \text{ by (8.1)}$$

$$\text{Hence } |B_2| \leq k \cdot \frac{B_{A_0-1-m_0}}{B_{A_0}} \cdot \epsilon_{A_0} \leq k \cdot \epsilon_{A_0}.$$

$$\text{Hence } \sum_{n=m_0}^{n=A_0-1} \gamma_{m_0 n} z_n = \sum_{p=0}^{p=A_0-1} \left(\sum_{n=m_0}^{n=A_0-1} \gamma_{m_0 n} c_{n, p} \right) y_p + \theta k \epsilon_{A_0}$$

$$= \sum_{p=0}^{p=A_0-1} \gamma_{m_0 p}^1 y_p + \theta k \epsilon_{A_0},$$

where $\|\gamma_{m_0 n}^1\| = \|\gamma_{m_0 n}\| \cdot \|c_{m_0 n}\|$.

If the series $\sum_{p=0}^{\infty} \gamma_{m_0 p}^1 y_p$ converges, i.e., $(R_1 R_2 S)(y_n)$ exists, then making $A_0 \rightarrow \infty$ we have

$$\sum_{n=m_0}^{n=\infty} \gamma_{m_0 n} z_n = \sum_{p=0}^{p=\infty} \gamma_{m_0 p}^1 y_p \quad [8.10]$$

i.e., $(R_1 R_2)[S(y_n)] = (R_1 R_2 S)(y_n)$ when the latter exists.

THEOREM VII: Let $R_1 = (T_{q_1} T_{q_2} T_{q_r})$ defined by $\|d_{m, n}\|$; $R_2 = (T_{s_1} T_{s_2} T_{s_p})$ defined by $\|e_{m, n}\|$

$$[\|d_{mn}\| := \|a_{m, n}^{s_1}\| \cdots \|a_{m, n}^{s_p}\|; \|e_{mn}\| = \|a_{m, n}^{s_1}\| \cdots \|a_{m, n}^{s_p}\|.]$$

and $I = (T_1^{-1} T_2^{-1} T_k^{-1})$ defined by $\|\bar{\beta}_{mn}\| = \|\beta_{m, n}^1\| \cdots \|\beta_{m, n}^k\|$.

Let $S(R_1 I R_2)$ be defined by $\|\gamma_{mn}\| = \|d_{m, n}\| \cdot \|\bar{\beta}_{m, n}\| \cdot \|e_{m, n}\|$.

Let the upper bound of $\beta_{n, n+p}$ be b_p , and $\sum_{p=0}^n b_p = B_n$.

If $y_n = 0 \left(\frac{1}{B_n^{1+\delta}} \right)$ in case B_n diverges, or $y_n = 0$ (1) when B_n converges, then (1) $\sum_{n=m}^{\infty} |\gamma_{m, n} y_n|$ converges uniformly for all m ;

(2) the terms of the product S can be associated in any manner and the resultants of the operations on the sequence y_n are all equal to $S(y_n)$
 [for example $(T_{q_1} T_{q_2} T_{q_{r_1}}) (T_{q_{r_1+1}} \dots T_{q_r}) \cdot (\cdot T_1^{-1} \dots T_l^{-1}) (T_{l+1}^{-1} \dots T_k^{-1})$
 $(T_{s_1} \cdot T_{s_p}) (T_{s_{p+1}} \dots T_{s_p}) (y_n) = S(y_n).$]

$$\begin{aligned} \text{Lemma I: } |\gamma_{m, m+p}| &\leq \sum_r \sum_k |d_{m, m+r}| \cdot \bar{\beta}_{m+r, m+r+k} \cdot |e_{m+r+k, m+p}| \\ &\leq \sum_{k=0}^{k=p} b_k \cdot \sum_{r=0}^{r=p-k} |d_{m, m+r}| \cdot |e_{m+r+k, m+p}| \quad [8.11] \end{aligned}$$

Lemma II: Let the terms of R_1 be associated in any manner.

$$\begin{aligned} \text{i.e., Let } R_1 &= (T_{q_1} \dots T_{q_{r_1}}) \cdot (T_{q_{r_1+1}} \dots T_{q_{r_2}}) \dots (T_{q_{r_{p-1}+1}} \dots T_{q_r}) \\ &= R_1^1 \cdot R_2^1 \dots R_p^1. \end{aligned}$$

and let R_1^1 be defined by $\|d_{1m, n}\|$, R_2^1 by $\|d_{2m, n}\|$ and so on.

Let f_{mn}^1 = absolute value of d_{mn} . i.e. $= |d_{mn}|$ etc.

$$\text{If } \|\bar{d}_{mn}\| = \|f_{mn}^1\| \cdot \|f_{mn}^2\| \dots \|f_{mn}^p\|.$$

Then

$$\sum_{n=0}^{\infty} \bar{d}_{mn} \leq 2^r. \quad [8.12]$$

Proof: —

$$\begin{aligned} \text{Since by 2.1 } \sum_{n=0}^{\infty} |a_{mn}| &\leq 2 \text{ for all } m \\ \sum_{n=0}^{\infty} f_{mn}^1 &\leq 2^{r_1} \\ \sum_{n=0}^{\infty} f_{mn}^2 &\leq 2^{r_2-r_1} \dots \\ \sum_{n=0}^{\infty} f_{mn}^p &\leq 2^{r_p-r_{p-1}} \dots \end{aligned}$$

and

$$\sum_{n=0}^{\infty} \bar{d}_{mn} \leq 2^{r_p-r_{p-1}} \quad \text{by 8.1.}$$

Hence

$$\sum_{n=0}^{\infty} \bar{d}_{mn} \leq 2^{r_1} \cdot 2^{r_2-r_1} \dots 2^{r_p-r_{p-1}} = 2^r. \quad [8.13]$$

Proof of (1): Let $A > 0$ be any fixed integer and let B_n diverge; and let m be any positive integer. Let $|y_n| \leq \frac{K}{B_n^{1+\delta}}$ by hypothesis. Consider now Case I when $m \leq A$, i.e., $m+q = A$.

$$\begin{aligned} \sum_{n=A}^{\infty} |\gamma_{m,n}| |y_n| &= \sum_{p=q}^{\infty} |\gamma_{m,m+p}| |y_{m+p}| \leq \\ &\leq K \cdot \sum_{p=q}^{\infty} \frac{\sum_{k=0}^p b_k \cdot \sum |d_{m,m+r}| \cdot |e_{m+k+r, m+p}|}{B_{m+p}^{1+\delta}} \end{aligned}$$

$$\begin{aligned}
 &= K \sum_{k=0}^{\infty} b_k \cdot \sum_{r=0}^{\infty} |d_{m, m+r}| \cdot \sum_{p=q}^{\infty} \frac{|e_{m+k+r, m+p}|}{B_{m+p}^{1+\delta}} = K \cdot \sum_{k=0}^{\infty} b_k \cdot \phi(k) = \\
 &\quad K \left(\sum_{k=0}^{k=A} + \sum_{k=A+1}^{\infty} \right) \\
 &= K (B_1 + B_2). \tag{8.14}
 \end{aligned}$$

$$\text{Since by 8.1 } \sum_{r=0}^{r=\infty} |e_{m,r}| \leq 2^p = K_2, \quad \sum_{p=q}^{\infty} \frac{|e_{m+k+r, m+p}|}{B_{m+p}^{1+\delta}} \leq \frac{K_2}{B_{m+q}^{1+\delta}} = \frac{K_2}{B_A^{1+\delta}}$$

