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§ 13. General Remarks.

THIs part deals with a subclass of T [T as defined in 2-1 of Part I of this
paper]. We designate the direct and inverse transformations of this class by
U and U-L, and prove that these transformations, and others defined by their
products are commutative,. We further shew that transformations corres-
ponding to differences of any real order form a subclass of the group defined
by U, U-, and their products. In (16) we shew that some important
theorems of Anderson (A. 1)* are, either deducible from, or particular cases of,
theorems of Parts T and II of this paper. In (17) we discuss the generaliza-
tion of Knopp’s results on ““ Mehrfach monotone folgen™ (K- 2).1

§ 74. A Class of Commutative Transformations.

Let || 4y , || define a U. Then besides the four conditions of (2-1) of
Part I, condition (¢), namely, a, ,+, =asforallmn, ve, ag =141 =

=y ntp = """ characterizes a,, ; so that a,, , for U is characterized as
follows :
@) Gy =1 (V) Gy =0, n<m (¢)a,<Oforallp>1 [14-1]

(@) — > ay < 1. We see that a U is defined completely by a sequence {ap}
p=1
satisfying (¢') and (4').

(A-1)*. A, F. Anderson Studier over Cesaro’s swmmabilitets methode (Danish). See

the second chapter entitled *“ Om differencer ”.
(K-2)t. K. Knopp, ‘“Mehrfach Monotone folgen,” Mathematissche Zeitschrift,
1925, 22, 75-85. )
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In section 2 of Part I we established the existence of a unique reciprocal

matrix || B, » || such that || B,, » ||l @m,» || = || Om, » || (unit matrix). Since any
U is a T it follows that in this case also || B,, , || the reciprocal matrix exists-

Further from section 2 of Part I, we obtain

Bn,n-}-p = - 2 lan 7+ ke B?t+,é n+p (2-6)
L:
We can at once deduce B, ,4p = b, for all #; and
Jol
bpz_——-kzla,ﬂbp_é. (14 -2]

‘We obtain the following results also easily. b, = 1, b,, > 0, and from (14 -22)
it follows that b4, 1s given by the equation
T by ) (1 + 2 apa?) =1. [14 -3]
0 n=1
If U, and U, are defined by {a,'} and {a,?}, it is easy to prove
(1) Uy Uy =U, Uy ; (2) if || e, || defines U, U, then e, , + » = a,® for all 7,
(3) a,®1s given by the equation

1 + 2 apxP:(1+2aple)(1+2ap2 x?). [14 -4
p=1

The matrix of any product of U’s and U-Vs is always characterized by
condition (¢) of 14-1. If {a,} defines the product a, can be calculated in all
cases from an equation of the type of (14-4). It is quite easy to shew that
the commutative property is true for any product of U’s and U -1’s.

§ 75. Differences of any Real Order.

THEOREM : Transformations defined by differences of any real order
form a subclass of the class formed by U’s, U-Vs, and their products.

Lemma 1. 1f 0 < y < 1 then we shall prove that AY = U (y).
Formally the difference AY v, =9, —yv,,+, + Y (yLé ) b2
— 1 — 2
_rl )(7 ) ey e
1 —
= Uy — Vvﬂ-*-l‘-m_(AIz y) Vg0 ™ — -
— =y -1 —-y .
I_Q 7+ B
Consider a transformation U (y) defined by {a,} as follows :
]- - 1 _ —_— — Ay
4 = —y ooy = — u_@.w o ay— — za(,____.,,_z)_,l%_.,w_l,___ )

ey

then, ap<0forp>1and _ 0.5_,2' as =1,
1
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Hence conditions (¢’) and (d) of (14-1) are fulfilled and we have

A7 =T (y). [15 -1]
Lemma 2. HH0<y <l  A~Y ={U(y)-1} [15-2)
By (14 -3) this is obvious.
Proof of Theovem : Let U (1) = Al asin (15-1)

Let [U (1)j-' = A-! asin (15-2)
Then if A2 be a difference of any positive order, consider the transformation
S = [U ()" U )
where m = [p]and y = (p)
and U(y) = A"
If {a,} defines S, it is given as in (14 -4) by

Il +2a,x? =(1 —x)” -(1 —yx MV(IL;)'V)A@ )

= (1 — )"+ = (1 — 2)?

so that a, = ( — 1)”75 (p ~1) |(_§)z —7=1)
i.e., S=A?=[U)]* U@). [15-3]

If p is negative we prove in exactly the same way as above

A7 ={[U1)]-9y*-{U (y)}~*
where m={ —p)and y = (— p). [15-4]"
Hence the theorem.

§ 716.  Deductions of Some Theovemns of Anderson.

We propose in this section to derive Soetning 3, 4, and 5 of Anderson on
differences from theorems of Part T and II of this paper.

Soetning ITI (page 20 of Anderson’s Book A -1).
(@) %, =0(1) >0 s> —1 and7r +s>0

then As {A, (xﬂ,)} = A)‘ e ('xn)
(0) Iffx, =0(1) »r>0 s>» —1 and 7 +s>0
then As {Ar (xn)} —_ AH—s (-751z)~

Pyoof of (a) : Leaving aside the trivial case of s > 0 we shall shew that (a) is
a particular case of Theorem XVIII of section 11§, Part II of this paper.

Let s<0 and s = —¢g ¢ <1 chooseg;suchthat ¢ <¢; <1 and ¢, <7
sothatr =g¢q, +¢ ¢ > 0.
Then by Theorem of 15§ At =U, -U,, - Uy,

and A" =T (q,)-U,, --- Up,
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where U (g.) = A% asin (15-1)
and A =[U (g)]—*.

Since {#,} is bounded by Theorem IT of Part I so is (U,, U,, Up,) (%) = ¥,
We shall now shew that [U (¢)]=*-[U (¢1) ()] ={{U(g)]~1- U (92)} ().
Let || By || define [U (g)1-* and || sy, || define [U (g)]-?

Q(Q‘{"l)(q TP —_Ml_)._—_()(

and By u+p = by = (@, + l)l(gl tp =) =0 (p%17Y
therefore “2%*¥2 — (p779) .. Smath (0 as p —> oo
92, 58+ P 9+ P

Obviously s, is bounded and y, bounded. Hence the three conditions of
Theorem XVIII are fulfilled and we have

[U (@)1-*[Ulgy) (y)] ={U @11 U (@)} (y) = A% 77y,

=T (g1 — 9) (¥n)-
But y, = Upl o Upy (xn)

and by Theorem II of Part I
(U (g. — 9] [Upl Upz Up (24)] = [U (¢, — q) Up, -+ Up,] (%)
| = A7*5 (x,).
Proof of (b) : Leaving aside the trivial case of s > 0, this 1s a particular case
“of Theorem X of section 8§, Part II (refer 8-32).
Let S=—¢ ¢g>0 r=q+t >0
then A =[U(g)]-* and A7 = A?-A?

' - =U (9)- Uy, Up, --- Up,.
" Since x,, is a null sequence by 8-32 of Part II P = Pe Pr

(U @110 (@) Up, Up, +++ Up (%)] = Uy, Uy, =+ Up, (%)
: or
A [A” (xn):] = A7+? (xn)
Statement Soetning IV and V of Anderson :—

3 1
Soetning IV (a)—If, x,=0 (;{5)’ a>0r>—a, $> —1—a,7? +5s> —a

then A A7 (x)] = A7+5 (x,).
Soetning IV (b)—If x, ==0(;};,), a>07r>—a,5s>—1—a,7 +5> —a
then ASTAT (1) = AT+5 (%), |

. 1 ' :
Soetning V (¢)—If %, =O(;%;),a >07r>—a,s>—1—a,7v +s> —a
ASTA” (x,)] = A7 (x,,) when the latter exists.
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We shall shew that these are particular cases of Theorems VI, VII, VIII and
IX of Part II of this paper. There is a considerable amount of overlapping

of the various cases occurring in (a), (b), (¢). Inany particular case of (a) we
shall have

(@) s>—1—a, 7> —a, and 7 +s> —a, where0 <ay; <a.

The cases of (b) which do not occur under (a) are

O)Ys=—1—@a, > —a, ¥ +5s> —a.
The cases of (c) which do not occur under (a) and (b) are
c)y7r+s=—a, > —a, s> —1—a.
We propose to further divide (@), (b') and (¢’) as follows :
(@) — (a,") when s > —a,; (a3) s =—a;—q¢ 0<g<1
(6") :— only one case (b’
(¢') :— (c,") when 7 and s are negative
Cde., v = —a3 §= —ay a3>0a4">0 and a; + a; = a
(¢, when 0 <7 <1 and s=—a —7.