Hence

$$\begin{aligned}
 B_1 &\leq K_2 \cdot \sum_{k=0}^{k=A} b_k \sum_{r=0}^{\infty} \frac{|d_{m, m+r}|}{B_A^{1+\delta}} \leq \frac{K_2 K_1}{B_A^{1+\delta}} \sum_{k=0}^{k=A} b_k \text{ since } \sum |d_{m, m+r}| \leq K_1 \text{ by (8.1)} \\
 &= \frac{K_2 K_1}{B_A^{\delta}}. \tag{8.15}
 \end{aligned}$$

$$B_2 = \sum_{k=1}^{\infty} b_{A+k} \cdot \sum_{r=0}^{\infty} |d_{m, m+r}| \cdot \sum_{p=q}^{\infty} \frac{|e_{m+r+A+k, m+p}|}{B_{m+p}^{1+\delta}}$$

Now $e_{m,n} = 0$ $n < m$ and $m + q = A$.

$$\text{Hence } \sum_{p=q}^{\infty} \frac{|e_{m+r+A+k, m+p}|}{B_{m+p}^{1+\delta}} = \sum_{p=r+A+k}^{\infty} \frac{|e_{m+r+A+k, m+p}|}{B_{m+p}^{1+\delta}} \leq \frac{K_2}{B_{m+r+A+k}^{1+\delta}}$$

and

$$\sum_{r=0}^{\infty} \frac{|d_{m, m+r}|}{B_{m+r+A+k}^{1+\delta}} \leq \frac{K_1}{B_{m+A+k}^{1+\delta}}.$$

$$\text{Hence } B_2 \leq \sum_{k=1}^{\infty} b_{A+k} \cdot \frac{K_1 K_2}{B_{m+A+k}^{1+\delta}} \leq K_1 K_2 \cdot \sum_{k=1}^{\infty} \frac{b_{A+k}}{B_{A+k}^{1+\delta}} \leq \frac{K_1 K_2}{\delta B_A^{\delta}}$$

since

$$\frac{1}{B_{n-1}^{\delta}} - \frac{1}{B_n^{\delta}} \geq \frac{\delta b_n}{B_n^{1+\delta}}.$$

Hence

$$B_1 + B_2 = 0 \left(\frac{1}{B_A^{\delta}} \right) \tag{8.16}$$

Case II. $m > A$;

proceeding exactly as above we can prove for all m .

$$\sum_{n=0}^{\infty} |\gamma_{mn} y_n| = \sum_{n=m}^{\infty} |\gamma_{mn} y_n| = 0 \left(\frac{1}{B_m^{\delta}} \right).$$

Hence when $m > A$

$$\sum_{n=A}^{\infty} |\gamma_{mn} y_n| = \sum_{n=m}^{\infty} |\gamma_{mn} y_n| \quad \text{since } \gamma_{mn} = 0 \quad n < m$$

and $\sum_{n=m}^{\infty} |\gamma_{mn} y_n| = 0 \left(\frac{1}{B_m^{\delta}} \right) = 0 \left(\frac{1}{B_A^{\delta}} \right)$ since $m > A$.

Hence in all cases $\sum_{n=A}^{\infty} |\gamma_{m,n} y_n| = 0 \left(\frac{1}{B_A^{\delta}} \right)$. (8.17)

Hence (1) is proved.

With regard to (2) of Theorem VII we shall prove a particular case of the associations, the proof being the same in all other cases.

To prove $(T_{q_1} T_{q_2} T_{q_{r_1}}) (T_{q_{r_1+1}} \dots T_{q_r}) (T_1^{-1} \dots T_l^{-1}) (T_{l+1}^{-1} \dots T_k^{-1}) (T_{s_1} \dots T_{s_p^{-1}}) (T_{s_p^{-1}+1} \dots T_{s_p}) (y_n) = (T_{q_1} \dots T_{q_r} \cdot T_1^{-1} \dots T_k^{-1} \cdot T_{s_1} \dots T_{s_p}) (y_n) = S (y_n)$ (8.18)

Let $(T_{q_1} \dots T_{q_{r_1}})$ be defined by $\| d'_{m,n} \|$, $(T_{q_{r_1+1}} \dots T_{q_r})$ by $\| \bar{\beta}'_{m,n} \|$, $(T_1^{-1} \dots T_l^{-1})$ by $\| \bar{\beta}_{m,n} \|$, $(T_{l+1}^{-1} \dots T_k^{-1})$ by $\| \bar{\beta}''_{m,n} \|$, $(T_{s_1} \dots T_{s_p^{-1}})$ by $\| e'_{m,n} \|$, $(T_{s_p^{-1}+1} \dots T_{s_p})$ by $\| e''_{m,n} \|$.

and let

$$\bar{d}_{m,n} = \sum_{n_1} |\bar{d}'_{m,n_1}| \cdot |\bar{d}''_{n_1,n}|$$

and

$$\bar{e}_{m,n} = \sum |\bar{e}'_{m,n}| \cdot |\bar{e}''_{m,n}|.$$

$$\begin{aligned} \text{Now } & \sum_{n_1} |\bar{d}'_{m,n_1}| \cdot \sum_{n_2} |\bar{d}''_{n_1,n_2}| \cdot \sum_{n_3} \bar{\beta}'_{n_2,n_3} \cdot \sum_{n_4} \bar{\beta}''_{n_3,n_4} \cdot \sum_{n_5} |\bar{e}'_{n_4,n_5}| \cdot \sum_{n_6} |\bar{e}''_{n_5,n_6}| \\ &= \sum_{n_1} (\sum_{n_2} |\bar{d}'_{m,n_1}| \cdot |\bar{d}''_{n_1,n_2}|) \cdot \sum_{n_3} \bar{\beta}'_{n_2,n_3} \cdot \sum_{n_4} (\sum_{n_5} |\bar{e}'_{n_4,n_5}| \cdot |\bar{e}''_{n_5,n_6}|) \dots \\ &= \sum \bar{d}_{m,n_1} \cdot \sum \bar{\beta}_{n_1,n_2} \sum \bar{e}_{n_2,n_3} |y_{n_3}| = \sum_{p=0}^{\rho} (\sum \bar{d}_{m,n_1} \cdot \bar{\beta}_{n_1,n_2} \cdot \bar{e}_{n_2,n_3} \dots e_{n_{\rho},n_{\rho}}) |y_{n_{\rho}}| \end{aligned}$$

Since by (8.13), $\sum_{p=0}^{\infty} \bar{d}_{n,p} \leq K$ and $\sum \bar{e}_{n,p} \leq K^1$

exactly as in the proof of (1) of this theorem, we prove $\sum_{p=0}^{\rho} (\sum \bar{d}_{m,n_1} \cdot \bar{\beta}_{n_1,n_2} \cdot \bar{e}_{n_2,n_3} \dots e_{n_{\rho},n_{\rho}}) |y_{n_{\rho}}|$ converges. (8.19)