We shall shew that (a,) is a particular case of Theorem VII of Part IT
(a’y), (by) and (c,’) are particular cases of Theroem IX of Part II
and (c,’) is a particular case of Theorem VI of Part II.
Proof : (a,) 7> —ay $=—ay and 7 + 5> — a,.
By 154 A~a: =U~1-U,~! - - Up~ ! and the most general way of taking
A7and Afwould be A” = (U, - Uyt - Ut U, - Uy, -+ Up,) and
A = (U, Uy, o+ Uy » Uppyt - Upyymt - o U ),
If || By n+pll defines (U=t --- Uy }) then B, ,, 1 p =0y =

oy (a2+ 1) <+« (ag +p — 1) P
Lp
and 2 b, =B, =0 (ne)
p=20
Let ay (1 +8)=a; since a2<a §>0;
By hypothesis = O(n“) -0 (B 1+a)

Hence by (8-20) of Theorem VII of Part II .

AS [A) (xﬂ):l = (Uh U?z .Uffs'U1+1—1' ’ 'Ué—l). [(Ul- e 'U[-,l Up1 ’ 'Upf.(xn)],
= Uy Uy Upe s Ve Ui 0,700 0) (1) = A7+ (),

Proof of (a)): s = —a—¢q 0<g<1 7 :g+t 1 >0

since . %, = O (; ) as above x,, = O (B 1+5) -0 (B )
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Let v o ATe =0 UL
| A7 =U(g)
then AS =(U;71 - U= [U (g)] -

A" =U(Q) U, U, -+ Uy,

If [ Bunssl defines (Ut - Uyt and by =By 1pand B, = 2 b,
p>0

since by hypothesis %, = 0 (EL) we have by (8 -30) and (8-31) of Theorem
i

IX of Part II
ASTAT (3,)] = [Uyt - U H{U (91 (U (9) Uy, Uy, -+ Upy) (¥a)
= (Ut - U t-Up, Up,) (x0)
= A”*+S (x,) when the latter exists.

But the latter exists by Theorem VII sincex, = O (B 11 . 5), 6 >0
<9
Hence (a,') is established.

Proof of ('): s=~1—a 7=1-+¢t £t>0 x”-_—_—o(,.},.)

o
Let AY =T (1), A=% = (0,71 T
then if “ an ” defines (Ul— beUp l) Bn,n +p = bp
+1 —1
_-,O‘ (a )|(_; +P~mw) = (,pa-—l)

and B, = 2 b, =0 (n#).
p=0
We therefore have A" = U (1)-U, U,, -- Uy,
A =[U (@)1 U1 U
1

and since 1z, =0 (E;)

A[A (%] =[{U (1}=1-Uy=t - Ugm ] [U (1)-T,, -~ Up,]

= (U;=1- U=t -Up, -~ Up) (x,) = A7+ (x,,) if the latter exists by
(8:30) and (8-31) of Theorem IX of Part II.

. . 1
But the latter exists since x, =0 (7-13) andr +s > — a by Theorem VII.

Proof of (c;'): In this case argument is identical with that of (b') except in
the last step where it must be noted that the equality will be valid if
A% x,, exists,

PfOOfOf(C'l)I 7’: —a3 S = —a4 a3 +a4 = a a3 >O a4b > O xn - 0(“}-‘>

na
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Let | Bn , || define A-as. We shall prove that
20 1
z /gn,plxpl ZO(A”“E;)

p=A
Praof: By uyp =bp =0(p=1 and £ b, =B, = O (na)
e(n) _ e ¢ (n)

and z,, = 75 T masi+®) ~ Bt where € (n) — 0asn —> oo,
Hence by result (1) of Theorem VII.
e (A) _ € (4) I
Z Blnl|< Gt =G = 0(an)

It | B%,p Il defines A —as then B, 45 =0," =0 (pa: =)
| and I b, =B, =0 (nes).

Hence bl By, o | %ol ' = 0 (BL’) uniformly for all #.
A A

Hence the conditions of Theorem VI are fulfilled and we have by the same
theorem

A-as [A~as (x,)] = A~a (x,) when the latter exists.
§ 77.  Generalrzation of some Theorvems of Knopp.

His results in the paper (K. 1) are as follows :
Given x, >0 andzx, = 0 (1) then

I. If A% (x,) >0 foralln, ther AF (x,) 20 for 0 € B < a. (Satze
6 of his paper).

II. If a>1 and 0<B<a-1 and %, >0 x, =0 (1) and
A% (%,) > Oforalln

then  Af (x,) =0 (1—%—13) [Satze 9 of his paper]

and two particular cases of II are also given as Satze 7 and Satze 8
of his paper. *
It will be shewn that,
if a>0 (%) =yn yu>0

then for all 0<B<a Af(a,) = A-E-F (y,) [17-1]
and in particular x, = A -2 y,, is an immediate c'onsequence of Theorem IV
of Part I.