Hence

$$\begin{aligned} & \sum_{n_1=0}^{\infty} \bar{d}'_{m,n_1} \sum_{n_2=0}^{\infty} \bar{d}''_{n_1,n_2} \cdot \sum_{n_3=0}^{\infty} \bar{\beta}'_{n_2,n_3} \cdot \sum_{n_4=0}^{\infty} \bar{\beta}''_{n_3,n_4} \cdot \sum_{n_5=0}^{\infty} \bar{e}'_{n_4,n_5} \dots \sum_{n_{\rho}=0}^{\infty} \bar{e}''_{n_{\rho-1},n_{\rho}} |y_{n_{\rho}}| \\ &= \sum_{p=0}^{\rho} (\sum \bar{d}_{m,n_1} \cdot \bar{d}''_{n_1,n_2} \bar{\beta}'_{n_2,n_3} \bar{\beta}''_{n_3,n_4} \bar{e}'_{n_4,n_5} \bar{e}''_{n_5,n_6} \dots) |y_{n_{\rho}}| \end{aligned}$$

i.e., (8.18) is true. (8.19)

We will state here some of the other associations that are equivalent to $S (y_n)$ as they will be needed later.

$$\begin{aligned}
 & (T_{q_1} T_{q_2} \cdots T_{q_r} T_1^{-1} \cdots T_k^{-1}) (T_{l+1}^{-1} \cdots T_{k-1}^{-1} T_{s_1} \cdots T_{s_p}) (y_n) = \\
 & (T_{q_1} T_{q_2} \cdots T_{q_r}) \cdot (T_1^{-1} \cdots T_k^{-1} T_{s_1} \cdots T_{s_p}) (y_n) = \\
 & (T_{q_1} \cdots T_{q_r} T_1^{-1} \cdots T_k^{-1}) (T_{s_1} \cdots T_{s_p}) (y_n) = \\
 & (T_{q_1} \cdots T_{q_r}) (T_1^{-1} T_k^{-1}) \cdot (T_{s_1} \cdots T_{s_p}) (y_n) = \\
 & (T_{q_1} T_{q_2} \cdots T_{q_r} T_1^{-1} \cdots T_k^{-1} \cdots T_{s_1} \cdots T_{s_p}) (y_n) = S(y_n). \quad [8 \cdot 20]
 \end{aligned}$$

When B_n converges, then $\sum_{p=0}^{\rho} \bar{\beta}_{n,n+p} \leq \limsup_{p \rightarrow \infty} B_p = K$ for all n . [8.21]

and since $\sum_{p=0}^{\rho} |d_{n,p}| \leq K_1$ and $\sum_{p=0}^{\rho} |e_{n,p}| \leq K_2$

$\sum_{p=0}^{\rho} |\gamma_{n,n+p}| \leq k_1 k_2 = k_4$. Let \bar{y}_A be upper bound of $|y_n|$ for $n \geq A$;

then $\sum_{p=A}^{\infty} |\gamma_{n,p} y_p| \leq k_4 \bar{y}_A$. Hence (1) of Theorem VII in this case is proved.

Because of (8.21) (2) of Theorem VII in this case is obvious.

THEOREM VIII: Let $\|\bar{\beta}_{m,n}\| = \|\beta_{1,m,n}^1\| \cdot \|\beta_{2,m,n}^2\| \cdots \|\beta_{k,m,n}^k\|$ define $(T_1^{-1} T_2^{-1} \cdots T_k^{-1})$.

Let b_p be the upper bound of $\bar{\beta}_{n,n+p}$ for all n , and $B_n = \sum_{p=0}^n b_p$ as in Theorem VII.

Let $T_{\rho_1}, T_{\rho_2}, T_{\rho_r}$ be r direct T 's and $\|d_{m,n}\| = \|a_{\rho_1 m,n}^1\| \cdots \|a_{\rho_r m,n}^r\|$ define $(T_{\rho_1} \cdots T_{\rho_r} \cdots T_{\rho_r})$.

Let T_0 and T_0^{-1} be defined by $\|a_{m,n}^0\|$ and $\|\beta_{m,n}^0\|$.

Let $S = (T_{\rho_1} T_{\rho_2} \cdots T_{\rho_r} T_1^{-1} \cdots T_k^{-1})$ be defined by $\|d_{m,n}\| \cdot \|\bar{\beta}_{m,n}\| = \|c_{m,n}\|$ and let $S' = (S T_0^{-1})$ be defined by $\|c_{m,n}\| \cdot \|\beta_{m,n}^0\| = \|\gamma_{m,n}\|$.

If $y_n = 0 \left(\frac{1}{B_n} \right)$ {i.e., $(B_n |y_n|)$ is a null sequence}, then

$\{S' [T_0 (y_n)]\} = (S' T_0) (y_n) = S (y_n)$, when the latter exists,

Proof: Let m and ρ be two any positive integers and $r_{n,n+\rho}$ be

$$= \sum_{r=\rho+1}^{\infty} |a_{n,n+r}^0| \text{ as in (5.2).}$$

Let \bar{y}_{n_0} be upper bound of $|y_n|$ for all $n \geq n_0$.

Let $T_0 (y_n) = z_n$.

$$\text{Then } z_m = \sum_{r=0}^{\infty} a_{m,m+r}^0 y_{m+r} = \sum_{r=0}^{r=\rho} + \sum_{r=\rho+1}^{\infty} = \sum_{r=0}^{r=\rho} + \theta_r r_{m,m+\rho} \bar{y}_{m+\rho}$$

$$k \leq \rho, \quad z_{m+k} = \sum_{r=0}^{r=\rho} a_{m+k,m+r}^0 y_{m+r} + \theta_k r_{m+k,m+\rho} \bar{y}_{m+\rho}.$$

$$z_{m+\rho} = y_{m+\rho} + \theta_{\rho} r_{n+\rho,n+\rho} \bar{y}_{n+\rho}. \quad [8 \cdot 22]$$

Consider now

$$\sum_{r=0}^{\rho} \gamma_{m,m+r} z_{m+r} = \sum_{r=0}^{\rho} \gamma_{m,m+r} \cdot \sum_{s=0}^{\rho} a^0_{m+r,m+s} y_{m+s} + \bar{y}_{m+\rho} \sum_{r=0}^{\rho} \theta_r \cdot \gamma_{m,m+r} y_{m+r,m+\rho}.$$

$$= \quad \text{A} \quad \quad \quad + \quad \text{B}$$

$$\text{A} = \sum_{r=0}^{\rho} (\sum_{s=0}^{\rho} \gamma_{m,m+r} a^0_{m+r,m+s}) y_{m+s} = \sum_{s=0}^{\rho} c_{m,m+s} y_{m+s} \quad [8.23]$$

$$|\text{B}| \leq \bar{y}_{m+\rho} \cdot \sum_{r=0}^{\rho} |\gamma_{m,m+r}| \cdot \gamma_{m+r,m+\rho} = \bar{y}_{m+\rho} \cdot B_2 \quad [8.24]$$

Now

$$\gamma_{m,m+r} = c_{m,m+k} \cdot \beta^0_{m+k,m+r}$$

$$\begin{aligned} \therefore B_2 &\leq \sum_{r=0}^{\rho} \left(\sum_{k=0}^r |c_{m,m+k}| \cdot \beta^0_{m+k,m+r} \right) r_{m+r,m+\rho} \\ &= \sum_{k=0}^{\rho} |c_{m,m+k}| \cdot \sum_{r=k}^{\rho} \beta^0_{m+k,m+r} r_{m+r,m+\rho} \end{aligned}$$

Just as in the course of proof of Theorem IV in (5.4) and (5.5), by (4.6) of Part I

we have $\sum_{r=0}^{\rho} \beta^0_{m,m+r} r_{m+r,m+\rho} \leq 1$ for all m and all ρ .

$$\therefore B_2 \leq \sum_{k=0}^{\rho} |c_{m,m+k}| \text{ and } c_{m,m+k} = \sum_{s=0}^k d_{m,m+s} \cdot \bar{\beta}_{m+s,m+k}.$$

$$\text{Hence } \sum_{k=0}^{\rho} |c_{m,m+k}| \leq \sum_{s=0}^{\rho} \cdot \sum_{k=s}^{\rho} |d_{m,m+s}| \cdot \bar{\beta}_{m+s,m+k}.$$

$$\begin{aligned} \text{Now } \bar{\beta}_{m,m+r} &\leq b_r. \text{ Hence } \sum_{k=0}^{\rho} |c_{m,m+k}| \leq \sum_{s=0}^{\rho} \cdot \sum_{k=s}^{\rho} |d_{m,m+s}| \cdot b_{k-s}. \\ &= \sum_{r=0}^{\rho} b_r \cdot \sum_{s=0}^{\rho-r} |d_{m,m+s}|. \end{aligned}$$

Now by Lemma of (8.1) we have $\sum_{r=0}^{\infty} |d_{m,m+r}| \leq K$, a constant.

Hence $B_2 \leq K \cdot B_{\rho}$.

[8.25]

$$\begin{aligned} \text{Now } |\text{B}| &\leq \bar{y}_{m+\rho} |B_2| \leq K \cdot B_{\rho} \cdot \bar{y}_{m+\rho} = \frac{K \cdot B_{\rho} \cdot \epsilon_{m+\rho}}{B_{m+\rho}} \leq K \cdot \epsilon_{m+\rho}. \\ \text{since } y_n &= 0 \left(\frac{1}{B_n} \right). \end{aligned}$$

$$\text{Hence } \sum_{r=0}^{\rho} \gamma_{m,m+r} z_{m+r} = \sum_{s=0}^{\rho} c_{m,m+s} y_{m+s} + \theta K \cdot \epsilon_{m+\rho} \quad [8.26]$$

If the second series $\sum_{s=0}^{\infty} c_{m,m+s} y_{m+s}$ converges, then

$$\begin{aligned} \sum_{r=0}^{\infty} \gamma_{m,m+r} z_{m+r} &= \sum_{s=0}^{\infty} c_{m,m+s} y_{m+s} \quad [8.27] \\ \text{i.e., } S' [T_0(y_n)] &= (S' T_0)(y_n) = S(y_n) \text{ when the latter exists} \quad [8.28] \end{aligned}$$

THEOREM IX: Let S , S' and T_0 be as in (8.21) and R be $= (T_{q_1} T_{q_2} \dots T_{q_r})$ defined by

$$\|e_{m,n}\|. \text{ Then also } (S') [(T_0 R) (y_n)] = (S' T_0 R) (y_n) \\ = (SR) (y_n) \text{ if the latter exists}$$

$$y_n = 0 \left(\frac{1}{B_n} \right).$$

Proof: Let $R (y_n) = z_n$ and \bar{y}_{n_0} = upper bound of $|y_n|$ for $n \geq n_0$

$$\text{then } |z_n| = \left| \sum_{p=n}^{\infty} e_{np} y_p \right| \leq \bar{y}_{n_0} \sum_{p=n}^{\infty} |e_{np}| \leq K \bar{y}_{n_0} = 0 \left(\frac{1}{B_n} \right)$$

$$\text{Hence } z_n = 0 \left(\frac{1}{B_n} \right). \quad [8.29]$$

Now $(T_0 R) (y_n) = T_0 (z_n)$ and

$$S' [T_0 (z_n)] = (S' T_0) (z_n) = S (z_n) \\ = S [R (y_n)] \text{ (if the latter exists).} \quad [8.30]$$

$$\text{Now the series } \sum_{p=n}^{\infty} |e_{np}| y_p \leq \bar{y}_{n_0} K = 0 \left(\frac{1}{B_n} \right)$$

$$\text{since } \sum_{p=n}^{\infty} |e_{np}| \leq K \text{ by 8.1.}$$

Hence by Theorem VI $S \cdot R (y_n) = (SR) (y_n)$ when the latter exists. [8.31]

A particularly interesting case of Theorem IX is when $T_1^{-1} = T_2^{-1} \dots T_{k-1}^{-1}$ unit transformation; then the theorem would be

THEOREM X: If $S = (T_{s_1} T_{s_2} T_{s_p})$ and y_n a null sequence and $R = (T_{q_1} T_{q_2} T_{q_r})$ then $(S T_0^{-1}) [(T_0 R) (y_n)] = (SR) (y_n)$. [8.32]

§ 9. On Combinations of Inverse (T^{-1}) Transformations.

Most of the theorems in this section are either deductions from, or particular cases of theorems of previous section.

THEOREM XI: Let $R_1 = (T_{q_1} T_{q_2} T_{q_r})$ defined by $\|d_{mn}\| = \|a_{q_1 m, n}\| \dots \|a_{q_r m, n}\|$

$$R_2 = (T_{s_1} \cdot T_{s_2} \dots T_{s_p}) \dots \|c_{m,n}\| = \|a_{s_1 m, n}\| \dots \|a_{s_p m, n}\|.$$

$$I = (T_1^{-1} T_2^{-1} T_{k-1}^{-1}) \dots \|\beta_{m,n}\| = \|\beta^1_{m,n}\| \dots \|\beta^k_{m,n}\|$$

and $S = (IR_2)$ defined by $\|c_{m,n}\| = \|\beta_{m,n}\| \cdot \|e_{m,n}\|$.

If $\sum_{n=1}^{\infty} c_{m,n} y_n$ converges uniformly for all m , then

$$(R_1) \cdot [S (y_n)] = (R_1 S) (y_n). \quad [9.1]$$

This is a particular case of Theorem V and result follows from (8.7).

THEOREM XIII: Let $S = (T_1^{-1} T_k^{-1})$ defined by $\|\beta_{m,n}\|$.