In particular %y = A-%y, =2 A, A% (x,) =2 A1 A (x,)].
Hence the conditions of Hjaelpsoetning III. B of Anderson on page 34 of his
book (A -1) are satisfied and result IT of Knopp follows at-once as a particular
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case of the theorem of Anderson. It is rather remarkable that Knopp has

not noticed this. We will here give generalizations of results I and II applic-
able to U’s. f '

THEOREM I : Let S =U,U,Us-Uzand S (x,) = vy,

and 8 =T, Uy, - Uz and 8 (%) =2,

If x, =0 (1) - and v, > 0 for all #, o

then S (%) = (U=1Up~ -+~ U~ Y (v,)

and S (x,) > O0forallm [17 -2]
Proof : L Y =S (%) =(U1 U U,) (Upsy --- Uy (%)

= (U, U, U,) {8 (x,)} by Theorem II of Part I
= (Ul U, Ur) (Zn)'
Also since x,, =0 (1)'so is z, = 0 (1) by Theorem II of Part I.

Hence by repeated application of Theorem IV of Part I just as in the corollary
to it. o

Zp = (Ur)—l'(U-r-— ). (Ul)_-ll (V) _
=2 Bun+pE B nvpynis,  ZButp, s Vu+p [17 -3]
where || f7,,, » || defines (U,)~1. The multiple series on the right can be
summed up in any manner since f,, , > 0 and y,, > 0.

Zp = (Z lgru,ﬂ+p1 'Br—ln+z’1 B o P .Bln + Py~ 2 -F l’) Vo +p

- 2 Bn+pyn+p

p=0
where TN Bl =B 1B 2 | = 1l Bl -
Hence 2y = (Ut Uy~ - U,mY (v,) = (Uysy --- Up) (%)
since - y» > 0andall B, >0 we have z,, > 0
and in particular we have x,” = (U;1--U,-1) (y,), when » = k. [17 -4]

When the U’s are A’s we have as a deduction from above the result of
(17-1) namely :(—If A*(x,) =9, >0 foralln a>0
then ‘ AB (x,) = A~@=By,
and in particular X, = A~ y,.
THEOREM II: Let U (1) = A' and S = [U (1)U, U, U, U,]
| " =U, U, -- U,

Let | By || define U;=2Up=1 - Uyt
—_ ”7 '
Now ,Bﬂ,n+p = bp- Let X bp =B,
0
then if

% =0 (1) and S (x,) =y, be > 0 foralln, then &' (x,) = 0 (g )- [17-5]
. : - 7
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Proof: By 174 x, = [{U (1)}-1-U;~1-Uyt -+ Up~ ] (v,,)
= {U (1)}—1'(U1~1 T Ul’_ 1) (y;z)
=U (1)~1'(2 Brz. n+pyn+p)

oo
=2 Byyniy
0
and Xy = p% B,y,
0
and S (%) =[U (DI () =2 3,
< X B,w 1 1
Now 2 = 2 . PP < e ) B, -v, =0 ( ------ )
7 yp 7 BP = BP g e B”
since & B, y, converges and B, < B, < --- <B, < ---
Hence S (x,) =0 (Bl > Thus proving (17-5).
Result IT of Knopp follows immediately from this
for let U (1) = A! U, U, U= A% a>0
If ArTe (x,) > 0 for all #
then . A*x, =0 (1;)
n

for B, in this case = O (n%).
Knopp’s Satze 7 is an immediate consequence of this. His Satze 8 takes the
following interesting form in terms of U’s.

If U (%) =%, be > O0forallu, x, > 0and x,, =0 (1) and z X,, conver-
0

gent, then,
B,x, >0 as #n —»oco where {b,} defines U~ as in (14-3) and

”
B, = X b, Puttingr, =x, + %5+, + ---

p=0
we have A7, =x, =U(1) (v,).
Hence [U (1) U] (#r) =y» >0 for all n.
Hence U (r,) =0 (%) by (17-5).

But U (r,) = fi’oxp + ay b Zp + @ by %, -+ ---, where {a,} defines U
”n n+1 n+ 2

A o i
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The right-hand side is an absolutely convergent double series since

b3l la,| = — > a, <1 and X x, is convergent.
1 1
Hence U@ln) =% + %541 (1 +a1) +%+2(1 oy +a) + -+

since 1 + a; + a3 + a, > 0 by condition (d’) of 14 -1
we have x,, < U (7,,)

Hence x, =0 (}) [17-6]
B,
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