If $\sum_{n=1}^{\infty} \bar{\beta}_{m,n} y_n$ converges uniformly for all m , then

$$(1) \quad (T_l T_{l-1} \cdots T_1) (T_1^{-1} \cdots T_k^{-1}) (y_n) = (T_{l+1}^{-1} \cdots T_k^{-1}) (y_n) \quad 0 \leq l \leq k.$$

$$(2) \quad (T_k T_{k-1} T_1) (T_1^{-1} \cdots T_k^{-1}) (y_n) = y_n.$$

$$(3) \quad (T_1^{-1} T_2^{-1} \cdots T_k^{-1}) (y_n) = (T_1^{-1}) (T_2^{-1}) \cdots (T_{l+1}^{-1} \cdots T_k^{-1}) (y_n) \\ = (T_1^{-1}) (T_2^{-1}) \cdots (T_k^{-1}) (y_n).$$

Proof:

$$(1) \text{ is a particular case of (8.33)} \quad [9.2]$$

$$(2) \text{ is a particular case of (1) when } l = k. \quad [9.3]$$

$$(3) \text{ Let } z_m = \sum_{n=1}^{\infty} \bar{\beta}_{m,n} y_n \text{ then by (1)} \quad (T_l T_{l-1} \cdots T_1) (z_m) = \\ (T_{l+1}^{-1} \cdots T_k^{-1}) (y_n) = \omega_m.$$

Since $\sum \bar{\beta}_{m,n} y_n$ is uniformly convergent by (3) of theorem V it is a null sequence. By repeated application of Theorem IV of Part I as in corollary to it

$$z_m = \sum_{r_1=1}^{\infty} \beta_{m,m+r_1}^1 \cdot \sum_{r_2=1}^{\infty} \beta_{m+r_1,m+r_2}^2 \cdots \sum_{p=1}^{\infty} \beta_{m+r_{l-1},m+p}^l \omega_p = \\ = (T_1)^{-1} \cdots (T_l)^{-1} (\omega_m) = (T_1)^{-1} (T_2)^{-1} \cdots (T_l)^{-1} (T_{l+1}^{-1} \cdots T_k^{-1}) (y_n) \quad [9.4]$$

$$\text{and in particular when } l = k \quad z_m = (T_1)^{-1} \cdots (T_k)^{-1} (y_n)$$

$$= \sum_{r_1=1}^{\infty} \beta_{m,m+r_1}^1 \cdot \sum_{r_2=1}^{\infty} \beta_{m+r_1,m+r_2}^2 \cdots \sum_{p=1}^{\infty} \beta_{m+r_{k-1},m+p}^k y_p \\ = \sum_{p=1}^{\infty} \bar{\beta}_{m,m+p} y_p \quad [9.5]$$

A particularly interesting case of Theorem VI is the following:

THEOREM XIV: Let $R_1 = (T_{s_1} \cdots T_{s_2} \cdots T_{s_3} \cdots T_{s_p})$, be defined by $\|d_{mn}\|$

and $R_2 = (T_1^{-1} \cdots T_k^{-1})$ $\|\beta_{m,n}\|$.

and $S = (T_{p_1}^{-1} \cdots T_{p_l}^{-1} T_{q_1} T_{q_2} \cdots T_{q_r})$ defined by $\|c_{m,n}\|$.

If $\left| \sum_{n=A}^{\infty} c_{m,n} y_n \right| = 0 \left(\frac{1}{B_A} \right)$ for all m

then $(R_1 R_2) [S (y_n)] (R_1 R_2 S) (y_n)$ when the latter exists. $[9.6]$

THEOREM XIV: Let $(T_1^{-1} T_2^{-1} \cdots T_k^{-1})$ be defined by $\|\bar{\beta}_{m,n}\|$ then if $\sum \bar{\beta}_{mn} \|y_n\|$ converges for all m , then the terms of the product $(T_1^{-1} \cdots T_k^{-1})$ can be associated in any arbitrary manner, and the resultant of all the associations on y_n is equal to $(T_1^{-1} T_2^{-1} \cdots T_k^{-1}) (y_n)$.

We shall take a particular association and prove it, the proof for all other associations being the same.

Let $(T_1^{-1} \cdot T_2^{-1} \cdot T_{l_1}^{-1})$ be defined by $\|\bar{\beta}'_{m,n}\|$.

$$(T_{l_1+1}^{-1} \cdots T_{l_2}^{-1}) \cdots \|\bar{\beta}''_{m,n}\|$$

$$(T_{l_2+1}^{-1} \cdots T_k^{-1}) \cdots \|\bar{\beta}'''_{m,n}\|.$$

$$\text{To prove } \sum_{n_1=1}^{\infty} \bar{\beta}'_{m,n_1} \cdot \sum_{n_2=1}^{\infty} \bar{\beta}''_{n_1, n_2} \cdot \sum_{p=1}^{\infty} \bar{\beta}'''_{n_2, p} y_p = \sum_{p=1}^{\infty} \bar{\beta}_{m,p} y_p.$$

Now all the $\beta_{m,n} \geq 0$, and $\|\bar{\beta}'_{m,n}\| \cdot \|\bar{\beta}''_{m,n}\| \cdot \|\bar{\beta}'''_{m,n}\| = \|\bar{\beta}_{m,n}\|$

Since $\sum \bar{\beta}_{m,p} |y_p|$ converges

$$\begin{aligned} \sum_{p=1}^{\infty} \bar{\beta}_{m,p} y_p &= \sum_{p=1}^{\infty} (\sum \bar{\beta}'_{m,p_1} \cdot \bar{\beta}''_{p_1, p_2} \cdot \bar{\beta}'''_{p_2, p}) y_p \\ &= \sum_{p_1=1}^{\infty} \bar{\beta}'_{m,p_1} \cdot \sum_{p_2=1}^{\infty} \bar{\beta}''_{p_1, p_2} \cdot \sum_{p=1}^{\infty} \bar{\beta}'''_{p_2, p} y_p \\ \text{i.e., } (T_1^{-1} T_2^{-1} T_{l_1}^{-1}) (T_{l_1+1}^{-1} \cdots T_{l_2}^{-1}) (T_{l_2+1}^{-1} \cdots T_k^{-1}) (y_n) \\ &= (T_1^{-1} \cdots T_k^{-1}) (y_n). \end{aligned} \quad [9.7]$$

THEOREM XV: $\|\bar{\beta}_{m,n}\|$ defines $(T_1^{-1} \cdots T_k^{-1})$. If $\sum \bar{\beta}_{m,n} |y_n|$ converges uniformly for all m then (1), (2), (3) of Theorem XII and the conclusion of XIV are all true in this case.

This is obvious. An interesting case of this is when $y_n = 0 \left(\frac{1}{B_n^{1+\delta}} \right)$ for by Theorem VII $\sum \bar{\beta}_{m,n} |y_n|$ converges uniformly if $y_n = 0 \left(\frac{1}{B_n^{1+\delta}} \right)$. [9.8]

§ 10. On the Properties of a Particular Subclass of (T).

We notice that in the theorems proved till now, in order that a combination of inverse and direct transformations on a sequence $\{y_n\}$ may be valid, there must be some strict restriction on y_n (for e.g., in Theorem IV, $y_n \rightarrow 0$ as $n \rightarrow \infty$). In general, when a combination involves an inverse, the restriction on y_n is greater than when the combination is purely of direct T's in which latter case the only restriction being y_n be bounded. In § 10 we deal with a subclass of (T) designated by \bar{T}_0 . The algebra of combinations involving any number of T's and $(\bar{T})^{-1}$ is very simple and exactly like that of direct (T) transformation combinations.

The matrix $\|\bar{a}_{m,n}\|$ of a \bar{T} is characterised by the following:

$$(a) \bar{a}_{nn} = 1 \quad (b) \bar{a}_{m,n} = 0, \quad n < m \quad (c) \bar{a}_{m,n} \leq 0, \quad n > m \text{ and}$$

$$(d) - \sum_{p=1}^{\infty} \bar{a}_{m, m+p} \leq k < 1 \text{ for all } m; \text{ where the first three conditions are the same as in (2.1) for a T and (d) is a greater restriction than (d) of (2.1)}$$

From (4.7) if $\|\bar{\beta}_{mn}\|$ defines a $(\bar{T})^{-1}$ then $\sum_{p=0}^{\infty} \bar{\beta}_{m, m+p} \leq \frac{1}{1-k}$. [10.2]

Let us designate the matrix of any T , \bar{T} or $(\bar{T})^{-1}$ by $\|b_{mn}\|$. Then from (10.1), and (10.2) and condition (d) of (2.1) we have $\sum_{p=0}^{\infty} |b_{m, m+p}| \leq K$ (a constant) for all m . [10.3]

If V stands for any T , \bar{T} , or $(\bar{T})^{-1}$ the most general theorem involving T , \bar{T} and $(\bar{T})^{-1}$ will be the following :

THEOREM XVI: If $\{x_n\}$ be $\left\{ \begin{array}{l} \text{bounded} \\ \text{null} \end{array} \right\}$ sequence so is $(V_1, V_2 \dots V_k) (x_n)$, and $(V_1 V_2 V_k) (x_n) = (V_1 V_2 \dots V_p) \dots (V_{p+1} \dots V_l) \dots (V_{l+1} \dots V_k) (x_n)$. Proof is immediate because it means that all $(\bar{T})^{-1}$ behave exactly like the direct transformation T . [10.4]

In particular it is interesting to notice the form which Theorem IV and its complement take in the case of \bar{T} and T^{-1} .

THEOREM XVII : $\{x_n\}$ being a bounded sequence, if $\bar{T} (x_n) = y_n$, then

$$(1) \quad x_n = (\bar{T})^{-1} (y_n);$$

(2) Given $\{y_n\}$ the infinite set of equations $T (x_n) = \sum \bar{a}_{m,p} x_p = y_m$, $m = 0, 1, 2, \dots, n$,—under the restriction x_n be bounded, has utmost one solution.

(3) The necessary and sufficient condition that the infinite set of equations $\sum \bar{a}_{m,p} x_p = y_m$ has one solution $\{x_n\}$ under the restriction that x_n be bounded is that y_n be bounded.

The proofs of (1), (2) and (3) follow very simply from Theorem XI. [10.5]

§ 11. Two theorems applicable for a special subclass of (T) .

Let T_0 be defined by $\|a^0_{m,n}\|$ and T_0^{-1} by $\|\beta^0_{m,n}\|$.

Let S be any transformation denoted by $\|s_{m,n}\|$ where $s_{m,n} = 0$, $n < m$;

THEOREM XVIII : If (1) $\{x_n\}$ be a bounded sequence and (2) $\frac{s_{m,m+p}}{B^0_{m,m+p}} \rightarrow 0$ as $p \rightarrow \infty$ for every m and (3) $|s_{m,n}| \leq K'$ for all m, n , then $S [T_0 (x_n)] = (S T_0) (x_n)$, when the latter exists.

Proof:

Let $|x_n| < K$. Let $\sum_{p=p+1}^{\infty} |a^0_{n,n+p}| = - \sum_{p=p+1}^{\infty} a^0_{n,n+p} = r_{n,n+p}$, $p \geq 1$ and let $T_0 (x_n) = y_n$.

$$\text{Then } y_n = \sum_{\rho=0}^{\infty} a_{n,n+\rho}^0 x_{n+\rho} = \sum_{\rho=0}^{\rho} + \sum_{\rho+1}^{\infty} = \sum_{\rho=0}^{\rho} + \theta K \cdot r_{n,n+\rho}.$$

$$\text{Similarly } y_{n+k} = \sum_{\rho=0}^{\rho=\rho} a_{n+k,n+\rho}^0 x_{n+\rho} + \theta_k \cdot K \cdot r_{n+k,n+\rho} \quad [11 \cdot 1]$$

for $k = 0, 1, 2, \rho$. and $-1 \leq \theta_k \leq 1$.

$$\text{Then } \sum_{\rho=0}^{\rho=\rho} s_{n,n+\rho} y_{n+\rho} = \sum_{\rho=0}^{\rho=\rho} s_{n,n+\rho} \cdot \sum_{\rho'=0}^{\rho'=\rho} a_{n+\rho,n+\rho'}^0 x_{n+\rho'} + K \sum_{\rho=0}^{\rho=\rho} s_{n,n+\rho} \cdot r_{n+\rho,n+\rho} \quad [11 \cdot 2]$$

$$A = \sum_{\rho'=0}^{\rho'=\rho} \left(\sum_{\rho=0}^{\rho=\rho'} s_{n,n+\rho} \cdot a_{n+\rho,n+\rho'}^0 \right) x_{n+\rho'}$$

$$|B| \leq K \cdot \sum_{\rho=0}^{\rho} |s_{n,n+\rho}| r_{n+\rho,n+\rho} = K \left(\sum_{k=1}^{k-1} + \sum_{k}^{\rho} \right) = K (\beta_1 + \beta_2);$$

choose k sufficiently large such that for $\rho \geq k$, $\frac{|s_{n,n+\rho}|}{\beta_{n,n+\rho}^0} \leq \epsilon$

$$B_2 \leq \epsilon \cdot \sum_{\rho=k}^{\rho=\rho} \beta_{n,n+\rho}^0 \cdot r_{n+\rho,n+\rho} \leq \epsilon \cdot \sum_{\rho=0}^{\rho=\rho} \beta_{n,n+\rho}^0 \cdot r_{n+\rho,n+\rho}.$$

$$\text{Now } r_{n,n+\rho} = \sum_{\rho+1}^{\infty} - a_{n,n+\rho}^0 = \sum_{\rho=1}^{\infty} - \sum_{\rho=0}^{\rho=\rho} \leq R_{n,n+\rho} \text{ of (4.6 a)}$$

and by (4.6 a) $\sum \beta_{n,n+\rho}^0 R_{n+\rho,n+\rho} = 1$; Hence $B_2 \leq \epsilon$. [11.3]

$$\text{Now } B_1 \leq K' \sum_{\rho=0}^{\rho=k-1} r_{n+\rho,n+\rho} \text{ by hypothesis (3).}$$

Now each of the sequences $r_{n,n+\rho}, r_{n+1,n+\rho}, \dots, r_{n+k-1,n+\rho}$ tends to zero by condition (d) of 2.1; choosing ρ sufficiently large, $B_1 \leq \epsilon$.

Hence for sufficiently large ρ $|B| \leq \epsilon (\rho)$ and we have [11.4]

$$\begin{aligned} \sum_{\rho=0}^{\rho=\rho} s_{n,n+\rho} \cdot y_{n+\rho} &= \sum_{\rho=0}^{\rho=\rho} (\sum_{\rho_1} s_{n,n+\rho_1} a_{n+\rho_1,n+\rho}^0) x_{n+\rho} + \theta \epsilon (\rho). \\ &= \sum_{\rho=0}^{\rho} d_{n,n+\rho} x_{n+\rho} + \theta \epsilon (\rho) \end{aligned} \quad [11.5]$$

where $\|d_{m,n}\| = \|s_{m,n}\| \cdot \|a_{m,n}^0\|$.

If the latter series $\sum_{\rho=0}^{\rho=\infty} d_{n+\rho} x_{n+\rho}$ converges then in the limit making $\rho \rightarrow \infty$

$$\sum_{\rho=0}^{\rho=\infty} s_{n,n+\rho} y_{n+\rho} = \sum_{\rho=0}^{\infty} d_{n,n+\rho} x_{n+\rho} \text{ or}$$

$S [T_0 (x_n)] = (S T_0) (x_n)$ when the latter exists. [11.6]

THEOREM XIX. Let T_1 and T_2 and $(T_1 T_2)$ be defined by $\|a_{m,n}\|$, $\|b_{m,n}\|$ and $\|c_{mn}\| = \|a_{m,n}\| \cdot \|b_{m,n}\|$.

$$\text{Let } (1) \sum_{\rho=p+1}^{\infty} |a_{m,m+\rho}| = r^a_{m,m+\rho}$$

$$(2) \sum_{\rho=p+1}^{\infty} |c_{m,m+\rho}| = r^c_{m,m+\rho}$$

and T_1^{-1} be defined by $\|\beta_{m,n}\|$.

Then if (1) $\frac{r^c_{m,m+\rho}}{r^a_{m,m+\rho}} \rightarrow 0$ as $\rho \rightarrow 0$ uniformly for all m (2) $\beta_{n,n+\rho} \rightarrow 0$ as $\rho \rightarrow \infty$.

and (3) $|x_n| \leq K$, then

$$(T_1^{-1} \cdot) [(T_1 T_2) (x_n)] = T_2 (x_n). \quad [11.7]$$

Proof: Let $(T_1 T_2) (x_n) = y_n$ and p a positive integer

$$\text{and } y_n = \sum_{\rho=0}^{\rho=\infty} c_{n,n+\rho} x_{n+\rho} = \sum_{\rho=p}^{\rho=p} + \sum_{\rho+1}^{\infty} = \sum_{\rho=p}^{\rho=p} + K \cdot \theta r^c_{n,n+\rho}$$

$$\text{Similarly } y_{n+k} = \sum_{\rho=p}^{\rho=p} c_{n+k,n+\rho} x_{n+\rho} + K \cdot \theta_k r^c_{n+k,n+\rho} \quad [11.8]$$

for $k = 0, 1, p$ and $-1 \leq \theta_k \leq 1$.

$$\sum_{\rho=0}^{\rho=p} \beta_{n,n+\rho} y_{n+\rho} = \sum_{\rho=0}^{\rho=p} \beta_{n,n+\rho} \cdot \sum_{s=p}^s c_{n+\rho,n+s} x_{n+s} + K \sum \theta_p \cdot \beta_{n,n+\rho} r^c_{n+\rho,n+\rho}$$

$$= A + B.$$

$$A = \sum_{s=0}^p \cdot \left(\sum_{\rho=0}^s \beta_{n,n+\rho} c_{n+\rho,n+s} \right) \cdot x_{n+s} = \sum_{s=0}^p b_{n,n+s} x_{n+s}$$

$$|B| \leq K \cdot \left(\sum_{\rho=0}^{p-k} \beta_{n,n+\rho} r^c_{n+\rho,n+\rho} + \sum_{\rho=p-k+1}^p \right) = K (B_1 + B_2) \quad [11.9]$$

Choosing k large enough such that $\frac{r^c_{n,n+\rho}}{r^a_{n,n+\rho}} \leq \epsilon$ for all n and $\rho \geq k$

$$B_1 \leq \epsilon \cdot \sum_{\rho=0}^{\rho=p-k} \beta_{n,n+\rho} r^a_{n+\rho,n+\rho}$$

$$\leq \epsilon \cdot \sum_{\rho=0}^{\rho=p} \beta_{n,n+\rho} r^a_{n+\rho,n+\rho} \leq \epsilon \quad \text{just as in (12.3).} \quad [11.10]$$

$$\text{and } B_2 = \sum_{\rho=p-k+1}^p \beta_{n,n+\rho} r^c_{n+\rho,n+\rho} \leq K_1 \sum_{\rho=p-k+1}^p \beta_{n,n+\rho}$$

since by condition (d) of (2.1) for T_1 and T_2 , $r^c_{n,\rho} \leq K_1$ for all n and ρ .

Choosing p sufficiently large, by condition (2) of Theorem XIX, we have

$$\sum_{\rho=p-k+1}^{p=p} \beta_{n,n+\rho} \leq \epsilon, \text{ i.e., } B_2 \leq \epsilon' (p)$$

Hence

$$|B| \leq \epsilon'' (p) \quad [11.11]$$

and $\sum_{\rho=p}^{\rho=p} \beta_{n,n+\rho} y_{n+\rho} = \sum_{\rho=p}^{\rho=p} b_{n,n+\rho} x_{n+\rho} + \theta \epsilon'' (p)$

and in the limit $\sum_{\rho=\infty}^{\rho=\infty} \beta_{n,n+\rho} y_{n+\rho} = \sum_{\rho=\infty}^{\rho=\infty} b_{n,n+\rho} x_{n+\rho} \text{ or}$

$$(T_1^{-1}) [(T_1 T_2) (x_n)] = T_2 (x_n). \quad [11.12]$$

§ 12. On an Integral Equation.

Corresponding to a T for a sequence, we define the following transformation for the continuous variable.

Let (1) $K(x, t) \geq 0$ for all $x \geq 0, t \geq 0$; (2) $K(x, t) = 0, t < x$;

(3) $K(x, t)$ being continuous in (x, t) , for all $x \geq 0, t \geq 0$.

$$(4) \int_0^{\infty} K(x, t) dt \leq 1 \text{ for all } x. \quad [12.1]$$

Let $u(t)$ be a given continuous function defined for $t \geq 0$, then the transformation T will be $T(u) = u(t) - \int_0^{\infty} K(t, r) u(r) dr = v(t)$. [12.2]

We discuss here only the existence of the inverse of this transform and show that under certain conditions $u(t) = T^{-1}\{v(t)\}$. The main point of interest in the solution of the integral equation in u of (12.2) is that the range is infinite. We shall show that the solution can be given in terms of Volterra's reciprocal of $K(x, t)$ just as in the ordinary case of finite range when $v(t)$ satisfies a certain condition.

THEOREM XX: (1) If $u(x) \rightarrow 0$ as $x \rightarrow \infty$ and

$$T(u) = u(x) - \int_0^{\infty} K(x, t) u(t) dt = v(x),$$

then $u = T^{-1}\{v(x)\} = v(x) + \int_0^{\infty} \bar{K}(x, t) v(t) dt$.

where $[\bar{K}(x, t)] = K(x, t) + K_1(x, t) + \dots + K_n(x, t) + \dots$

where $[\bar{K}_n(x, t)] = \int_0^t K_{n-1}(x, u) K(u, t) dt$.

(2) Given $v(x)$, the equation $T(u) = v$ will have utmost one solution under the restriction $u(x) \rightarrow 0$ as $x \rightarrow \infty$.

(3) Given $v(x)$ the necessary and sufficient condition that the equation $T(u) = v$ has one solution under the restriction $u(x) \rightarrow 0$ as $x \rightarrow \infty$ is that

$$\int_0^\infty \bar{K}(x, t) v(t) dt \text{ converges uniformly for all } x \geq 0.$$

Lemmas :

$$(1) K_n(x, t) = 0 \quad t < x \quad (\text{proof by mathematical induction and } (2) \text{ o}) \quad [12 \cdot 3]$$

$$(2) K_n(x, t) \geq 0 \text{ for } x \text{ and } t, \text{ obvious from definition.} \quad [12 \cdot 4]$$

$$(3) \text{ By definition } K_n(x, t) = \int_0^t K_{n-1}(x, u) \cdot K(u, t) du. \quad \text{To prove}$$

$$K_n(x, t) = \int_0^t K_{n-1}(u, t) \cdot K(x, u) du, \quad [12 \cdot 5]$$

suppose this is true for $1, 2, \dots, n-1$, then we will prove it is true for n and hence for all $n \geq 1$ since it is true for $n \geq 1$.

$$\text{By definition } K_n(x, t) = \int_0^t K(u, t) \cdot K_{n-1}(x, u) du$$

$$\text{and by hypothesis } K_{n-1}(xu) = \int_0^t K_{n-2}(u, t) \cdot K(xu) du.$$

$$\begin{aligned} \text{Hence } K_n(x, t) &= \int_0^t K(u, t) \cdot du \cdot \int_0^u K(xv) \cdot K_{n-2}(v, u) dv \\ &= \int_0^t K(x, v) dv \int_v^t K(u, t) K_{n-2}(vu) du \\ &= \int_0^t K(x, v) dv \int_0^t K(u, t) K_{n-2}(v, u) du \\ &\quad \text{since } K_n(v, u) = 0 \quad u < v \end{aligned}$$

$$= \int_0^t K(x, v) K_{n-1}(vt) dt \quad [12 \cdot 5]$$

for $n = 1$. (12.5) is obvious since $K_n(x, t) \equiv K(x, t)$. Hence (12.5) is true for $n \geq 1$.

$$(4) \sum_0^\infty K_n(n, t) \text{ converges. This follows from continuity of } K(x, t) \text{ i: } x \geq 0, t \geq 0 \quad [12 \cdot 6]$$

$$(5) \bar{K}(x, t) \text{ is continuous; this follows from uniform convergence of } \sum K_n \text{ and continuity of } K_n. \quad [12 \cdot 7]$$

(6) (1) $\bar{K}(x, t) \geq 0$ for all x, t ; (2) $\bar{K}(x, t) = 0$ $t < x$. (1) is obvious, (2) follows from (12.3).

(7) The reciprocal function $\bar{K}(x, t)$ satisfies two integral equations.

$$K(x, t) - K(x, t) = \int_0^t K(x, u) K(u, t) dt = \int_0^t \bar{K}(u, t) \cdot K(x, u) du.$$

This follows immediately from definition of K_n and (12.5), and term by term integration of $\sum K_n(x)$. [12.8]

(8) Let $R(x, A) = 1 - \int_0^A K(x, t) dt$. To prove

$$\int_0^A \bar{K}(x, u) \cdot R(u, A) du = 1 - R(x, A). \quad [12.9]$$

$$\begin{aligned} \text{Proof: } \int_0^A \bar{K}(x, u) \left\{ 1 - \int_0^A K(u, t) dt \right\} du &= \int_0^A \bar{K}(x, u) du \\ &\quad - \int_0^A \bar{K}(x, u) \left\{ \cdot \int_0^A K(u, b) dt \right\} du = a - \beta. \end{aligned}$$

$$\beta = \int_0^A \bar{K}(x, u) du \int_u^A K(u, t) dt, \text{ since } K(u, t) = 0 \quad t < u$$

$$= \int_0^A dt \cdot \int_0^t \bar{K}(x, u) K(u, t) du = \int_0^A \{\bar{K}(x, t) - K(x, t)\} dt \text{ by (12.8)}$$

$$\begin{aligned} \text{Hence } a - \beta &= \int_0^A K(x, t) dt = 1 - R(x, A) \\ &= \int_0^A \bar{K}(x, u) R(u, A) \end{aligned} \quad [12.9]$$

(12.9) corresponds to formula (4.7) in Part I.

Proof (1) of Theorem XX:—

$$\begin{aligned} \int_0^A \bar{K}(xt) v(t) dt &= \int_0^A \bar{K}(x, t) u(t) dt - \int_0^A \bar{K}(x, t) dt \int_0^\infty \bar{K}(t, z) u(z) dz \text{ by (12.2)} \\ &= B_1 - B_2. \end{aligned} \quad [12.10]$$

Let $\bar{u}(z_0)$ be the upper bound of $|u(z)|$ for $z \geq z_0$

$$\text{then } \int_0^\infty \bar{K}(tz) u(z) dz = \int_0^A + \int_A^\infty = \int_0^A + \theta \cdot r(t, A) \cdot \bar{u}(A_0), \quad [12.11]$$

where $r(t, A) = \int_A^\infty K(tz) dz$ and $-1 \leq \theta \leq 1$.

$$\text{Hence } B_2 = \int_0^A \bar{K}(x, t) dt \int_0^A K(tz) dz + \bar{u}(A) \cdot \int_0^A \theta \cdot \bar{K}(x, t) \cdot r(t, A) dt \\ = C_1 + C_2. \quad [12 \cdot 12]$$

$$\text{Now } r(t, A) = \int_0^\infty K(t, z) dz - \int_0^A K(tz) dz \leq 1 - \int_0^A = R(t, A).$$

$$\text{Hence } |c_2| \leq \bar{u}(A) \cdot \int_0^A \bar{K}(x, t) \cdot R(t, A) dt = \bar{u}(A) \{1 - R(x, A)\} \text{ by (12 \cdot 9)}$$

$$\text{and } c_1 = \int_0^A \bar{K}(x, t) dt \int_t^z K(tz) \cdot u(z) dz \text{ since } K(tz) = 0, z < t \\ = \int_0^A u(z) dz \cdot \int_0^z \bar{K}(x, t) K(t, z) dt \\ = \int_0^A (\bar{K}(x, z) - K(x, z)) u(z) dz. \quad [12 \cdot 13]$$

$$\text{Hence } B_1 - B_2 = \int_0^A K(x, z) u(z) + \theta' u(A) \{1 - R(x, A)\} \quad [12 \cdot 14]$$

$$= \int_0^\infty K(x, z) \bar{u}(z) + \theta'' R(x, A) u(A) + \theta' \cdot \{1 - R(x, A)\} \bar{u}(A) \\ = \int_0^\infty \bar{K}(x, z) u(z) dz + \theta''' \bar{u}(A) \quad [12 \cdot 15]$$

$$\text{Hence } \int_0^A \bar{K}(xt) v(t) dt = \int_0^\infty K(x, z) u(z) dz + \theta''' \bar{u}(A) \\ = u(x) - v(x) + \theta''' \bar{u}(A). \quad [12 \cdot 16]$$

Since $\bar{u}(A) \rightarrow 0$, $A \rightarrow \infty$ by hypothesis, we have

$$u(x) = v(x) + \int_0^\infty K(x, t) v(t) dt = T^{-1}\{v(x)\}. \quad [12 \cdot 17]$$

Proofs of (2) and (3) of Theorem XX follow almost exactly by the same way as the corresponding portion of the Theorem IV of Part I and complement of Theorem IV of Part I.